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Local Models for Forest Canopy Cover 
with Beta Regression
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Accurate field measurement of the forest canopy cover is too laborious to be used in extensive 
forest inventories. A possible alternative to the separate canopy cover measurements is to uti-
lize the correlations between the percent canopy cover and easier-to-measure forest variables, 
especially the basal area. A fairly new analysis technique, the beta regression, is specially 
designed for modelling percentages. As an extension to the generalized linear models, the 
beta regression takes into account the distribution of the model residuals, and uses a logistic 
link function to ensure logical predictions. In this study, the beta regression method was 
found to perform well in conifer dominated study area located in central Finland. The same 
model shape, with basal area, tree height and an additional predictor (Scots pine: site fertility, 
Norway spruce: percentage of hardwoods) as independent variables, produced good results 
for both pine and spruce dominated sites. The models had reasonably high pseudo R-squared 
values (pine: 0.91, spruce: 0.87) and low standard errors (pine: 6.3%, spruce: 5.9%) for the 
fitting data, and also performed well in a cross validation test. The models were also tested on 
separate test plots located in a different geographical area, where the prediction errors were 
slightly larger (pine: 8.8%, spruce: 7.4%). In pine plots, the model fit was further improved 
by introducing additional predictors such as stand age and density. This improved also the 
performance of the models in the cross validation test, but weakened the results for the external 
data set. Our results indicated that the beta regression method offers a noteworthy alternative 
to separate canopy cover measurements, especially if time is limited and the models can be 
applied in the same region where the modelling data were collected.
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1 Introduction

Interest in different methods and techniques 
for estimating forest canopy cover has recently 
increased significantly. The reasons for this trend 
include, for example, the need to incorporate 
ecological measures into traditional forestry, fast 
development of remote sensing techniques, and 
comparability of international forestry statistics. 
However, there still exists no fast and reliable 
method for estimating the canopy cover in boreal 
forests, even though several studies concerning 
the issue have been published since the 1940s 
(e.g. Robinson 1947, Sarvas 1953, Bonnor 1967, 
Johansson 1985, Bunnell and Vales 1990, Jen-
nings et al. 1999, Rautiainen et al. 2005, Korho-
nen et al. 2006). Such estimation method would 
be useful, for instance, in national forest inven-
tories (NFI’s), as well as in numerous ecological 
and remote sensing applications.

Three alternative approaches to the problem of 
finding a new canopy cover estimation method 
have been presented: field measurements, sta-
tistical modelling and remote sensing. Accord-
ing to our recent study concerning canopy cover 
estimation with ground-based measurements 
(Korhonen et al. 2006), there seem to be few 
satisfactory options if the field measurement is 
required to yield quickly precise and unbiased 
results. For example, in the Finnish NFI, the 
estimation is done with a highly subjective ocular 
method (Valtakunnan metsien… 2005). Because 
no significant improvement in current ground 
measurement techniques can be expected, atten-
tion must be turned to the other approaches. This 
study is a sequel to our previously mentioned 
article (Korhonen et al. 2006) and focuses on the 
second option, the use of statistical modelling in 
estimation of canopy cover. The third alternative, 
estimation of canopy cover using different remote 
sensing materials such as satellite, aerial or laser 
scanned images, is another possible answer to 
this problem but falls beyond the scope of this 
study.

The biggest advantage of the statistical model-
ling approach in canopy cover estimation is that 
no separate measurements or materials are needed 
since the outcome is predicted from standard 
forest characteristics. Stand parameters such as 

basal area, mean stem diameter at breast height 
(DBH), and others, are usually measured in forest 
inventories to obtain an estimate of the growing 
stock. There are two options for applying this 
information in the statistical modelling of canopy 
cover. The first approach is to utilize the strong 
correlation between stem DBH and crown diam-
eters (e.g. Ilvessalo 1950, Muinonen 1995, Gill 
et al. 2000, Bechtold 2003) and build models that 
predict the area covered by each crown. The task 
is simplified if the locations of the trees in the 
plot are mapped, in which case the crown overlap 
can be calculated (if the crowns are assumed to 
be regularly shaped) and reduced from the total 
area of individual crowns to give an estimate of 
canopy cover (Muinonen 1995, Gill et al. 2000, 
Williams et al. 2003). In other cases particular 
overlap correction functions that have been cre-
ated for this purpose must be used (Crookston and 
Stage 1999, Gill et al. 2000, Shaw 2005).

The second option in the statistical modelling 
of canopy cover is to ignore the individual tree 
crown diameters and directly make models with 
canopy cover, or alternatively canopy closure*, 
as the dependent variable, and measured stand 
parameters as independent variables (Kuusipalo 
1985, Mitchell and Popovich 1997, Knowles et 
al. 1999, Korhonen 2006). Of the possible pre-
dictor variables, basal area has been shown to 
correlate best with canopy closure (Kuusipalo 
1985, Mitchell and Popovich 1997, Buckley et al. 
1999, Knowles et al. 1999) as well as with canopy 
cover (Korhonen 2006). Kuusipalo (1985) used 
stand age and stand density as additional predic-
tors, since they had, after basal area, the highest 
correlation with canopy closure. In Kuusipalo’s 
study, mean height and mean DBH of growing 
stock did not correlate well enough with canopy 
closure to be taken into the model by the stepwise 
regression procedure. In the study by Mitchell and 
Popovich (1997), stand density also entered the 
stepwise regression but was rejected due to a high 
variance inflation factor, so that only basal area 
remained in the final model. Knowles et al. (1999) 

* The difference between canopy cover and canopy closure percent-
ages is that the cover is always measured in vertical direction, 
whereas the closure is measured with an instrument having an 
angle of view. For more information, see Jennings et al. (1999) or 
Korhonen et al. (2006).
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used a nonlinear Chapman–Richards model with 
basal area and crown ratio as predictor variables 
to estimate the canopy closure of silvopastoral 
land in New Zealand. Korhonen (2006) presented 
several models for canopy cover; of the three 
alternative model shapes that were tested fairly 
simple models with basal area and mean DBH as 
predictors were found to yield better results than 
the more complicated models with stand density 
and the proportion of deciduous trees as addi-
tional variables. This was mainly due to the fact 
that the overly complicated model was in some 
way more sensitive to abnormal stand parameters. 
Thus, in the structurally atypical plots, the predic-
tions were weaker than expected.

Good predictor models should always produce 
values that are within the application range. In 
this case, the predictions should be percentages, 
i.e. the model should be asymptotic in its both 
ends. In the case of a normal linear regression 
this is not the case; if one of the predictors has 
an extreme value, the model may produce illogi-
cal results beyond the application range. Using 
a linear model with quadratic shape (Korhonen 
2006) helps to some extent, but the fitted quadratic 
curve may finally turn in the opposite direction 
instead of staying asymptotic. The problem can 
be avoided with a piecewise (Mitchell and Popo-
vich 1997) or a nonlinear (Knowles et al. 1999) 
model, but these solutions become problematic 
if several predictors are required to describe the 
relationships affecting the canopy cover value, as 
is the case in boreal forests.

For the Finnish conditions, Kuusipalo (1985) 
has presented a model suitable for estimating 
canopy closure. However, the model was built for 
percent canopy closure, which was determined 
from hemispherical images, i.e. the model is not 
suitable for estimation of vertically projected 
canopy cover. Models by Korhonen (2006) were 
built with unbiased, but rather limited modelling 
data. In addition, both of these models lack the 
asymptotic nature required for sound percentage 
predictions. The objective of this study is to test 
whether statistical models based on stand param-
eters and implemented with asymptotic regression 
are a competitive alternative to the currently used 
field estimation techniques, especially the ocular 
method, in the estimation of canopy cover. In this 
study, the problem of asymptotes is solved with 

a fairly new statistical modelling technique, the 
beta regression (Ferrari and Cribari-Neto 2004), 
which is specially designed for modelling per-
centage variables, such as canopy cover. As the 
study area and partially also the data are the same 
as in the previous article (Korhonen et al. 2006), 
the performance of the new models was tested 
using the same control plots that were used in 
the previous study. This was done by including 
the comparison plots as a special case to the cross 
validation test. In addition, the prediction power 
of the models was tested in separate study plots 
located in a different geographical area to prelimi-
narily assess whether the models are transferable 
to other regions.

2 Materials and Methods

2.1 Materials

The modelling data were collected during the 
summers of 2005 and 2006 at Suonenjoki, cen-
tral Finland. There were two separate study sites 
located approximately 20 km from each other: 
the Hirsikangas site (62º38´N, 27º01´E) and the 
Saarinen site (62º40´N, 27º29´E). The plots were 
selected so that the data would include structur-
ally very different forest stands. The study stands 
had to meet the following criteria: 1) the dominant 
tree species had to be either Scots pine (Pinus 
sylvestris L.) or Norway spruce (Picea abies (L.) 
Karst), and 2) tree height in the stand had to be 
at least two meters. Altogether the data consisted 
of 100 sample plots, 52 of which were pine and 
48 of which were spruce dominated. In mixed 
stands, the species with the largest basal area 
was considered as the main species. Most of the 
pine stands were typical dry, poor or rather poor 
heaths (Vaccinium-type or worse; see Cajander 
1949), but also a fair number (n = 10) of peat-
lands were included. Most of the peatlands were 
ditched and fully stocked, but some (n = 3) were 
natural, very poor mires with sparsely located, 
withered pines. The spruce stands were more 
fertile (Myrtillus-type or better), often mixed with 
deciduous trees, and included only a few slightly 
peat-covered sites.

More information on the stand structure for 
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both species in the modelling data is presented in 
Fig. 1 and Table 1. As can be seen, the Suonenjoki 
data covered a whole range of size classes from 
sapling to old-growth stands, including two pine 
seed tree stands. The pine stands had generally 
lower canopy cover percentages than the spruce 
stands, which is explained by the lush vegetation 
of the more fertile spruce stands. The number of 
young spruce stands in the data is rather small, 

mainly because such sites were scarce in the 
study area. Some of the stands had been recently 
thinned and were striped by forwarder tracks, 
which increased the heterogeneity inside the 
plots. Many of the sapling stands and younger 
spruce forests had a clearly grouped spatial struc-
ture, with dense groups of trees and large treeless 
gaps in between. The mature sites were generally 
more homogeneous.
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Fig. 1. Distributions of canopy cover, basal area and mean DBH in the modelling data.
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In nineteen plots (Table 2), canopy cover was 
measured with multiple measurement techniques. 
These plots were used in the comparison of 
canopy cover estimation techniques in the pre-
ceding study (Korhonen et al. 2006). The same 
plots, described in more detail in the previous 
study, were used as test sites also in this study: the 
models found to perform well in the full data set 
were refitted into data from which the test plots 
had been omitted, and the test plot cover percent-
ages were predicted with the refitted models for 
both species. The control plots did not include any 
mires, because they were all measured during the 
summer 2005, and the data was not expanded to 
cover peatland forests until summer 2006.

The transferability of the models was tested 
on a separate study site in the Koli national park 
(63º03´N, 29º52´E), located approximately 150 
km north-east from the Suonenjoki sites. The Koli 
study site consisted of 15 pine dominated and 6 
spruce dominated plots (Table 3). Many of the 
Koli plots were located in old growth stands, and 
no sapling stands were included. Consequently, 
the average tree size and growing stock were 
considerably larger than in Suonenjoki, especially 
in the spruce plots. The pine plots, however, 
were chosen to be fairly similar to commercially 
utilized forests outside the national park. There 
were larger differences in site fertility: several 
pine plots were considerably more fertile than 

Table 1. Summary of the Suonenjoki modelling data.

 Pine (n = 52) Spruce (n = 48)
 Mean Min Max Sd Mean Min Max Sd

Canopy cover (%) 51.0 2.5 84 19.3 69.9 34.2 96.8 15.9
Basal area (m2/ha) 15.0 0.3 34 8.4 20.9 1.0 44.8 10.3
Stand density (stems/ha) 2700 260 10500 2380 2880 450 15900 2740
Age (years) 65 7 160 40.2 51 11 112 26
Mean diameter (cm) 16.7 1.4 36.6 10.1 17.1 2.6 31.3 8.0
Mean height (m) 13.7 1.8 29.2 7.4 15.0 2.9 26.7 7.1
Deciduous trees (%) 1.8 0 25.9 4.6 8.9 0 47.3 10.6

Table 2. Summary of the Suonenjoki comparison plots.

 Pine (n = 10) Spruce (n = 9)
 Mean Min Max Sd Mean Min Max Sd

Canopy cover (%) 57.6 35.6 83.3 15.9 65.7 34.2 88.4 17.1
Basal area (m2/ha) 17.7 9.3 29 6.4 19.4 1.0 27.3 8.9
Stand density (stems/ha) 1700 260 4650 1500 3370 580 15900 4900
Age (years) 65 25 124 38 52 12 95 26
Mean diameter (cm) 17.9 6.3 34.6 9.2 17.2 3.3 27.3 8.5
Mean height (m) 15.1 5.8 26.4 6.4 15.7 3.4 25.6 7.7
Deciduous trees (%) 0.4 0 3.6 1.1 13.1 0 34.6 11.2

Table 3. Summary of the Koli test plots.

 Pine (n = 15) Spruce (n = 6)
 Mean Min Max Sd Mean Min Max Sd

Canopy cover (%) 67.9 43.7 84.9 11.5 86.2 73.7 96.8 8.4
Basal area (m2/ha) 24.9 16.6 34.3 5.5 37.2 32.3 45.4 4.8
Stand density (stems/ha) 1560 540 3500 960 1390 590 2480 640
Age (years) 98 40 161 35 77.0 43 138 36
Mean diameter (cm) 24.4 12.8 33.2 6.6 42.7 26.2 66.5 14.1
Mean height (m) 19.0 9.8 25.3 5.0 27.1 17.5 35.5 6.2
Deciduous trees (%) 11.7 0 41.9 13.1 34.5 13.5 47.2 12.3
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the Suonenjoki pine plots, having a large percent-
age of deciduous trees, whereas the others were 
located in places where the growth potential was 
limited because of the soil rockiness. All spruce 
plots were fertile or very fertile, and thus more 
similar to their Suonenjoki counterparts. None-
theless, there were differences in stand structure; 
the Koli spruce plots were unmanaged forests 
whereas the Suonenjoki spruce plots were more 
or less managed commercial forests. In mature 
stands, however, the differences in structure were 
fairly small.

In all the plots, canopy cover was estimated 
with the Cajanus tube using the dot count tech-
nique (Sarvas 1954, Johansson 1984, Jennings 
et al. 1999, Rautiainen et al. 2005, Korhonen et 
al. 2006). In Suonenjoki, the shape of the plot 
was a 24 m × 25 m rectangle, and in Koli a 30 
m × 30 m square. The plots were covered with 
a 1 m (distance between measurement points 
on transect) × 2.5 m (distance between parallell 
transects) dot grid, so that in the Suonenjoki plots 
275 and in Koli plots 403 individual measure-
ments were made. In unclear points, the decision 
whether the point was covered or not was made 
according to the rules described in Korhonen et 
al. (2006). In addition to the canopy cover, routine 
stand inventory parameters were determined for 
each plot. These included site type (Cajander 
1949), basal area (m2/ha), stand density (stems/
ha), stand age, mean DBH (cm), mean height 
(m) and mean height of the base of the living 
crown (m). Stand age was determined either from 
the median tree or taken from stand registers. 
Stand density included all trees taller than 1.3 m. 
The mean parameters of the growing stock were 
measured from the basal area median tree of the 
dominant species. These variables were used as 
possible predictors in the canopy cover models.

2.2 Statistical Analysis

The models were built separately for pine and 
spruce using R statistical software and an addi-
tional betareg library, which allowed the con-
struction of beta regression models. The beta 
regression technique (Ferrari and Cribari-Neto 
2004) is an extension to the generalized linear 
models, described in detail by McCullagh and 

Nelder (1989). The generalized linear models 
differ from the standard linear regression in that 
the expected values μi of the random variable Y 
are replaced by a link function g(μi) = η, where η 
is a linear combination of the predictor variables. 
The purpose of the link function is to stabilize 
the error variance and transform the fitted values 
to the desired application range. In addition, the 
error distribution of the model can be chosen inde-
pendently, whereas in linear regression the error 
distribution is always assumed to be normal. In 
case of a continuous response variable restricted 
to the standard unit interval [0,1], such as the 
proportion of the ground covered by the canopy, 
the errors typically display asymmetry (Ferrari 
and Cribari-Neto 2004). The two-parameter beta 
distribution is very flexible and thus capable of 
describing the distribution of errors in such situ-
ations. Thus, typical features of the beta regres-
sion technique are the assumption that the model 
residuals are beta distributed and the use of a 
link function to transform the predicted values 
to the application range. The link function g can 
be chosen from several alternatives. In this study, 
the logistic link function (Eq. 1) (McCullagh and 
Nelder 1989, p. 108) was used:

log( )
μ

μ
η β

1 1−
= =

=
∑ x

j j
j

p

 (1)

where μ = predicted canopy cover, η = linear 
combination of predictor variables, xj = vector 
of predictor variables, and βj = vector of model 
coefficients. The predicted values were obtained 
as the inverse of the logistic function (Eq. 2):

μ η
η

=
+
exp( )

exp( )1
 (2)

The logistic link function is asymptotic in the 
range [0,1], i.e. the predicted values are automati-
cally in the desired application range. Compared 
to alternative probit and cloglog link functions, 
logistic function reaches its asymptotes more 
slowly, which is useful in Finnish forests where 
canopy cover is seldom close to 100% or 0%. 
Thus, the beta regression allows the use of several 
predictors in model estimation and eliminates 
the risk of getting ineligible predictions. The 
estimation of model parameters is done with the 
maximum likelihood technique. However, the 
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estimation procedure differs from the general-
ized linear models since the beta distribution does 
not belong to the exponential family (Ferrari and 
Cribari-Neto 2004).

The different models were evaluated utiliz-
ing the pseudo R-squared values (Rp

2), standard 
errors, residual plots and Akaike information 
criterion (AIC) (Sakamoto et al. 1986) produced 
by the software. The pseudo R-squared values 
were calculated as the square of the correlation 
between g(y) and η (Ferrari and Cribari-Neto 
2004). The residuals were calculated by subtract-
ing the predicted cover from the true cover, i.e. 
negative residuals and statistics indicate overes-
timation, and the standard errors were calculated 
as the standard deviation of these residuals. The 
models were also tested with cross validation 
(Shao 1993). First, a sample of k plots was taken 
from the data. For pine, the sample size was ten 
and for spruce nine. The model was refitted with 
the remaining plots, and the cover estimates for 
the sampled plots were predicted with the refit-
ted models. The process was repeated a hundred 
times, after which the averages and variances 
of the mean, median, standard deviation, inter-
quartile range, minimum, and maximum of the 
residuals obtained in the prediction of the sampled 
plots were studied. The same set of samples was 
used for all compared models. As a special case, 
predictions for the plots used in the testing of 
different ground measurement techniques were 
obtained similarly*. The results obtained with 
the best predictor models were then compared to 
some of the techniques described in the previous 
article. In addition, the models fitted with the full 
Suonenjoki data were used to get estimates of 
canopy cover for the Koli plots. The predictive 
power of the models in Koli was evaluated using 
the same statistical coefficients as in the cross 
validation.

* In the preceding article the plot shape was a circle with radius 
of 12.5 m, i.e. only the area inside this radius were taken into the 
account. Here the results were calculated for the full 24 × 25 meters 
rectangle.

3 Results

3.1 The Relationships Between Canopy 
Cover and the Independent Variables

Of all the measured variables, basal area showed 
once again the best correlation with canopy cover 
in the modelling data (Fig. 2). The dependence 
was slightly nonlinear; for pine, which is a shade-
intolerant species, the asymptote was at approxi-
mately 85% cover, and for the shade-tolerant 
spruce at 100% cover. Mean height also had a 
strong correlation with canopy cover, but the 
relationship was strongly nonlinear (Fig. 3). In 
the beginning, the percent cover increases with 
mean height, but as the stand density decreases 
(either because of thinnings or natural mortality), 
the growth of the individual tree crown diameter 
cannot compensate for the decrease. Accordingly, 
at the approximate height of 14 metres, canopy 
cover starts to decrease with increasing height. 
Similar relationships with canopy cover appeared 
also for the mean DBH and age, as they strongly 
depend on tree height as well as each other. 
Finally, as stand density remains fairly stable at 
the end of the forest succession, the growth of 
the branches will balance the effect of thinning 
and turn the tree height – canopy cover curve 
slightly upwards. According to Fig. 3, this seems 
to happen at the height of 20–30 metres.

The relationship between stand density and 
percent cover (Fig. 4) resembles the relationship 
shown in Fig. 3: at first, the cover increases rapidly 
with the growing stand density, but when the den-
sity approaches 4000 stems per hectare, canopy 
cover starts to decrease. However, an increase in 
canopy cover seems to take place again soon after 
8000 stems per hectare. This seemingly para-
doxical phenomenon occurs because the dense 
stands are young sapling stands, where the crown 
diameter is very small. However, if there are 
approximately 10 000 saplings per hectare, the 
number of crowns will eventually counterbalance 
the decrease in crown size.
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3.2 Canopy Cover Models

Because of the nonlinear relationships between 
the independent variables and canopy cover 
described in the previous sections, the regression 
models were based on cubic forms of the inde-
pendent variables, i.e. the cubic function (3):

y = β0 + β1x + β2x2 + β3x3 (3)

The cubic form will produce a curve similar to 
the relationships observed in Figs. 3–4. For mean 
height, mean DBH and age, also quadratic curves 
might have been used, but since the shape of the 
quadratic curve is a parabola, extremely large 
values would have caused irrational results. This 
does not happen with a cubic model shape. How-
ever, also the cubic regression functions must be 
used with caution, because they have a tendency 
to produce extreme predictions when used to 
extrapolate. In this case, extreme values are elimi-
nated by the logistic link function. However, if 
the second and third order coefficients were not 
statistically significant and increased the model 
AIC (low AIC indicates a good balance between 
model fit and the number of parameters), the 
linear relation was used instead.

The best of the tested models were based on the 
cubic form of basal area, which had the highest 
correlation with the percent cover for both pine 
(R2 = 0.63) and spruce (R2 = 0.50). The other 

variables were used as additional predictors. Tree 
height performed well as an additional predictor, 
whereas mean DBH was incapable of entering 
the models when height was present. Including 
stand density and age also improved the model fit 
for both species, and different dummy predictors 
and the percentage of deciduous also improved 
some of the model candidates. After compar-
ing different model shapes based on their fit in 
the modelling data and their predictive power in 
the cross-validation test and in the separate test 
plots, two alternative model shapes were found 
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the two pine seed tree stands.
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for spruce and three for pine. The model coef-
ficients are presented in Eqs. 4–8 and results of 
the performance tests in Tables 4–6.

Spruce, Model 1 (standard model, Rp
2 = 0.871, 

s.e. = 0.059, AIC = –127.0):

η = –0.48019 + 0.32488G – 0.0093056G2 + 
0.00011171G3 – 0.15779H – 0.002459H2 + 
0.00015333H3 + 1.5203HW (4)

Spruce, Model 2 (alternative model, Rp
2 = 0.901, 

s.e. = 0.053, AIC = –137.1):

η = –2.4709 + 0.12843G – 0.003597G2 + 
6.4329 × 10–5G3 + 0.13252T – 0.0027546T2 + 
1.5183 × 10–5T3 + 0.00010652N (5)

Pine, Model 1 (standard model, Rp
2 = 0.914,  

s.e. = 0.063, AIC = –131.9):

η = –1.1194 + 0.23663G – 0.0038168G2 + 
9.2475 × 10–6G3 – 0.095561H + 0.16055F 
– 0.30635P (6)

Pine, Model 2 (alternative model, Rp
2 = 0.945,  

s.e. = 0.052, AIC = –146.6):

η = –1.2616 + 0.21514G – 0.0057727G2 + 
7.4293 × 10–5G3 – 0.0088222T – 1.8387 × 10–4T2 + 
1.2655 × 10–6T3 + 4.3071 × 10–5N – 0.87605S (7)

Pine, Model 3 (comprehensive model, Rp
2 = 0.939, 

s.e. = 0.043, AIC = –156.1):

η = –1.5392 + 0.19772G – 0.0039876G2 + 
4.3117 × 10–5G3 – 0.032476T + 2.486 × 10–4T2 
– 5.3266 × 10–7T3 + 0.16375H – 0.011887H2 + 
1.9104 × 10–4H3 + 6.3301 × 10–5N (8)

Abbreviations: G = basal area (m2/ha), H = mean 
height (m), HW = percentage of hardwoods (in 
hundredths), T = age (years), N = number of stems 
(ha–1), F = dummy for medium fertile (Myrtil-
lus-type) or more fertile site type, P = dummy 
for poor (Calluna-type) or poorer site type, S = 
dummy for seed tree stands (stands having only 
some seed trees standing for natural regeneration). 
The model coefficients predict the parameter η in 
Eq. 1, i.e. the correct predicted values of canopy 

cover (μ) are obtained from the η values by invert-
ing the logistic transformation (Eq. 2).

The “standard” model shape that included basal 
area, height, and percentage of the deciduous trees 
or site fertility as predictors performed fairly well 
for both spruce and pine (Fig. 5). This model 
shape never fell very far behind the other model 
shapes in any of the comparison tests (Tables 
4–6). Moreover, the models are fairly simple, and 
predictor variables are easy to obtain in the field. 
The standard spruce model presented in Equation 
4 yielded satisfactory results in all comparison 
tests. The standard error of 5.9% in the fitting data 
is fairly good; however, in the cross-validation 
tests the standard error increased to 6.8% and in 
the Koli data to 7.4%. The model predictions were 
reasonably reliable: both in the cross validation 
and in Koli data, the largest prediction errors were 
approximately 11%. The pine standard model 
(Eq. 6) differed from the spruce model in that 
the linear form of tree height was used instead of 
the cubic form, and dummy variables describing 
site fertility were used instead of the percentage 
of deciduous trees. In the modelling data, this 
model performed nearly as well as the standard 
spruce model, achieving standard error of 6.3%. 
In the cross validation the error rose to 7.0% and 
in Koli to 8.8%.

The “alternative” model shape differed from 
the standard shape in that height was replaced 
by cubic form of age and stand density was used 
as a third predictor. Moreover, a dummy variable 
representing seed tree stands was included in 
the alternative pine model (Eq. 7). In the stand-
ard model, a separate predictor for seed tree 
stands did not improve model performance, but 
in the alternative model the results improved 
significantly. Thus, the alternative pine model had 
slightly better standard errors than the standard 
model: 5.2%, 6.5%, and 8.1% in the modelling 
data, cross-validation and Koli data, respectively. 
However, it was seriously biased in the Koli plots, 
as the mean underestimation was as large as 6.8%, 
whereas with the standard model the mean under-
estimation was only 2.7%. The alternative spruce 
model (Eq. 5) had standard errors of 5.3%, 6.0% 
and 11.1%, respectively. For the spruce alterna-
tive model, the standard errors in fitting data and 
cross-validation were approximately one percent 
smaller than for the standard model, but in Koli 



680

Silva Fennica 41(4), 2007 research articles

also the spruce model was seriously biased, as 
the mean overestimation was as high as 6.2%. 
Another disadvantage of the alternative models 
is that age and stand density are more difficult to 
estimate reliably than tree height and site fertility. 
However, in the modelling data, the alternative 
models produced slightly better estimates than the 
standard models for both species (Fig. 5).

The model shapes that achieved the lowest 
standard error in the modelling data were called 
“comprehensive” models. The comprehensive 
models included cubic forms of the basal area, 
height, and age, as well as stand density as a 
linear predictor. For spruce, the model shape was 
at best only equally good as the simpler models 
in the comparison tests, so it is not presented 
here. However, the pine comprehensive model 
had the lowest standard errors both in the model-
ling data (4.3%) and cross-validation test (5.5%). 
This model included eleven separate terms, but it 

also had very low AIC (–156.1), indicating that 
all the predictors contain useful information. In 
the Koli data, however, the standard error was 
larger than for the other two models (9.9%), and 
also the bias (5.2%) was considerably large. In 
addition, some of the residuals were unacceptably 
high (up to 25.8%). This result is not surprising, 
since complex models often describe the original 
modelling data very well, but predicting new, 
unknown observations with such models is very 
risky.

The results for the comparison plots (Table 
5) were only a special case of the cross-valida-
tion test, so they were not emphasized in the 
model selection. The alternative spruce model 
and the comprehensive pine model achieved the 
best results in the comparison plots. The alterna-
tive spruce model had a slightly higher stand-
ard error than the standard model but was less 
biased, whereas the pine comprehensive model 

Table 4. Results of the cross-validation tests in the modelling data. The mean and sd values indicate the mean and 
standard deviation of each variable in one hundred simulations.

Model Sd Mean Min Max
 mean sd mean sd mean sd mean sd

Spruce, standard 0.068 0.019 –0.002 0.027 –0.111 0.019 0.107 0.052
Spruce, alternative 0.060 0.017 0.004 0.025 –0.098 0.041 0.090 0.052
Pine, standard 0.070 0.015 0.006 0.026 –0.105 0.041 0.117 0.032
Pine, alternative 0.065 0.012 –0.002 0.022 –0.101 0.027 0.101 0.032
Pine, comprehensive 0.055 0.013 0.001 0.022 –0.083 0.028 0.083 0.031

Table 6. Results of the models in the Koli test plots.

Model Sd Interq. range Mean Median Min Max

Spruce, standard 0.074 0.071 –0.030 –0.048 –0.105 0.101
Spruce, alternative 0.111 0.092 –0.062 –0.047 –0.260 0.057
Pine, standard 0.088 0.098 0.027 0.008 –0.097 0.191
Pine, alternative 0.081 0.093 0.068 0.063 –0.039 0.231
Pine, comprehesive 0.099 0.094 0.052 0.028 –0.087 0.258

Table 5. Results of the models in the Suonenjoki comparison plots.

Model Sd Interq. range Mean Median Min Max

Spruce, standard 0.052 0.059 –0.028 –0.028 –0.130 0.040
Spruce, alternative 0.052 0.044 –0.020 –0.018 –0.090 0.069
Pine, standard 0.089 0.115 0.010 0.040 –0.129 0.137
Pine, alternative 0.070 0.083 0.021 0.017 –0.106 0.119
Pine, comprehensive 0.058 0.085 0.024 0.034 –0.071 0.085
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had clearly the lowest standard error and smallest 
extreme residuals. The predictions produced by 
these two models were combined and used as a 
single category called the “best model”. The new 
“best model” technique had the following error 
statistics: mean = 0.28%, median = –1.0%, stand-
ard deviation = 5.8%, quartile range = 11.9%, 
minimum = –9.0%, and maximum 8.5%.

4 Discussion

4.1 Analysis of the Models

The most important feature of any good canopy 
cover estimation technique is reliability: the 
model predictions should never go badly wrong. 
In practice, finding a method that produces errors 
no larger than 10% and requires less than five 

minutes of field work time is set as a goal of our 
ongoing canopy cover research. As it appears 
that the separate canopy cover field measure-
ments cannot achieve this aim (Korhonen et al. 
2006), statistical modelling could be a solution 
in situations where reliable information on the 
standard forest characteristics is available. The 
results of the models tested in this study clearly 
indicate that canopy cover can be successfully 
described through regression structure, where 
easier-to-measure forest characteristics are used 
as predictors.

In all model construction it is important that 
the models are fairly simple and that they have a 
clear interpretation. Of the models introduced in 
this study, the standard spruce and pine models 
are the easiest to interpret: basal area describes 
the general amount of the growing stock in the 
plot, height represents the size of the trees in the 
stand and gives an idea of the expected mortality 

Fig. 5. Fitted values of the standard and alternative models plotted against the true canopy cover in pine 
and spruce data.
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in such forests, and site fertility dummies or the 
proportion of the deciduous trees describe the 
relative length of the branches when compared 
to stands with otherwise similar composition. In 
the model equations, basal area and the percent of 
deciduous trees had positive coefficients, i.e. an 
increase in these variables results in an increase 
in the predicted cover. Tree height had a negative 
coefficient in the pine standard model, whereas 
in the spruce model the height curve pointed 
downward for most of the application range. This 
indicates that when trees grow in size the stand 
density will decrease so much that growth in 
tree size cannot compensate for the decrease. 
Thus, a seedling stand with small basal area and 
height will have high stand density, and thus, a 
larger canopy cover than a seed tree stand with 
equally small basal area, but full-grown trees. In 
the spruce model, the height curve turned slowly 
upwards again after 25 meters. This happened at 
the end of the succession when the relationship 
between mortality and tree size had come to an 
end. In the pine standard model, the cubic form 
of the height was not statistically significant, so 
in the pine model this did not occur. The “fertile 
site” dummy variable increased the cover slightly 
in places where site quality allowed the trees to 
develop wider crowns than usually. The “poor 
site” dummy had an opposite effect.

The alternative model shape differed from the 
standard model in that the cubic form of age 
replaced height, and stand density was included 
instead of fertility dummies or the proportion of 
deciduous trees. The age curve behaved similarly 
to the model height curve, turning clearly upwards 
after an age of 120 (pine) or 100 (spruce) years. 
After the age of 150 years, the effect of age on 
canopy cover increased very rapidly, suggesting 
that extrapolating with this model may be very 
risky. Instead of the dummy variables, stand den-
sity was used to give additional information on 
stand structure. As stand density included all trees 
reaching breast height, the density value used in 
the analysis was often significantly higher than 
the density of the dominant tree class. Thus, stand 
density was generally higher in fertile sites with 
a large number of understorey trees, and can be 
interpreted as an additional variable describing 
the multi-storey stand structure. The alternative 
model shape was very similar to the model pro-

posed by Kuusipalo (1985), which indicates that 
this shape may be applicable also to other data 
sets. The model is also fairly simple with only 
three predictor variables and the seed tree dummy 
for pine stands.

The comprehensive pine model included the 
same predictors as the alternative model and, 
in addition, also the cubic form of the height. 
Stand age, however, had a high correlation with 
tree height (R = 0.84), which made including 
both in the model simultaneously problematic. 
Perhaps age can be seen as another factor affect-
ing the stand structure through mortality and 
growth potential, whereas height represents tree 
size more accurately. Still, it is difficult to com-
prehensively interpret the relationships in such a 
complicated model. The model had four predictor 
variables and eleven separate terms, which can in 
some cases be considered too many for a good 
predictor model.

Further improvements of the models might be 
possible by including description of two tree 
layers and a grouping index, which would describe 
the degree of crown overlapping. Such a variable 
might be, for example, Fisher’s index (Fisher et 
al. 1922), or a simple categorical variable which 
could be defined by eyesight and would range 
from very clumped to very regular structure. The 
fact that the models for spruce did not achieve as 
good a fit as the best pine models may be due to 
the more heterogeneous structure of the spruce 
stands. For example, thickets, windfalls and haul-
age tracks were more common in the spruce 
stands. Another factor, which obviously affects 
the results but was not too well present in these 
models, is the effect of thinning. The thinning 
effect is visible through decreasing basal area and 
increasing mean DBH, and after the thinning the 
branches of the remaining trees are shorter than 
expected, and take some time to recover. Also, 
some of the stands could be observed as outliers 
in the residual plots: especially the two pine seed 
tree stands and some of the sapling stands were 
problematic. Separate dummy variables can be 
used to eliminate these cases, as was done with the 
alternative pine model, but generally such fine-
tuning should be avoided whenever possible.

However, in general and in spite of a fairly 
small base data, the models were capable of pro-
ducing satisfactory predictions in structurally very 
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different forest, ranging from seed tree stands 
and very sparsely stocked mires to dense young 
forests and old-growth forests. On the other hand, 
the modelling data were scarce for young spruce 
stands, mixed forests, and peatland forests, not 
to mention that deciduous stands were excluded 
altogether. If the modelling data sets were larger, 
it might be sensible to create separate models 
for the most difficult structural forest types, e.g. 
the seedling and sapling stands. In addition, the 
forests in Suonenjoki were managed; in naturally 
developed forests the effect of tree height or 
age on the canopy cover may be very different. 
As tree mortality rate is significantly slower in 
natural forests, it seems likely that the negative 
relationship between tree size and canopy cover 
will decrease or disappear.

4.2 Cross Validation and Koli Results

The errors of the models increased surprisingly 
little in the cross-validation tests: the average 
increase in the model standard error was only 
one percent. For some individual cases, the errors 
were certainly larger, but in average the models 
seem to yield reliable estimates in unknown plots 
in the same area. When the models were trans-
ferred to Koli, the standard error increased by 1.5–
5.8 %-units from the fitted model. The increase 
was largest for the alternative spruce model and 
smallest for standard spruce model. In addition, 
the bias of the models increased significantly in 
the Koli plots, especially for pine. There are two 
main reasons for this phenomenon. First, some 
of the Koli pine plots were considerably more 
fertile than any of the Suonenjoki plots. They had 
a dense understorey and plenty of deciduous trees, 
which have wider crowns and thus create more 
cover than expected. If the Suonenjoki pine plots 
had contained more deciduous trees, it is likely 
that the percentage of deciduous trees would have 
been included in the predictors, as was the case in 
the spruce model. Secondly, all the tested models 
that included age were more biased in Koli than 
the standard model, which indicates that there 
may by systematic differences in the age esti-
mates in the two areas. In Koli, the age estimates 
were taken from the existing stand registers, so 
it is reasonable to assume that in Suonenjoki the 

age values were more accurate, even though the 
Koli register ages were updated to the inventory 
date. This is probably the main reason in the 
Koli data for relatively poor performance of the 
models which include age. We can conclude that 
good, transferable prediction models should be 
fairly simple, and it should be easy to determine 
the predictor variables accurately. Both standard 
models fulfil this condition, but also the alterna-
tive model might be used if tree age and stand 
density can be determined reliably.

4.3 Comparison to Ground-based 
Measurement Techniques

Compared to the ground measurement tech-
niques (Korhonen et al. 2006), the combined 
“best model” performed especially well. The 
model results were unbiased, and of the tested 
ground measurement techniques, only the time-
consuming LIS-method (line intersect sampling) 
and a 102 points Cajanus tube grid had lower 
standard and minimum/maximum errors. The 
best of the three ocular observers and subjective 
ten points densiometer sample produced slightly 
less accurate results than the regression method. 
This means that the models cannot compete 
with time-intensive Cajanus tube measurements, 
which require a lot of field time (approximately 
an hour, depending on the plot), but are locally 
more reliable than any of the quick measurement 
techniques (densiometer, digital photographs) or 
ocular estimates. A carefully trained, experienced 
ocular observer might be able to achieve as good 
or even better results, but the skill is difficult to 
obtain. All in all, the regression models seem to 
be the only possible alternative for the ocular esti-
mates, if the canopy cover estimation is included 
in a larger forest inventory, where the standard 
plot characteristics are measured carefully but 
there is little time for additional measurements. 
The predictions may be somewhat imprecise, but 
at least they should be unbiased and suitable for, 
at least, rough classification purposes.
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5 Conclusion

According to the results of this study, the beta 
regression technique is well suited for canopy 
cover modelling based on standard forest char-
acteristics. The models tested in this study were 
capable of producing satisfactory results locally, 
even though the modelling data included struc-
turally very different forests. As the standard 
errors approached 5%, improving the models 
further may be difficult, since the random varia-
tion cannot be totally eliminated. Moreover, there 
will always be special situations were models fail 
to predict the cover with acceptable accuracy. In 
such situations, a system combining ocular esti-
mates and regression estimated predictions might 
be safer. For instance, the final prediction could 
be calculated as a weighted average of the model 
prediction and field estimated value according to 
the estimated errors. Another solution would be 
that prediction of canopy cover would be done 
in the field immediately after the growing stock 
measurements, and this prediction would then be 
subjectively corrected. As an alternative to regres-
sion-based modelling, a nonparametric estimation 
technique, such as the most similar neighbour 
method (Moeur and Stage 1995), might also be 
tested. In addition, utilization of crown diameter 
based models with and without stem mapped data 
should be studied.

In conclusion, statistical modelling may be 
the most cost-effective and feasible solution for 
obtaining canopy cover estimates for large areas 
(given that standard forest characteristics are avail-
able in a data base), especially if some method for 
eliminating the most inaccurate predictions can be 
developed. However, before statistical modelling 
can be applied at a large scale, it is necessary to 
obtain geographically representative, accurately 
measured canopy cover data sets, which cover the 
whole range of different forests. The data used 
in this study were rather limited, and the models 
presented here should not be applied elsewhere as 
such. These models are also not suited for certain 
special situations, such as naturally developed or 
very sparse forests. The expansion of the regres-
sion method to cover large areas and special situ-
ations will require a substantial amount of field 
work and further testing of different modelling 

techniques, but it is still the most likely solution 
to the near-future needs of canopy cover informa-
tion. In the long run, remote sensing of canopy 
cover may also become a frequently used method 
along with the improved availability and reduced 
cost of accurate high resolution remote sensing 
materials and the fast development of physically 
based forest reflectance models. Nevertheless, 
for the development and calibration of remote 
sensing techniques, reliable ground truth meas-
urements and models of canopy cover must be 
available.
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