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ABSTRACT 

 
Cycling of carbon (C) and nutrients plays pivotal role for functioning of every ecosystem. 

Biogeochemical cycles of carbon and nitrogen (N) are balanced by a network of inter-

actions between plants, litter and soil chemistry, microbial communities, enzyme machinery 

and climate conditions. This thesis focuses on the role of terpenes in C and N 

transformations in boreal forest soils. Terpenes are abundant plant secondary compounds. 

The focus was on certain mono-, di-, and triterpenes. 

Soil incubation experiments revealed that terpenes increased the mineralization of 

carbon but decreased net nitrogen mineralization and net nitrification. Additionally they 

increased the amounts of carbon and nitrogen in the microbial biomass through 

enhancement of bacterial growth; however, they inhibited fungal growth. This study 

suggests that terpenes can act as a C source for some microbial communities. Moreover, 

terpenes showed inhibitory potential against enzymes, which are involved in C, N, P, S 

cycling. The mechanism of inhibition seems to be based at least partially on ability of 

terpenes to bind enzymes. 

The field experiment presented the effect of logging residues and wood ash on 

composition of terpenes and C and N cycling in soil five years after clear-cutting a Norway 

spruce stand. Logging residue treatment increased the concentrations of certain terpenes in 

the organic layer. Both, logging residue and wood ash treatments increased net N 

mineralization and net nitrification. Some changes in terpene concentrations correlated with 

C and N cycling processes, but the relationship between terpene concentration and C and N 

cycling processes remained still unclear in the field conditions.  

In conclusion, terpenes can affect C and N transformations in boreal forest soil. It is 

probable that terpenes change N cycling retaining more N in organic forms and potentially 

decrease nitrogen losses from forest ecosystem. 
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1.  INTRODUCTION 

 

 
The boreal forest ecosystem is characterized by low soil pH, high production of plant 

secondary compounds, high soil organic matter (SOM) content, and nitrogen (N)-limitation 

(Prescott et al. 2000; DeLuca and Boisvenue 2012). Despite that boreal forest soil contains 

a large nitrogen pool, most of it is in various organic forms, which are bound or complexed 

with soil compounds that are physically protected from decomposition (Schmidt et al. 

2011). Thus, soil N needs to be released from these boundaries, depolymerized and 

mineralized into inorganic N before uptake by plants (Schimel and Bennett 2004). A short-

cut for this pathway, in which plants can directly take up small organic N forms has also 

been shown (e.g. Schimel and Bennett 2004; Näsholm et al. 2009), but the ecological 

significance of this phenomenon is currently not well defined (Gärdenäs et al. 2011).  

It has been suggested that plant secondary compounds have potential to play significant 

roles in the N cycling and nitrogen availability of boreal forest soils (Lodhi and Kilingberg 

1980, Kraus et al. 2003, Smolander et al. 2012). Some work has been performed on tannins 

and monoterpenes, but the role of higher terpenes still remains unclear. My thesis 

concentrates on the various effects of terpenes on carbon (C) and N cycling processes in 

boreal forest soil, paying special attention to higher terpenes. The applied part of my study 

focuses on terpenes and soil C and N cycling beneath logging residues. 

 

 

1.1. Plant secondary compounds 

 

Plants produce a wide variety of compounds to sustain growth, development and 

reproduction. In addition to primary metabolites, which play a clear role in the above-

mentioned processes, plants also produce vast amounts of compounds called secondary 

compounds (=secondary metabolites), which are basically not needed for plant growth.  

The main role of plant secondary compounds is ascribed to defence against pathogens 

and herbivores (e.g. Harborne 1997; Agrawal and Weber 2015). Plant secondary 

compounds may act as attractants for seed-dispersing animals and as allelopatic agents 

(Croteau et al. 2000). They can act as antioxidants protecting leaves from UV radiation and 

excess of light (Close and McArthur 2002).  

Extractable plant secondary compounds can comprise even up to 30% of the dry weight 

of terrestrial plants, especially in forest ecosystems (Horwath 2015). However, the 

concentrations of plant secondary compounds are species- and organ- specific. For instance, 

estimated concentration of plant secondary compounds in pine and spruce needles and birch 

leaves accounts for 52, 140, 78 g/kg d.m. (dry matter), respectively (Kanerva et al. 2008).  

In addition, environmental biotic and abiotic factors like e.g. pathogen attack, vertebrate 

and invertebrate herbivory, soil nutrient deficiency, light, temperature, elevated CO2 and 

drought affect concentration of plant secondary compounds (Obst 1998, Tharayil et al. 

2011, Väisänen et al. 2013). Moreover, difficulties in extraction and quantification methods 

affect the results of plant secondary compounds (Kögel-Knabner, 2002).  

Plant secondary compounds consist of three major groups: terpenes, phenolic 

compounds (including tannins) and alkaloids (not included in this study). 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=V%C3%A4is%C3%A4nen%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24287946
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1.1.1. Terpenes  

 

Terpenes are the largest and the most diverse group of plant secondary compounds. Their 

concentrations in leaves usually range from 1% to 2% of the dry weight (Langenheim 

1994). In plant cells terpenes are formed in the cytosol, plastids and mitochondria (Bramley 

1997). Terpenes occur in resin, a heterogeneous mixture of fats and fatty acids, steryl 

esters, sterols and waxes. Resin is synthetized by coniferous and deciduous trees, however 

conifer trees produce larger amount of resin (Back and Ekman 2000). Terpenes are also 

produced by microbes, including soil microbes (Stahl and Parkin 1996; Bäck et al. 2010), 

some marine organisms (Jansen and De Groot 2004), and insects (Laurent et al. 2003).  

Chemically, terpenes are derived from units of isoprene (C5H8). Their structure can be 

acyclic, monocyclic, bicyclic or polycyclic (Fig.1). Monoterpenes have two isoprene units 

(C10H16), sesquiterpenes have three isoprene units (C15H24). Higher terpenes such as 

diterpenes, have four isoprene units (C20H32), triterpenes have six (C30H48), tetraterpenes 

have eight (C40H64), while terpenes having >C40 are called polyterpenes (Langenheim 

1994). 

 

 

 

Fig. 1. Terpene: classification A) and examples of monoterpenes B), sesquiterpenes C), 

diterpenes D), triterpenes E). 
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Terpene production depends on plant species and on environmental conditions (Munné-

Bosh et al. 2000; Smolander et al. 2012). For example, diterpenes occur in low 

concentration in birch, but they are abundant in conifers (Kanerva et al. 2008).   

Monoterpenes are the main components of plant volatile essential oils, and especially 

high concentrations are found in conifers (Amaral 1998). The most abundant monoterpenes 

in Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L) resin are α-pinene 

and β-pinene. Amount of carene can be significant in Scots pine resin, but it depends on 

region and genetic varieties. Carene is a common monoterpene in Scots pine needles and 

along with α-pinene composes 80% of the total amount of monoterpenes (Hiltunen 1975, 

Tarvainen et al. 2005). Monoterpenes accumulate in the resin ducts and are used by plants 

as toxins or deterrents against herbivores (Steinbrecher and Ziegler 1997). With other 

volatile organic compounds (VOC), monoterpenes are emitted to the atmosphere where 

they play important role in atmospheric chemistry and physics (Peñuelas and Llusia 2003).  

Sesquiterpenes act as pheromones and juvenile hormones. In the boreal forest, Scots 

pine and Norway spruce needles contain larger amounts of sesquiterpenes than the leaves of 

silver birch (Betula pendula Roth.) (Kanerva et al. 2008). 

Diterpenes are found in resin. Secretion of resin acts as a part of the resistance 

mechanism that conifers employ against bark beetles and their associated pathogenic fungi. 

Physiologically active diterpene groups include for example vitamin A (retinol), 

phytohormones that regulate plant growth and germination, gibberellins, fungal hormones 

that stimulate the switch from asexual to sexual reproduction, trisporic acid and disease 

resistance agents (phytoalexins) (Cooper-Driver and Le Quesne 1987). Dehydroabietic 

acids is the most abundant compound present in resin, and it constitutes the solid fraction of 

the oleoresin in coniferous trees.  

Triterpenes are produced by plants; but they are also synthetized by some bacteria and 

fungi. In plants, triterpenes often accumulate as conjugates with carbohydrates and other 

macromolecules, most notably as triterpene glycosides (saponins), providing protection 

against pathogens and pests (Thimmappa et al. 2014). A common triterpene, β-sitosterol, is 

more abundant in the deciduous leaves (birch) than in the conifer tree needles (spruce, pine) 

(Kanerva et al. 2008). 

 

1.1.2. Tannins  

 

Tannins are a widespread group of plant secondary compounds. Chemically, they are 

polyphenols usually divided into hydrolysable tannins (HT) and condensed tannins (CT) 

(Fig. 2). Hydrolysable tannins are grouped into gallotannins and ellagitannins, which are 

made up of gallic acid or hexahydroxydiphenic acid esters, respectively, linked to a sugar 

moiety. Condensed tannins (proanthocyanidins) are polymers of three-ring flavonols joined 

by C–C bonds (Haslam 1989). Monomers of CT can be divided into procyanidins and 

prodelfinidins. Pines and spruces produce only CT; birches contain CT as well as HT 

(Kraus et al. 2003). 

Tannins are the fourth most abundant compounds in vascular plant tissue after cellulose, 

hemicelluloses and lignin (Kraus et al. 2003). The concentration of tannins in plants has 

been estimated to be up to 20% of the dry weight (Kraus et al. 2003). Condensed tannins 

are produced by chloroplast-derived organelle called tannosome and CTs are stored mainly 

in vacuoles (Brillouet et al. 2013). Tannin concentration in plants can change in response to 

environmental conditions (Kraus et. al 2003). Many studies have shown that high tannin 
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concentration can be found in plants living in conditions of low soil fertility and low pH 

(i.e. Northup et al. 1998). 

The effect of tannins on living organisms is very broad: from their important role in 

plant defence against herbivores and pathogens (Herms and Mattson 1992) and allelopathy 

(Rawat et al. 1998) to their influence on humus formation, degradation of soil organic 

matter and nitrogen cycling (i.e. Chapin 1995, Fierer et al. 2001, Kraus et al. 2003; Kanerva 

et al. 2006).  

 

 

 

 

Fig 2. Molecular structures of tannins: hydrolysable tannins: A) a simple gallotannin, B) a 

simple ellagitannin, and condensed tannins: C) monomer, D) trimer (modified from Kraus et 

al. 2003). 

 

 

 

 

 

 

 



13 
 

 
 

1.2. C and N cycling in boreal forest soil - potential role of plant secondary compounds 

 

The boreal forest is characterized by low rate of decomposition, corresponding to slow 

nutrient cycles and the accumulation of soil organic matter (SOM) during forest growth 

(Lupi et al. 2013). Such slow decomposition emerges from low temperature, litter rich in 

lignin and polyphenols (mainly tannins) and N-limitation (Prescott et al. 2000). Moreover, 

it has been emphasized that SOM decomposition is controlled not only by its chemistry but 

rather physiological processes, such as microbial responses to environment conditions and 

social dynamics among microbes are the main drivers of decay rates (Schmidt et al. 2011, 

Kaiser et al. 2015).  

C cycling rate is linked to availability of nitrogen. The major pathways of nitrogen input 

to the ecosystem are biological N2 fixation and atmospheric N deposition, albeit in Finland 

N deposition is usually low with some exceptions in southern Finland (Poikolainen et al. 

2009). In soil, nitrogen exists in different forms, from plant-available inorganic and small 

organic forms to unavailable polymers. N forms are transformed during nitrogen cycling, 

consisting of microbial-driven processes: depolymerisation of high-molecular mass organic 

N, mineralization (ammonification), nitrification, immobilization, and denitrification. 

Disturbances, e.g. harvesting, N fertilization and N deposition affect N cycling and increase 

the risk for N losses. Stimulated nitrification and denitrification can lead to N losses from 

the forest ecosystem via leaching of NO3 (nitrate) and the creation of gaseous N-forms (N2, 

N2O).  

There are different paradigms of soil N cycling. The classical paradigm is based on N 

mineralization as the most critical step during the transformation of organic N forms into 

plant-available mineral forms. The rate of N mineralization is low in boreal coniferous 

forest soil and was annually estimated to account for 0.5-3% of the total amount of nitrogen 

(Persson and Wiren 1995). Recently it has been recognized that the depolymerisation of N-

containing components into plant-available organic N forms is a main point in the N-

cycling particularly in N-limited environments and this emphasizes the role of extracellular 

enzymes in the decomposition process (Schimel and Bennet 2004, Kieloaho et al. 2016). 

The positive feedback mechanisms between mycorrhizal fungi and plants may drive the 

ecosystem to stronger N limitation. According to some studies, higher carbon allocation 

from trees to mycorrhizal fungi boosts nitrogen retention in soil mycelium at low N supply 

(Näsholm et al. 2013, Franklin et al. 2014). In boreal forest soil, tannins can shift N cycling 

from mineral- to organic-dominated pathways, decreasing N losses from the ecosystem 

(Northup et al. 1995, 1998). 

The soil concentrations of plant secondary compounds, including terpenes and tannins, 

depend on input of these compounds to the soil and on their degradation rate. Several 

factors affect their concentrations in soil such as plant species, environmental conditions 

and microbial community structure (Kanerva et al. 2008, Adamczyk et al. 2009, Smolander 

et al. 2012). Additionally, forest management may change the input of plant secondary 

compounds to soil and also can change soil chemical and physical properties. During 

traditional harvesting, so-called “stem-only-harvest (SOH)” logging residues, consisting of 

branches and stem tops with needles are left on the site providing a large input of C and 

nutrients to soil and also plant secondary compounds (Obst 1998). On the contrary, whole-

tree-harvest (WTH) includes harvesting of logging residues for bioenergy purposes.  
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1.2.1. The role of terpenes in C and N cycling in soil 

 

In general, there is not much data available on the concentrations of different terpenes in 

boreal soils but some studies from Finnish forests are accessible. The highest terpene 

concentrations were observed in litter layer, lower in organic layer of the soil. Moreover, 

also the composition of terpenes changes from litter to organic layer (Kanerva et al. 2008, 

Stark et al. 2012). In the litter layer in different conifers, amounts of monoterpenes were 1-

5 g/kg o.m. (organic matter) (Smolander et al. 2012) and the sum of concentration sesqui-, 

di-, and triterpenes range from 1.5 to 21 g/kg o.m (Kanerva et al. 2008). In the organic 

layer, the concentration of monoterpenes range from 0.1 to 0.2 g/kg o.m. under the Scots 

pine and Norway spruce and the sum of concentration of sesqui-, di-, and triterpene were 

from 0.5 to 5 g/kg o.m. (Smolander et al. 2012). The amount of terpenes in soil depends on 

the tree species and is highest under pine and lowest under birch (Smolander et al. 2005, 

2008, 2010, Kanerva et al. 2008). Organic layer under birch contained less sesquiterpenes 

and diterpenes than the soils under pine and spruce (Kanerva et al. 2008).  

There is evidence available that monoterpenes can affect C and N cycling in soil. Some 

studies have shown that monoterpenes (e.g. α-pinene, β-pinene, carene and myrcene) 

inhibit the net N mineralization and net nitrification (White 1986, 1991, 1994, Paavolainen 

and Smolander 1998, Smolander et al. 2006, Uusitalo et al. 2008). Mechanically, 

nitrification can be decreased by the direct effect of monoterpenes on ammonia 

monooxygenase through non-competitive inhibition (White 1991, 1994, Ward 1997). 

Monoterpenes have been shown to increase C mineralization (CO2 production) in forest soil 

(Paavolainen and Smolander 1998, Smolander et al. 2006), and to decrease the amount of C 

and N in the soil microbial biomass (Smolander et al. 2006). These results suggest that 

monoterpenes can act as a C source for some microbial communities while being toxic to 

others. Moreover, Ludley et al. (2009) suggested that vapours of α-pinene and β-pinene 

may increase colonization of tree roots by the ectomycorrhizal fungus, and decrease 

respiration rate of some saprotrophic fungi.  

Some studies show that certain triterpenes possess antibacterial and antifungal potential 

(Aderiye et al. 1989; Smania et al. 2003; Popova et al. 2009); however, these studies were 

not conducted under soil conditions. In a study with sandy arable soils, β-sitosterol 

negatively correlated with the mineralization of soil organic N (Heumann et al. 2011). 

Except that, nothing is known about the effects of higher terpenes on soil processes.  

 

1.2.2 The impact of tannins on C and N cycling in soil 

 

Effects of tannins on soil processes depend on tannin structure. Condensed tannins (CT) 

decreased net N mineralization in the soil or litter under several tree species like balsam 

poplar, Scots pine and Norway spruce (Schimel et al. 1996, 1998, Kanerva et al. 2006, 

Kanerva and Smolander 2007). Condensed tannins decreased also C mineralization and 

microbial biomass C and N (Fierer et al. 2001, Kanerva et al. 2006, Nierop et al. 2006; 

Kanerva and Smolander 2007). Likewise hydrolysable tannin (HT), a tannic acid, can 

decrease net N mineralization (Kanerva et al. 2006, Nierop and Verstraten 2006, Kanerva 

and Smolander 2007), however it acts as a C source because of rapid increase in CO2 

production; this indicates that decreased net N mineralization is due to immobilization.  

Soil HT concentrations are very low (Adamczyk et al. 2008, 2009), which could emerge 

from generally low concentrations in plant litter or fast decomposition. On the contrary, CT 
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concentrations are much higher, up to a few g per kg SOM (Preston et al. 2006, Smolander 

et al. 2005, 2008, Kanerva et al. 2008, Adamczyk et al. 2009).  

The effect of tannins on nitrification is not clear (Kraus et al. 2003), however, some 

experiments suggest that CT inhibit nitrification (Nierop et al. 2006, Kraal et al. 2009). The 

mechanism of such inhibition has so far not been clarified, but this process is probably 

dependent on tannin concentration and structure. According to Bardon et al. (2014, 2016), 

procyanidins (a group of condensed tannins) inhibit denitrification through decreasing NO3
-
 

reductase activity; mechanically procyanidins change conformation of this enzyme. 

The high tannin concentration in boreal forest soil may partially account for the 

phenomenon of soil organic N recalcitrance. Tannins affect C and N transformation in soil 

by creating complexes with proteins (Hagerman and Butler 1981, Fierer et al. 2001, Kraus 

et al. 2003) and some other organic N compounds (Adamczyk et al. 2011). Tannin-protein 

complexes are relatively recalcitrant to decomposition but may act as a source of N which 

is recovered by the mycorrhizal symbionts of certain plant species (Northup et al. 1995, 

1998). As tannins also interfere with enzymes (e.g. Adamczyk et al. 2009, Triebwasser et 

al. 2012), their influence on plant N uptake and SOM decomposition appears highly 

complicated. 
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2. AIMS OF THE STUDY 

 

 

A gap of knowledge concerning the effect of terpenes on soil processes supports the need 

for this study. Certain studies have shown the inhibition of N cycling processes by 

monoterpenes, but almost nothing is known about the possible effects of higher terpenes on 

soil processes. 

The aim of this thesis was to explore the role of terpenes in C and N cycling processes, 

and the influence of logging residues on these processes and terpene concentrations in 

boreal forest soil. Effects of terpenes were studied in soil incubation experiments (I, II, III) 

by exposing soils to different terpenes and monitoring C and N transformations. The 

mechanisms behind these changes were examined in more detailed studies, e.g. through 

studies of enzyme activities. The last section of my thesis evaluates the role of terpenes in 

connection to energy tree harvest in the field experiment (IV). Logging residue harvest can 

change the amount of terpenes in soil, thus affecting their role.  

 

Hypotheses: 

1. Terpenes inhibit microbial processes related to N cycling and stimulate C cycling in 

boreal forest soils 

2. Logging residues increase amount of terpenes in soil and this inhibits microbial 

processes in N cycling in forest soils.  

 

 

 

Scheme 1.  Potential effect of terpenes on C and N cycle processes in boreal forest soil. 

SOM – soil organic matter, R – monomer of organic compound, - - inhibition, + - stimulation 
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3. MATERIALS AND METHODS 

 

 

The methods applied here are described in details in I, II, III, IV. 

 

 

3.1. Study sites and soil sampling 

 

To study the changes in soil C and N cycling due to exposure to terpenes (soil incubation 

experiments, I, II, III), soil samples were taken from two sites, first located in Kivalo in 

Northern Finland (66°20´N, 26°40´E) and the second one in Kerimäki in Southeastern 

Finland (61°51´N, 29°22´E). The Kivalo site was a tree species experiment including silver 

birch plots (Betula pendula L.) (Smolander et al. 2002). Originally, this study site had been 

a homogeneous Norway spruce stand, which had been clear-cut and burned in 1926. The 

Kerimäki site was a fertilization experiment (Smolander et al. 2000). It had originally been 

a Norway spruce stand, which was harvested by clear-cutting in 1993 and planted with 

silver birch seedlings in 1994. This site was N-fertilized 35 and 12 years before the clear-

cutting. Kerimäki, Oxalis-Myrtillus site type, was more fertile than Kivalo, Hylocomium-

Myrtillus site type (Cajander 1949). On both study sites the soil type was Podzol and humus 

type was mor. From both study sites representative samples of organic layer (Ofh) were 

taken; Kivalo soil was collected in 2008, Kerimäki in 2009 from previously N-fertilized 

plots.  

In this study, soils differing in characteristics were used to compare terpene effects on C 

and N cycle. Organic layer of birch stands was selected since it was expected to contain less 

terpenes than organic layer under corresponding coniferous stands. Kerimäki soil was more 

fertile than SOM-rich Kivalo (C/N ratio: 19.5 in Kerimäki, 30 in Kivalo; Table 1).  

Soil samples were sieved and water holding capacity (WHC), dry and organic matter 

contents, pH and total C and N were measured (part of the data in Table 1). 

 

 

Table 1. Basic soil characteristics and concentration of terpenes and tannins in organic 

layer. Results are presented as mean values (I, II, III). 

 
 Kivalo soil 

(N-poor soil) 
Kerimäki 
(N-rich soil) 

pH 4.2 5.0 

Organic matter (%) 81 30 

Total C (g/kg o.m.) 600 532 

Total N (g/kg o.m.) 20 27 

C/N ratio 30 19 

Sesquiterpenes (g/kg o.m.) 0.09
#
 - 

Diterpenes (g/kg o.m.) 0.26 0.85 

Triterpenes (g/kg o.m.) 0.24 0.12 

Condensed tannins (g/kg o.m.) 2.50
¤
 0.20 

 

#
 data taken from Kanerva et al. (2008); 

¤
 data taken from Adamczyk et al. (2013) 
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To study the effect of logging residues and wood ash on terpenes and C and N 

transformations, soil samples were taken from site located in Anjalankoski, Southern 

Finland (60˚N, 26˚E) five years after clear-cutting (IV, Table 3). Before clear-cutting, the 

main tree species was Norway spruce and the study site was Myrtillus site type according to 

the Finnish forest-site type classification (Cajander 1949). At the beginning of this 

experiment, after clear-cutting, four treatments were established; three logging residues 

levels (0, 10, 40 kg/m
2
) (Photo 1) and commercial wood ash (0.3 kg/m

2
). There were four 

replicates per treatment. Soil cores from each plot were divided into organic layer (Ofh) and 

the uppermost part of mineral soil. 

All these experiments were established by Natural Resources Institute Finland (Luke) 

(former Finnish Forest Research Institute - Metla).  

 
 
 

 

 

Photo 1. Field experiment at the beginning; logging residues piles. Photo: Erkki Oksanen, 

Metla. 
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3.2. Analysis of terpenes and tannins  

 

To determine sesqui-, di- and triterpenes, sieved and dried samples of soil and plants were 

extracted with acetone and extract was evaporated to dryness. For sesquiterpenes analysis 

dried extracts were re-dissolved in chloroform. For di- and triterpenes analysis dried 

extracts were dissolved in pyridine + N,O-Bis(trimethylsilyl) trifluoroacetamide (BSTFA). 

To determine monoterpenes, fresh soil and plant samples were sieved and crushed in a 

mortar with liquid nitrogen and extracted with pentane spiked with internal standard 

(chlorodecane). Terpene concentrations were determined with gas chromatography-mass 

spectrometry (GC-MS) (Smolander et al. 2008). Identification of terpenes was based on 

reference compounds, mass spectrometric data and on the literature (I, IV, Pohjola 1993).  

Concentration of condensed tannins was determined from air dried soil samples using 

modified acid-butanol assay (Terrill et al. 1992, Waterman and Mole 1994, Ossipova et al. 

2001). Condensed tannins extracted and purified from Norway spruce needles were used as 

a standard (II, IV). 

   

 

3.3. Measurements of soil C and N transformations  

 

Changes in C and N cycling were studied after exposing the soil to terpenes at constant 

moisture and temperature in glass bottles (I, II, III). We used different amounts of higher 

terpenes, namely 10mg, 50mg (and 20mg in III), where the lowest amount of terpenes 

corresponded to natural terpene amounts in coniferous soil (Table 1). We used commercial 

terpenes: monoterpenes (α-pinene, carene, myrcene) (III), diterpenes (abietic acid, 

colophony) (I, II, III), triterpenes (β-sitosterol) (I, II, III). Colophony is a mixture of 

diterpenes which consisted of abietic acid (37.7 %), palustric acid (22.2 %), neoabietic acid 

(18.4 %), pimaric acid (8.4 %), dehydroabietic acid (7.6 %), and isopimaric acid (5.7 %), 

according to GC-MS analysis (I). 

In the field experiment (IV) soil samples from different field treatments were incubated 

for 4 weeks at constant moisture and temperature in glass bottles. 

In all studies net nitrogen mineralization and net nitrification were determined after 

extraction with KCl; net N mineralization was estimated as the accumulation of NH4-N and 

(NO2+NO3)-N during incubation and net nitrification as the accumulation of (NO2+NO3)-N 

during incubation. NH4-N, NO3-N and NO2- N (nitrite) were measured with a flow 

injection analyser (FIA) (I, II, IV). 

Potential nitrification was studied in a soil-suspension experiment with excess of NH4-N 

at constant shaking (II, IV). Soil samples were incubated with mineral solution at dark at 

constant temperature. Every day the pH was adjusted (to 5.5 in II and to both, natural soil 

pH and to pH 6 in IV). NH4-N and NO2+NO3-N were measured using FIA. In this study we 

used terpenes and tannins. As tannins we used condensed tannins extracted from Norway 

spruce needles and as hydrolysable tannin, commercial tannic acid (II, characterized in 

Adamczyk et al. 2012). Tannic acid contained simple galloylglucoses (tri-, tetra- and 

pentagalloylglucoses), gallotannins (hexa- to tridecagalloylglucoses), but also gallic acid 

and digallic acid (see Introduction part 1.1.2). The average molecular mass was 1000 Da. 

Aerobic C mineralization was measured as CO2 evolution by sampling soil bottles 

headspace and analysing the amount of CO2 by gas chromatograph (I, III, IV). 
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3.4. Analysis of microbial biomass and bacterial and fungal growth rates 

 

Microbial biomass C and N were determined using the fumigation-extraction method (I, 

IV). Soil samples were fumigated with ethanol-free chloroform vapour. C and N flushes 

from the microbial biomass were calculated by subtracting K2SO4- extractable organic C 

and N in unfumigated control samples from those in fumigated samples. C and N flushes 

were converted to microbial biomass with the formulas of Martikainen and Palojärvi 

(1990). 

To assess the relative rate of bacterial growth the 
3
H-thymidine incorporation technique 

was used, where 
3
H-thymidine was incorporated into bacterial cells (II). The radioactivity 

was used as a measure of the rate of bacterial growth (Bååth et al., 2001). The growth rate 

of fungi was estimated as 
14

C-acetate incorporation into ergosterol. Acetate is a precursor of 

ergosterol, a molecule specific to fungi, and the amount of radioactivity detected in 

ergosterol can be used as an indicator of fungal activity (Bååth 2001). 

 

 

3.5. Enzyme activity measurements in vitro and in soil 

 

We used following enzymes involved in C, N, S, P transformations: beta-glucosidase (from 

Aspergillus niger), chitinase (from Trichoderma viridae), protease (from Aspergillus 

saitoi), arylsulfatase (from Trichoderma viridae), acid phosphatase (from wheat germ). 

Enzyme activities were studied with the following commercial substrates: p-nitrophenyl β-

D-glucopyranoside, p-nitrophenyl N-acetyl-β-D-glucosamidine, hemoglobin, p-nitrophenyl 

sulfate, and p-nitrophenyl phosphate, respectively. 

In in vitro experiment (III), different amount of higher terpenes (colophony, abietic 

acid, β-sitosterol), separately, were incubated with enzyme in acetate buffer. After the 

incubation, enzyme substrate was added. Enzymatic reaction was stopped with 

trichloroacetic acid (TCA) for proteolytic activity or TRIS-NaOH for arylsulfatase, beta-

glucosidase, chitinase, and acid phosphatase activities. Monoterpenes (α-pinene, myrcene 

and carene) or water (control) were added to the glass bottles, covered with gas-tight septa 

and warmed up to increase evaporation. Then, air from head space was taken and injected 

into the buffer containing enzyme. Liquids containing buffer, enzyme and 

monoterpene/water evaporates were mixed with substrate, incubated and reaction was 

stopped; finally, absorbance was measured. The results are presented as a residual activity 

of control (buffer without terpenes). Concentrations of monoterpenes used here were 

measured with GC-MS. 

In soil study (III), higher terpenes, colophony, abietic acid, β-sitosterol, were added to 

soil samples. Monoterpenes (α-pinene, myrcene and carene) were added to small glass 

bottles and hanged from the septa inside of soil bottles. After incubation with terpenes or 

terpene vapours, soil samples were mixed with acetate buffer and with substrates (section 

3.3). The reaction was stopped with TRIS-NaOH, samples were centrifuged and the 

absorbance of supernatants was measured. The results were presented as residual activity of 

the control (soil samples without terpenes). Acid phosphatase and arylsulfatase activities 

were not studied, because P and S are not the limiting nutrients in the soil (Finér et al. 

2005).  
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3.6. Protein precipitation studies 

 

Here we studied precipitation of bovine serum albumin (BSA) (II) and enzymes 

(arylsulfatase, β-glucosidase, phosphatase, and chitinase) (III) by higher terpenes. Higher 

terpenes, colophony, abietic acid, β-sitosterol, were hydrated with acetate buffer and then 

protein was added. After shaking and filtration of samples Bradford reagent was added and 

absorbance was read on spectrophotometer. Bradford reagent reacted with proteins in the 

conditions used here; it did not react with terpenes. Protease was omitted here due to lack of 

reaction with Bradford reagent. The results are shown as percentage loss of the initial 

amount of protein. 

 

 

3.7. Statistical analysis 

 

Differences between treatments were determined by analysis of variance (ANOVA), 

followed by Tukey’s (I, II, IV) or Dunnett’s (II, III) test using the significance level of 

P˂0.05. When needed, transformations were made to fulfil the assumptions of the ANOVA. 

The assumption of normality was assessed using Kolmogorov-Smirnov and Shapiro-Wilk 

tests and homogeneity of variances using Levene’s test. To describe the relationships 

between terpenes and proteins, enzymes (III) and soil processes (IV), Pearson (III) or 

Spearman (IV) coefficients were calculated.  

 

 

4. RESULTS AND DISCUSSION 

 

 
The role of plant secondary compounds in the regulation of N and C transformations in 

forest soil is poorly understood, and there is lack of knowledge concerning the effect of 

higher terpenes on these processes. Some studies indicate that monoterpenes can influence 

C and N mineralization, nitrification and microbial biomass (White 1986, 1991, 1994, 

Ward et al. 1997, Paavolainen and Smolander 1998, Smolander et al. 2006; Uusitalo et al. 

2008). Monoterpenes, as also some other volatile organic compounds (VOC), may trigger 

strong changes in the composition and functioning of soil microbial communities (Asensio 

et al. 2012). There is lots of evidence that tannins can affect C and N transformations in soil 

by decreasing N mineralization (Schimel et al. 1996, 1998, Kanerva et al. 2006), increasing 

or decreasing C mineralization (Kraus et al. 2004, Kanerva and Smolander 2007), creating 

complexes with proteins (Hagerman and Butler 1981, Fierer et al. 2001, Kraus et al. 2003) 

and decreasing enzyme activities (Kraus et al. 2003).  

This thesis adds knowledge about the potential role of terpenes, in particular of higher 

terpenes in boreal forest soil. Results showed that terpenes, including higher terpenes, can 

affect C and N transformations and microbial biomass. Here for the first time we proved 

that some terpenes also inhibit soil enzyme activity. Moreover, logging residues can have 

an impact on terpene concentration as well as C and N cycling and the microbial biomass in 

boreal forest in soil. 

Table 2 presents observed trends for the effects of different treatments on C and N 

cycling processes in soil incubation experiments and in the field experiment. 



Table 2. Observed trends for the effects of different treatments; + -stimulation,  -  -inhibition, O -no effect, nd -not determined. 

 
 Soil incubation experiments (I, II, III) Field experiment (IV) 

Diterpenes Triterpenes Monoterpenes Tannins Logging residues Wood 
ash Abietic acid Colophony β-sitosterol α-pinene 10 kg 40 kg 

C mineralization + + +  
 
 
nd 

 
 
 
nd 

+ + 0 

Microbial 
biomass 

C + + + + + 0 

N + + + 0 0 0 

Growth rate bacterial + + + nd 

fungal - - - 

Net N mineralization  - - - + + + 

Net nitrification - - - - + + + 

β-glucosidase 
activity 

in vitro - - - -  
 
 
nd 

 
 
 
nd 

in soil - - - - 

Chitinase 
activity 

in vitro - - - - 

in soil - - - - 

Acid 
phosphatase 
activity 

in vitro - - - - 

in soil nd nd nd nd 

Arylsulfatase  
activity 

in vitro - - - - 

in soil nd nd nd nd 

Protease  
activity 

in vitro - - - - 

in soil nd nd nd nd 

Protein precipitation: 

-bovine serum albumin + + +  

nd 

 

nd 

 

nd -β-glucosidase + + 0 

-Chitinase + + + 

-Acid phosphatase + + + 

-Arylsulfatase + + + 
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4.1. How terpenes can affect microbial biomass and C and N cycling processes in 

boreal forest soil? 

 

During decomposition of litter terpenes and other plant secondary compounds are released 

to the soil and may affect decomposition processes. In this study, soil organic layer 

contained di- and triterpenes in the concentration range from 0.5 g/kg o.m. in N-poor 

Kivalo soil to 1 g/kg o.m. in N-rich Kerimäki soil (I, II, III, Table 1).  

The addition of terpenes, in amounts which may occur in boreal forest soil, in the soil 

incubation experiment, showed that colophony, abietic acid and β-sitosterol affected 

microbial biomass C and N and mineralization of C in both soils (I). According to 

hypothesis 1, C mineralization (CO2 evolution) was enhanced especially for higher amount 

of colophony. Terpenes increased microbial biomass C and N in the N-rich Kerimäki soil 

and showed tendency to increase microbial biomass C and N in the N-poor Kivalo soil (I). 

Higher terpenes increased bacterial growth, but they decreased fungal growth (II). The 

results indicate that increase in overall microbial biomass can be explained rather by 

bacterial growth and not fungal. Taking into account that higher terpenes contain 

substantial amounts of carbon (e.g. 10 mg of colophony contains 7.9 mg C) terpenes can act 

as a C source for some microbial communities. This is supported by other study, in which 

abietic acid acted as the sole carbon source for aerobic bacteria, Alcaligenes isolated from 

the soil (Cross and Myers 1968). In our study in soil conditions, it was also possible that 

microbial growth increased due to microbial use of debris produced by microorganisms for 

which terpenes are toxic. In the future study, uptake of C from microbes which used 

terpenes as a C source could be studied with labelled terpenes. It has been shown that 

certain triterpenes can have antibacterial and antifungal effects (Uribe et al., 1985; Aderiye 

et al. 1989, Smania et al. 2003, Popova et al. 2009).  According to the literature, 

monoterpenes can decrease the amount of C and N in the soil microbial biomass 

(Smolander et al. 2006). However, it was also shown that monoterpenes can increase C 

mineralization (CO2 production) in forest soil (Paavolainen and Smolander 1998, 

Smolander et al. 2006, Uusitalo et al. 2008) and that monoterpenes can be biodegraded by 

mixed culture derived from soil (Misra et al. 1996). All in all, monoterpenes can affect 

stronger C mineralization than higher terpenes. 

Hypothesis 1 is supported by our findings that higher terpenes decreased net N 

mineralization in both N-rich and N-poor soils (I), however, in the N-rich soil higher 

amounts of terpenes were needed to observe this effect. It was indicated earlier that higher 

terpenes can act as a source of carbon for microbes; hence, the decrease of net N 

mineralization may be partially caused by microbial N immobilization, although toxic 

effects cannot be excluded. Studies on internal N cycling would reveal gross rates of 

mineralization and immobilization, but these studies were not made here. An experiment 

conducted by Uusitalo et al. (2008) showed that also monoterpenes, such as α-pinene, 

strongly inhibited N net mineralization in soils from the same sites, which is in accordance 

with previous studies (White 1986, 1991, 1994, Paavolainen and Smolander 1998, 

Smolander et al. 2006).  

Net nitrification in undisturbed boreal forest soils is usually low and depends on 

ammonium (NH4-N) availability, pH, the amount of nitrifying bacteria, and soil 

composition. In the N-poor Kivalo soil, net nitrification was negligible (I). In the N-rich 

Kerimäki soil, net nitrification was partially inhibited by higher amounts of higher terpenes, 

most clearly by colophony. The exact mechanism of net nitrification decrease is unknown, 

however, inhibition can be indirect, as the substrate was decreased (decreased 
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mineralization of N), or higher terpenes may directly affect nitrifying bacteria. In this study, 

ammonium was always found in soil samples at the end of all incubations, so the presence 

of the substrate did not restrict nitrification process. 

Soil suspension experiment with an excess of NH4-N showed potential nitrification in 

soils incubated with terpenes and tannins (II). In this experiment excess of substrate for 

nitrification and continuous shaking, which prevented the loss of NO3 by denitrification, 

created optimal conditions to nitrification process. This study confirmed that higher 

terpenes and tannins could inhibit net nitrification (II).  

As compared to monoterpenes the inhibition of net nitrification by higher terpenes was 

not so dramatic. Monoterpenes can completely stop net nitrification (White 1986, 1991, 

1994, Ward et al. 1997, Paavolainen and Smolander 1998, Uusitalo et al. 2008) by direct 

effect on ammonia monooxygenase (White 1991, 1994). Moreover, also other plant 

secondary compounds, tannins, can inhibit net nitrification slightly (Nierop et al. 2006); 

although the mechanism is not clear. 

 

 

4.2. Influence of terpenes on enzyme activities and protein precipitation 

 

Plant secondary compounds are abundant in litter and they may modify N and C cycling in 

soil by altering microbial processes and populations (Smolander et al. 2012). As 

decomposition is driven by multiple sets of enzymes, a possible influence of litter 

compounds on enzyme activity appears to have a significant role in controlling this process. 

For example, reaction between tannins and enzymes may lead to inhibition of enzyme 

activity (Kraus et al. 2003, Schimel et al. 1998, Adamczyk et al. 2009, Triebwasser et al. 

2012; Bardon et al. 2014, 2016), although sometimes the decrease was not observed 

(Juntheikki and Julkunen-Tiitto 2000).  

Our results revealed, accordingly to hypothesis 1, that mono- and higher terpenes 

decreased enzyme activity both in in vitro and in soil studies (III). Studies in vitro included 

enzymes involved in C (beta-glucosidase), N (protease, chitinase), S (arylsulfatase), and P 

(acid phosphatase) transformations. The inhibition level was dependent on enzyme type, 

terpene amount and their molecular structure. Monoterpenes showed low inhibition (e.g. up 

to 74% of residual activity after incubation with α-pinene), while higher terpenes had 

stronger inhibitory effect, e.g. 20 mg of colophony decreased proteolytic activity to only 

18% of the control (III).  

Mechanically, a decrease in enzyme activity might emerge from the ability of terpenes 

to bind proteins (II), mechanism suggested for tannins (Kraus et al. 2003). Colophony and 

abietic acid showed a positive correlation between the decrease in activity and the 

precipitation of an enzyme (III). According to the in vitro experiment (II and III), about 

20% of the protein, bovine serum albumin, was precipitated by diterpenes (abietic acid and 

colophony) and triterpenes (β-sitosterol), moreover, colophony precipitated up to 29% of 

acid phosphatase. Due to the low water solubility of terpenes, proteins may be precipitated 

via adsorption, or through terpene functional groups, although their number is small. Some 

abilities of terpenes to precipitate proteins suggest that these plant secondary compounds 

may also play a role in stabilizing of proteins in the soil.  

Studies in soil conditions confirmed the ability of terpenes to decrease beta-glucosidase 

and chitinase activity (III) in both Kivalo and the Kerimäki soils. More profound effects in 

decreases of enzyme activity were observed in the less fertile, highly organic Kivalo soil. 

The volatile monoterpenes, α-pinene, carene and myrcene, and higher terpenes, abietic acid, 
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colophony and β-sitosterol, all decreased more beta-glucosidase activity than chitinase 

activity, although pattern of inhibition is not clear (III).  

In highly heterogenic soil conditions changes in activity were less clear than in in vitro 

studies, as soil is composed of numerous compounds potentially affecting the reactions of 

terpenes with enzymes. Additionally, it was possible that some of soil microbial 

populations could use added terpenes as a source of carbon, which is well-supported by 

increase in CO2 production (III). As we used terpenes in ranges of concentrations typical 

for boreal forest soil, in natural conditions modification of enzyme activity may be also 

observed, however, numerous other factors, like moisture and temperature can modify the 

effect of terpenes on enzymes (Asensio et al. 2012). On the other hand, interaction of 

enzymes with terpenes may lead to enzyme stabilization in soil. These enzymes, 

nevertheless of decreased activity, may represent important reservoir of the potential 

activity and may also be a source of substrate turnover during periods when microbial 

biomass is low (Stursova and Sinsabaugh 2008). All in all, our studies indicate that terpenes 

influence on enzyme machinery in boreal forest soil.  

 

 

4.3. Effect of logging residues on terpenes and C and N transformations in soil – field 

experiment 

 

Some long-term decreases in concentration of sesqui-, di-, and triterpenes in the organic 

layer have been detected in coniferous thinning stands due to whole-tree harvest 

(Smolander et al. 2010, 2013). In the field experiment at the clear-cut site (IV), the 

concentrations of terpenes (except of monoterpenes) and tannins were higher in soil under 

logging residues than in the control with no logging residues, five years after establishment 

of treatments (see Table 3). For example, the amounts of di- and triterpenes in treatment 

with 40 kg/m
2
 of logging residues were about 30% and 20 % higher than in treatment 

without residues, respectively. Additionally, logging residues increased pH of the organic 

layer (Table 3). These results are in accordance with hypothesis 2 that logging residues 

increase concentration of soil terpenes.  

 

 

Table 3. Soil characteristics and concentration of terpenes and condensed tannins in 

organic layer in Anjalankoski field experiment, five years after clear-cutting (IV). 

  

 Control Logging residues Wood ash 

10kg 40kg 

pH 3.92 
 

4.07 4.22 3.86 

Organic matter (%) 44.5 43.4 53.1 43.8 

Total C (g/kg o.m.) 505 481 510 484 

Total N (g/kg o.m.) 15.0 17.0 18.1 16.0 

C/N ratio 28.4 
 

27.8 28.1 29.3 

Monoterpenes (g/kg o.m.) 0.190 0.170 0.210 0.110 

Sesquiterpenes (g/kg o.m.) 0.067 0.093 0.139 0.078 

Diterpenes (g/kg o.m.) 0.493 0.527 0.630 0.388 

Triterpenes (g/kg o.m) 0.405 0.445 0.477 0.242 

Condensed tannins (g/kg o.m.) 0.134 0.525 0.792 0.028 
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To counteract the loss of nutrients due to tree harvesting, wood ash can be added to the 

soil. It contains all major mineral nutrients present in the plant except N, thus, wood ash 

can be a potential fertilizer. Concentration of terpenes and tannins were lower in the soil 

amended with ash than in control (IV, Table 3). Wood ash addition resulted in reduction of 

tannin level in Acacia litter (Ben Salem et al. 2005). However, we do not know whether 

changes in litter quality or in soil conditions were more important in our study. 

Many studies have so far suggested that forest bioenergy harvesting affects soil 

properties and tree growth. It was shown that WTH causes long term decrease in tree 

growth in Norway spruce and Scots pine thinning stands (Helmisaari et al., 2011), slight 

changes in soil nutrients, such as decreases in the amounts of exchangeable base cations 

(Tamminen et al. 2012), and changes in microbial processes and soil organic matter 

composition (Smolander et al. 2008, 2010, 2013).  

In long term experiments in Norway spruce thinning stands in Finland, the rates of net 

N and C mineralization tended to be lower in WTH than SOH treatment (Smolander et al. 

2008, 2010). According to Olsson et al. (1996), logging residue removal also on a clear-

cutting area can decrease N mineralization. Smolander et al. (2015) observed that with 

regard to soil microbial activities and nutrient status, ten years after clear-cutting, WTH and 

SOH were clearly different in only one site from 5 studied sites. Moreover, retaining 

logging residue on the site may increase enzyme activities in the soil organic layer. In pine 

stands enzymes involved in C, N and P cycling, namely beta-glucosidase, beta-

glucosaminidase, protease, and acid phosphatase raised the activity in response to 

increasing amounts of logging residue (Adamczyk et al. 2015) probably because of 

increased organic matter input. The response of soil characteristics to harvest of logging 

residues seems to depend on the site, the amount of residues and passage of time since 

harvest (Smolander et al. 2013). To summarize, no coherent effects of logging residue 

harvesting have been observed in boreal forest soils on soil productivity, however, if the 

effects are observed they indicate positive role of logging residues on soil nutrient status 

and microbial activities (Thiffault et al. 2011, Achat et al. 2015). 

The field experiment (IV) showed only slight increases of C mineralization and 

microbial biomass C in organic layer under logging residue treatments. The mineral layer 

appears to be less sensitive to variations in C and N stock caused by forest management 

practices (Piirainen et al. 2015), and thus no effect was observed in this layer. Smolander et 

al. (2013, 2015) reported that in thinning stands and clear-cutting experiments leaving 

logging residue at the site did not increase significantly C mineralization in humus layer or 

only a small effect was observed (Smolander et al. 2008, 2010).  

Nitrification is a harmful process because it increases the risk for N-loss through 

leaching or denitrification (Paavolainen and Smolander 1998). Net nitrification is usually 

negligible in undisturbed boreal forest soil but certain forest management treatments, such 

as clear-cutting and fertilization, may increase net nitrification (Smolander et al. 2000). On 

the contrary to hypothesis 2, in the field experiment five years after clear-cutting, logging 

residues increased net N mineralization and, in particular, net nitrification in the organic 

layer (IV). The reasons behind this include the leaching of dissolved organic N from the 

residues (Qualls et al. 2000, Robertson et al., 2000), and an increase in pH or changes in 

physical conditions like temperature and moisture (Smolander et al. 2013). These results 

are supported by other experiments, in which the highest NO3-N concentrations were 

observed in percolation water under the highest amount of logging residues (Rosen and 

Lundmark-Thelin 1987, Wall, 2008, Lindroos et al., 2016). Wood ash also increased net N 

net mineralization and net nitrification. Surprisingly, wood ash did not cause any increase 
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of soil pH, perhaps due to a previous intensification of nitrification (Pietikäinen and Fritze 

1995). The soil suspension experiment affirmed that logging residue and wood ash raised 

net nitrification (IV) and that net nitrification is pH-dependent; in native pH of soil (3.5-4), 

net nitrification was negligible; in pH 6, net nitrification was intensive in logging residue 

and in wood ash treatments. As both, logging residues and wood ash stimulated net N 

mineralization, our results seem to support the idea of wood ash addition in order to 

counteract the effects of decreased amounts of nutrients due to logging residues harvest. 

However, wood ash also stimulated net nitrification which is not desired since it can 

increase the risk for N losses. 

Some correlations between the concentrations of terpenes and C and N mineralization 

were observed (IV). C mineralization correlated negatively with the amount of triterpenes 

and β-sitosterol. Net N mineralization and net nitrification correlated positively with sesqui- 

and diterpenes, so the inhibitory effect of terpenes observed in soil incubation experiments 

was not seen. The amount of monoterpenes did not correlate with C and N mineralization. 

Time scale could affect the results significantly. As 5 years had elapsed from the treatment, 

maybe the effects of logging residue on monoterpenes were not visible anymore due to 

their volatility (Haapanala et al. 2012). As shown by Strömvall and Petersson (1991) 

already during harvesting of Scots pine as well as Norway spruce significant amounts of 

monoterpenes were volatilized. On the other hand, higher terpenes due to their low 

solubility enter the soil with decaying tree residues and their effect may be observed after 

longer time than the effect of monoterpenes. 

 

 

4.4. Criticism and applications of findings 

 

Results in this thesis highlight the role of terpenes and, in particularly, higher terpenes, 

which have not been studied before in boreal forest soil.  

Our soil incubation experiments show that terpenes, in natural soil concentrations, 

inhibit microbial processes in N cycling. However, terpenes also provide energy source for 

some microorganisms as evidenced by increased CO2 evolution after terpene additions. The 

soil incubation experiments present how terpenes affect the soil, without the effects of 

plants. To get information of internal N cycling, gross rates with 
15

N labelling should be 

used, including amino acid pool dilution method.  

Our field study did not show the effect of terpenes clearly. Although, as suggested by 

second hypothesis, amounts of terpenes and tannins in soil under logging residue increased 

but net N mineralization and especially net nitrification also increased.  

Dissimilarities in results from experiments emerge from the fact that in soil incubation 

experiments we added only plant secondary compounds. In the field experiment, logging 

residue, although rich in tannins and terpenes, provided to soil also plenty of easy-to-

decompose compounds, including C and N compounds, and probably improved physical 

conditions in soil, which both triggered enhanced mineralization and nitrification. Hence, 

these counteracting forces could hide possible inhibitory effects of plant secondary 

compounds.  

This work helps to understand the role of terpenes in natural conditions. Since terpenes 

have the capacity to inhibit net N mineralization, they, as well as tannins, can play a role in 

retaining N in organic forms. Based on results from soil incubation experiments, higher 

ratio of total N to mineral N under terpene treatments in comparison to control may indicate 

that terpenes change N cycling retaining more N in organic forms which potentially 
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decreases N losses from forest ecosystem. Inhibition of net nitrification by plant secondary 

compounds additionally decreases the risk of N leaching in boreal forest soils. Future 

studies should focus on monitoring the effects of different terpene additions in time in 

different types of soils. Moreover, other effects such as possible changes in microbial 

community structure should be studied as well as gross rates of N transformations. 

 
 

5. CONCLUSIONS 

 

 
Results presented in this thesis add knowledge concerning the effects of terpenes on C and 

N cycling in boreal forest soil. The results from the soil incubation experiments revealed 

that terpenes can affect C and N transformations in the organic layer of boreal forest soil in 

several ways: 

 Terpenes increased C mineralization, microbial biomass C and N and they 

regulated soil microbial populations. This indicates that some of microbial 

communities were able to use terpenes as a carbon source but for other microbial 

communities, terpenes acted as inhibitors. 

 Terpenes decreased net N mineralization and net nitrification; also tannins were 

able to decrease net nitrification. 

 Terpenes decreased enzyme activities, both in vitro and in soil conditions. The 

mechanism of inhibition seems to be partially dependent on the precipitation of 

enzymes by higher terpenes. Terpenes can to some extent precipitate proteins, 

mainly at low pH, and may therefore play a role in stabilizing proteins, including 

enzymes.  

 

Additionally, the field experiment showed that logging residues and wood ash appear to 

stimulate N cycling processes in boreal forest soil.  

 Five years after clear-cutting, logging residues and wood ash increased net N 

mineralization and particularly net nitrification.  

 Logging residues increased the concentrations of certain terpenes. 

 Although some correlations were observed, the relationship between terpene 

concentration and C and N cycling processes remained unclear in the field 

conditions. Logging residue provides not only tannins and terpenes but also easy-

to-decompose C and N and possibly changes soil physical conditions, which can 

trigger enhanced mineralization and nitrification. Therefore, soil incubation and 

field experiments did not show the same pattern. 

 

In conclusion, terpenes can affect C and N transformations in boreal forest soils. 

However, more studies are needed to profoundly investigate the effect of different terpenes 

on various processes and in wide range of soils. Additionally, future research should 

combine proteomic and metagenomic tools to study directly microbial communities with 

thorough understanding of the chemical and biological effects of different terpene classes.  
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