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Motivation
Periodic outbreaks of insect populations can cause massive forest damages.
Between 2002 and 2008 winter moth Operophtera brumata and autumnal
moth Epirrita autumnata caused severe defoliation of mountain birch in an
area of 10,000 km2 (black) in northern Fennoscandia (Jepsen et al. 2009).

O. brumata

E. autumnata
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Ecology
Eggs of these moth overwinter. The next life stage, larvae feed on birch
foliage and are the cause of the damages.

Quite sharp critical temperature limits of about -36∘C for egg survival have
been found (e.g., Ammunét et al. 2012). For an outbreak to develop, at
least three winters with minimum temperature above the critical limit are
needed (Virtanen et al. 1998).
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Aim of study reported in this talk
To model the spatio-temporal pattern of winter minimum temperatures in
Northern Fennoscandia using daily minimums from 20 weather stations
with a relatively long series of relatively complete records.
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in order to assess spatial variation in the risk of pest insect outbreaks
(or in temperatures preventing it), and
to quantify the effects of predicted climate change.
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More specific aim for future work

High-resolution spatial interpolation of winter minimum temperatures in a
given year

utilizing the developed spatio-temporal model with high-resolution
covariate data (such as relative elevations) and
conditioning on the target year’s observations at the weather stations.

Comparison to observed boundaries of historical outbreaks is expected to
yield independent validation of the interpolations.

Localized predictions of outbreak risk or potential spread of outbreak
region obtained during the preceding winter would be valuable in
implementing appropriate control strategies to minimize the damage, e.g.,
restricting the browsing pressure by reindeer in high-risk regions (den
Herder and Niemelä 2003).

5 Bayesian inference for the Brown–Resnick process, with an application to extreme low temperaturesMay 27, 2016 ©Natural Resources Institute Finland



Introduction Hierarchical model Inference Results References

This far
Thibaud et al. (2015) developed a hierarchical spatio-temporal model
based on the Brown–Resnick process for spatial extremes and a novel
Bayesian approach to its parameter estimation (this talk).

Spatial interpolations for individual years (future work) with conditional
simulations (Dombry et al. 2013) of the fitted model.

An essential criterion for a suitable model is that its individual realizations
(predicted minimum temperature surfaces for single years) have a realistic
(strong) spatial correlation structure:

Winters tend to be cold (like 1999) or warm (2007) simultaneously at
all stations and
often the winter minimum temperatures at several stations occur on
the same day or only few days apart, suggesting that they correspond
to the same event.
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Marginal distributions

Negated winter minimum temperature −𝑌𝑖𝑗 for year 𝑖 at weather station 𝑗
was modeled as a realization from generalized extreme-value (GEV)
distribution:

𝐹 (−𝑦) = 𝑃 𝑟(−𝑌𝑖𝑗 ≤ −𝑦) = exp
[

− {1 + 𝜉𝑖𝑗 (
𝑦 − 𝜇𝑖𝑗

𝜎𝑖𝑗 )}
−1/𝜉𝑖𝑗

+ ]
,

where 𝑎+ = max(𝑎, 0), 𝜇𝑖𝑗 ∈ R, 𝜎𝑖𝑗 > 0, and 𝜉𝑖𝑗 ∈ R.
Three cases: Weibull (𝜉 < 0), Gumbel (𝜉 = 0), and Fréchet (𝜉 > 0)
distributions.
The case 𝜉 = 0 is defined as the limit for 𝜉 → 0.
GEV distribution is a sensible model for block maxima −𝑌 .
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Temporal trend
Exploratory analysis revealed a significant temporal trend: winter
minimum temperatures have generally increased during the 53 years,
although year-to-year variation is relatively large.
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Spatio-temporal variation

Fitting GEV distributions at each station 𝑗 separately with a linear
temporal trend in location parameters 𝜇𝑖𝑗 indicated that

a flexible model was needed to capture the spatial variation in 𝜇𝑖𝑗 , but
the estimates of the slope of the temporal trend and those of the
scale and shape parameters 𝜎 and 𝜉 did not vary significantly between
stations.

General year-to-year variation will be reflected in 𝜎̂, because 𝑌𝑖𝑗 − 𝜇𝑖𝑗 and
𝑌𝑖𝑗′ − 𝜇𝑖𝑗′ will be strongly correlated for all pairs 𝑗, 𝑗′ of stations in the
spatial model of residuals to be specified in a moment.
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Space-time model for location parameters

𝜇(𝒔𝑗 , 𝑡𝑖) ∼ 𝐺𝑃 {𝑿(𝒔𝑗)𝜷, 𝜏2𝜌} + 𝛼𝑡𝑖,
where

𝒔𝑗 is the location of station 𝑗,
𝑡𝑖 is the number of days / 365 from Jan 1, 2000 to the day of

occurrence of winter minimum 𝑦𝑖𝑗 ,
𝑿(𝒔)𝜷 is the spatial trend surface term using coordinates, absolute

elevations, relative elevations, proximity to the Arctic Ocean, and
lake cover index as covariates (Aalto et al. 2014), and

𝐺𝑃 {𝑥(𝒔), 𝜏2𝜌} denotes a Gaussian spatial process with mean 𝑥(𝒔),
variance 𝜏2, and correlation function 𝜌(𝒉) = exp(−‖𝒉‖/𝛿).

Scale and shape parameters 𝜎𝑖𝑗 and 𝜉𝑖𝑗 were modeled as constant over
both time and space.
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Spatial correlation
Marginal distribution of appropriately standardized residuals

𝑍𝑖𝑗 = {1 + 𝜉(𝑌𝑖𝑗 − 𝜇𝑖𝑗)/𝜎}1/𝜉
+

is unit Fréchet, i.e., GEV with 𝜇 = 𝜎 = 𝜉 = 1.

According to exploratory analyses, residuals 𝑍𝑖𝑗 and 𝑍𝑖𝑗′ are strongly
dependent for all pair 𝑗, 𝑗′ of stations.

Brown–Resnick processes (Kabluchko et al. 2009) provides a suitable
max-stable model for such asymptotic dependence.

Given unit Fréchet marginals, the process is fully specified by a
variogram 2𝛾(𝒉) (more details in the following slides).

We used the stable variogram 2𝛾(𝒉) = 2(‖𝒉‖/𝜆)𝜅 , 𝜆 > 0, 𝜅 ∈ (0, 2].
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Brown–Resnick process

𝑍(𝒔) = max
𝑘≥1

𝑊𝑘(𝒔), 𝑊𝑘(𝒔) = exp{𝜀𝑘(𝒔) − 𝛾(𝒔)}/𝑄𝑘,

where
𝜀𝑘: iid intrinsically stationary Gaussian processes with variogram
2𝛾(𝒉) and 𝜀𝑘(𝟎) = 0;
𝑄1 < 𝑄2 < ⋯: points of a unit rate Poisson process on R+.

Gray: 𝑊1(𝒔)
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Brown–Resnick process

𝑍(𝒔) = max
𝑘≥1

𝑊𝑘(𝒔), 𝑊𝑘(𝒔) = exp{𝜀𝑘(𝒔) − 𝛾(𝒔)}/𝑄𝑘,

where
𝜀𝑘: iid intrinsically stationary Gaussian processes with variogram
2𝛾(𝒉) and 𝜀𝑘(𝟎) = 0;
𝑄1 < 𝑄2 < ⋯: points of a unit rate Poisson process on R+.

Gray: 𝑊𝑘(𝒔), 𝑘 = 1, 2. Black: 𝑍̃(𝒔) = max𝑘=1,2 𝑊𝑘(𝒔)
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Brown–Resnick process

𝑍(𝒔) = max
𝑘≥1

𝑊𝑘(𝒔), 𝑊𝑘(𝒔) = exp{𝜀𝑘(𝒔) − 𝛾(𝒔)}/𝑄𝑘,

where
𝜀𝑘: iid intrinsically stationary Gaussian processes with variogram
2𝛾(𝒉) and 𝜀𝑘(𝟎) = 0;
𝑄1 < 𝑄2 < ⋯: points of a unit rate Poisson process on R+.

Gray: 𝑊𝑘(𝒔), 𝑘 = 1, 2, 3. Black: 𝑍̃(𝒔) = max𝑘=1,…,3 𝑊𝑘(𝒔)
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Brown–Resnick process

𝑍(𝒔) = max
𝑘≥1

𝑊𝑘(𝒔), 𝑊𝑘(𝒔) = exp{𝜀𝑘(𝒔) − 𝛾(𝒔)}/𝑄𝑘,

where
𝜀𝑘: iid intrinsically stationary Gaussian processes with variogram
2𝛾(𝒉) and 𝜀𝑘(𝟎) = 0;
𝑄1 < 𝑄2 < ⋯: points of a unit rate Poisson process on R+.

Gray: 𝑊𝑘(𝒔), 𝑘 = 1, … , 4. Black: 𝑍̃(𝒔) = max𝑘=1,…,4 𝑊𝑘(𝒔)
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Brown–Resnick process

𝑍(𝒔) = max
𝑘≥1

𝑊𝑘(𝒔), 𝑊𝑘(𝒔) = exp{𝜀𝑘(𝒔) − 𝛾(𝒔)}/𝑄𝑘,

where
𝜀𝑘: iid intrinsically stationary Gaussian processes with variogram
2𝛾(𝒉) and 𝜀𝑘(𝟎) = 0;
𝑄1 < 𝑄2 < ⋯: points of a unit rate Poisson process on R+.

Gray: 𝑊𝑘(𝒔), 𝑘 = 1, … , 5. Black: 𝑍̃(𝒔) = max𝑘=1,…,5 𝑊𝑘(𝒔)
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Brown–Resnick process

𝑍(𝒔) = max
𝑘≥1

𝑊𝑘(𝒔), 𝑊𝑘(𝒔) = exp{𝜀𝑘(𝒔) − 𝛾(𝒔)}/𝑄𝑘,

where
𝜀𝑘: iid intrinsically stationary Gaussian processes with variogram
2𝛾(𝒉) and 𝜀𝑘(𝟎) = 0;
𝑄1 < 𝑄2 < ⋯: points of a unit rate Poisson process on R+.

Gray: 𝑊𝑘(𝒔), 𝑘 = 1, … , 3000. Black: 𝑍̃(𝒔) = max𝑘=1,…,3000 𝑊𝑘(𝒔) ≈ 𝑍(𝒔)
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Realizations from Brown–Resnick process
Gumbel marginals and variogram 2𝛾(𝒉) = 2(‖𝒉‖/𝜆)𝜅 .
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Likelihood function

Contribution of one year’s residuals 𝒁𝑖 = {𝑍𝑖1, 𝑍𝑖2 … , 𝑍𝑖𝐷} to the
likelihood function for the Brown–Resnick process is of the form

∑
Π∈𝒫

⎡⎢⎢⎣
exp{−𝑉 (𝒁𝑖)} ∏

𝜋𝑚∈Π
{−𝑉𝜋𝑚

(𝒁𝑖)}
⎤⎥⎥⎦

, (1)

where the sum is over all possible partitions of the set {1, … , 𝐷} of
stations.

For 𝐷 = 20, 𝑐𝑎𝑟𝑑(𝒫) ≈ 1013: the likelihood is intractable.
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Each partition Π in (1) represents one possibility to generate 𝒁 from the
latent 𝑾𝑘’s:

𝑍𝑗 = max𝑘≥1 𝑾𝑘𝑗
The term with partition Π = {𝜋1, 𝜋2, … , 𝜋𝑀 } covers cases, where
both 𝑍𝑗 and 𝑍𝑗′ originate from the same 𝑾𝑘 whenever {𝑗, 𝑗′} ⊂ 𝜋𝑚
for some 𝑚 ∈ 1, … , 𝑀 .

Here, with 𝑛 = 15 sites (numbered 1 to 15 from left to right),
Π = {(1, 4, 5), (2, 3), (6), (7, 8), (9, 10, 11, 12, 13), (14), (15)}.
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M2: Stephenson and Tawn (2005) model
Condition on fixed partitions Π𝑖 pre-estimated using declustering
based on dates of the extreme events ⇒ (1) reduces to one term.
In our application we assumed that, for each year, groups of stations,
where subsequent minima are separated by at most 5 days, belong to
the same cluster 𝜋𝑚.
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Example: here the partition is {(1, 2, 3), (4)}
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M3: Random partition model

Fixed declustering may lead to bias: true distribution of latent partitions
can be very different.

The new approach presented by Thibaud et al. (2015) uses data
augmentation principle:

introduce the unknown partition Π into the Bayesian hierarchical
model, and
impute its values using an MCMC algorithm (Dombry et al. 2013).
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Comparison of models
M1 Trend surface model (the standard approach).
M2 Stephenson and Tawn (2005) model based on the declustering.
M3 Thibaud et al. (2015) model with random partitions.

Parameter estimates (mean of posterior distributions) and 95%
confidence/credible intervals from M1 (top), M2 (middle), and M3
(bottom). The first column is the estimate for the mean value of the
location parameter 𝜇𝑗 = 𝜇(𝒔𝑗 , 0) over the 20 stations.

− ̄̂𝜇𝑗 −𝛼̂ 𝜎̂ ̂𝜉 ̂𝜆 𝜅̂
−34.9(−35.7,−34.1) 0.07(0.03,0.10) 3.4(3.0,3.7) −0.15(−0.18,−0.11) 368(31,705) 0.37(0.30,0.44)
−34.6(−35.6,−33.7) 0.09(0.05,0.13) 4.0(3.6,4.6) −0.11(−0.15,−0.06) 1811(977,3615) 0.54(0.46,0.63)
−34.9(−35.9,−33.9) 0.06(0.01,0.11) 3.5(3.0,4.1) −0.10(−0.14,−0.06) 1086(462,3065) 0.53(0.43,0.64)

M2 vs. M3: Larger 𝜎̂ and ̂𝜆. Model diagnostics support M3.
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Example of diagnostics: etremal coefficients
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Binned estimates of empirical pairwise extremal coefficients, with their
95% confidence intervals. Curves are from the fitted Brown–Resnick
models: M1 (blue), M2 (green), and M3 (red).
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M3: Predictions for annual minimum temperatures
The model predicts an increase of 0.6∘C per decade.
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(Unconditional) probability that the annual minimum temperature exceeds
−36∘C for 1980, 2016 and 2030.
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Conclusion and further…

A flexible framework for spatio-temporal modelling of extremes, but
complicated and computationally intensive: cannot be used for large
datasets.

Linear temporal trend can be replaced by climate model predictions to
enable more realistic forecasts.

Conditional simulations and validation against spatial extent of observed
outbreaks remains to be done.

Another application of interest to us: Spatial predictions of the occurrence
of frost during flowering time of wild berries validated against observed
frost damages / yields.
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