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Abstract

Background: The Nordic Red Cattle consisting of three different populations from Finland, Sweden and Denmark
are under a joint breeding value estimation system. The long history of recording of production and health traits
offers a great opportunity to study production traits and identify causal variants behind them. In this study, we
used whole genome sequence level data from 4280 progeny tested Nordic Red Cattle bulls to scan the genome
for loci affecting milk, fat and protein yields.

Results: Using a genome-wise significance threshold, regions on Bos taurus chromosomes 5, 14, 23, 25 and 26
were associated with fat yield. Regions on chromosomes 5, 14, 16, 19, 20 and 25 were associated with milk yield
and chromosomes 5, 14 and 25 had regions associated with protein yield. Significantly associated variations were
found in 227 genes for fat yield, 72 genes for milk yield and 30 genes for protein yield. Ingenuity Pathway Analysis
was used to identify networks connecting these genes displaying significant hits. When compared to previously
mapped genomic regions associated with fertility, significantly associated variations were found in 5 genes
common for fat yield and fertility, thus linking these two traits via biological networks.

Conclusion: This is the first time when whole genome sequence data is utilized to study genomic regions affecting
milk production in the Nordic Red Cattle population. Sequence level data offers the possibility to study quantitative
traits in detail but still cannot unambiguously reveal which of the associated variations is causative. Linkage disequilibrium
creates difficulties to pinpoint the causative genes and variations. One solution to overcome these difficulties is the
identification of the functional gene networks and pathways to reveal important interacting genes as candidates for the
observed effects. This information on target genomic regions may be exploited to improve genomic prediction.
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Background
The number of dairy cows in the Nordic countries has
been decreasing during the 21st century [1]. However, total
milk production levels have remained stable, as milk yield
per cow has increased. For example in Finland (including
all dairy breeds) the average production per cow per year
has increased from 6786 l (2000) to 8201 l (2014), while
fat and milk contents have remained fairly constant [2].
Global yearly milk consumption per capita is increasing,

and global demand for animal based foods is expected to
be doubled by 2050 [3], driven by both population growth

and increased consumer preferences for meat and milk
products. Ruminants are unique in their capacity to digest
fibre and convert non-edible resources into high quality
human nutrition, making them highly relevant for meeting
the increasing global demand for food. While animal
breeders have achieved considerable improvements in
production traits, cow fertility has been declining [4–6].
However, during the recent years, the decrease in cow fer-
tility in Nordic countries has been slowing down and even
is refracted, due to the weighting of fertility traits in the
breeding program [7]. Many female fertility traits in dairy
cattle show antagonistic genetic correlations with milk
production traits [8] but with low or moderate correla-
tions [9]. This implies that simultaneous genetic selection
for increased milk yield and reproductive performance is
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possible [9]. Simultaneous breeding for both productive
and fertile cows would benefit substantially from knowing
the genetic and physiological links between production
and health to disentangle the effects on these traits.
Recent results in Holstein and Jersey breeds indicate little
or no overlap between genomic regions associated with
milk yield and fertility [10, 11].
Genome wide association studies (GWAS) have bene-

fited from the rapid development of single nucleotide
polymorphism (SNP) genotyping technologies, but des-
pite of the relatively high density of the available SNP
chips, finding the causative mutation is not straightfor-
ward. The high level of linkage disequilibrium in dairy
cattle results in long quantitative trait loci (QTL) regions
with several possible candidate genes. Using whole
genome level sequence variants for association analyses
would be an ultimate choice, because then the causative
variant is most likely included among the studied
variants. Potentially this helps to pinpoint the causative
mutations thus leading to a better understanding of bio-
logical mechanisms behind the QTL [12] and improve
the efficiency of genomic selection [13]. Using sequence
level SNPs will also enable identification of SNPs that
explain a small fraction of the trait variation because
either the causal SNP and/or SNP(s) with high linkage
disequilibrium (LD) with the causal variant are included
in the analysis [13].
Historically separated three dairy breeds Finnish

Ayrshire from Finland, Danish Red from Denmark and
Swedish Red from Sweden are at present under a joint
breeding value estimation system, known as the Nordic
Cattle Genetic Evaluation [14]. Previous QTL studies of
milk traits in Nordic Red Cattle (NRC) have been done
within the subpopulations with microsatellite markers
and fairly small sample sizes (e.g. [15, 16]). The objective
of this study was to use variations at the genome
sequence level to carry out association study for milk,
fat and protein yields in NRC; to identify potential causal
variants and understand the genetic architecture of these
traits. In addition, the data provides the possibility to
compare the results to similar studies for fertility traits
in the NRC [17], to reveal potential QTL with antagonis-
tic effects for milk production and fertility traits.

Methods
No animal experiments were performed in this study, and,
therefore, approval from the ethics committee was not
required. Semen samples were collected for breeding
purposes by local organizations with appropriate permits.
Milk, fat and protein yields’ trait definitions are stan-

dardized across the Nordic countries. Phenotypic records
for dairy cattle are housed in a centralized database [14].
Breeding values for milk, fat and protein yield (MY, FY
and PY) are based on production figures expressed in

kilograms taken from routine milk records and then com-
bined into an index for each trait. For details on genetic
evaluation for milk yield traits in Nordic countries see
[18]. The breeding values used for association analysis
were de-regressed breeding values from the routine gen-
etic evaluation by NAV (Nordic cattle genetic evaluation)
and were available for 4280 progeny tested NRC bulls
(2127 from Finland, 1217 from Sweden, 915 from
Denmark and 21 from other countries). The reliabilities of
the deregressed breeding values were in the range of 0.67
to 0.99 with a mean of 0.95 and the first quartile at 0.94.

SNP array genotyping
All 4280 NRC bulls with deregressed breeding values were
genotyped using BovineSNP50 BeadChip SNP array
version 1 or 2 (Illumina Inc., San Diego, CA). DNA was
extracted using standard procedures from semen samples.
Chip typings were done by GenoSkan A/S, Tjele, Denmark
or labs belonging to Aarhus University. The quality
parameters used for selection of SNPs were minimum call
rates of 85 % for individuals and 95 % for loci. Marker loci
with minor allele frequencies below 5 % and deviation
from Hardy-Weinberg proportion (P < 0.00001) were
excluded. The minimal acceptable GC score was 0.60 for
individual typings, and individuals with average GC scores
below 0.65 were excluded. The number of SNP remaining
after quality control was 43,415 in the genotypes obtained
from BovineSNP50 BeadChip SNP array (50 K data set).
The genome positions of the SNPs were according to the
UMD3.1 Bovine genome assembly [19].

Imputation to whole genome sequences
The 50 K genotypes of these bulls were imputed to
whole genome sequence data using a two-step approach
[20]. Genotypes from 50 K chip for each bull were first
imputed to a high-density SNP array (HD) using a
multi-breed reference of 3383 animals (1222 Holstein,
1326 NRC and 835 Danish Jersey individuals) which had
been genotyped with the Illumina BovineHD chip
(Illumina Inc., San Diego, CA). The number of SNPs,
after imputation to the BovineHD chip, was 648,219.
These imputed HD genotypes were subsequently imputed
to the whole genome sequence level using a multi-breed
reference panel of 1228 animals from Run4 of the 1000
Bull Genomes Project [13, 21] and additional whole
genome sequences from Aarhus University [22] including
368 Holstein, 86 RDC, 88 Jersey and rest from number of
cattle breeds. Datasets (SNP array types and whole
sequence) were pre-phased with BEAGLE4 r1274 [23] and
genotype imputation were done using Minimac2 [24]. The
imputation accuracy for this data is reported earlier
[25], but with a smaller whole genome sequence refer-
ence population. Sequence variants having imputation
accuracy r2 (ratio of empirically observed variance of
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the allele dosages to the expected binomial variance at
Hardy-Weinberg equilibrium and was obtained from
Minimac2 software output) less than 0.5 were filtered
away. The mean accuracy for the variants with r2 > 0.5
was 0.94.

Association analysis
The association analysis for each of the imputed sequence
variants (minor allele frequency, MAF > 0.005 and devi-
ation from Hardy-Weinberg proportion > 0.00001) was
carried out using a two-step variance components-based
approach to account for population stratification imple-
mented in the EMMAX software tool [26]. In a first step,
the polygenic and error variances are estimated using
following variance component model:

y ¼ 1μþ aþ e

where y is a vector of de-regressed breeding values, 1 is a
vector of ones, μ is the intercept, G is the kinship matrix
built based on high-density SNP genotypes using EMMAX
software, a is a vector of breeding values assumed to have a
multivariate normal distribution a~N(0,Gσa

2), e is a vector
of random residuals assumed to have a multivariate normal
distribution e~N(0, Iσe

2), where I is an identity matrix, σa
2 is

the additive genetic variance and σe
2 is the error variance.

In a second step, the SNP effect is obtained using a
linear regression model:

y ¼ 1μ þ xb þ η ;

where x is a vector of imputed genotype dosages
(ranged between 0 and 2), b is the allele substitution
effect and η is a vector of random residual deviates with
(co)variance structure Gσa

2 + Iσe
2.

Search for multiple QTL in a genomic region
To test if multiple QTL are segregating in a genomic region
we included the most significant or the known causal
variant as cofactor in the model and check for additional
QTL in a genomic region for fat yield on chromosomes 14,
25 and 26 and for milk yield on chromosome 14. We fitted
the SNPs (Additional file 1) as fixed effect to a linear mixed
model.
The statistical model is described by the formula:

y ¼ 1μþ qsnptop þ xg þ Zuþ e

where y, 1, μ are described as in the EMMAX model,
snptop is the effect of the SNP fitted as co-factor in the
model, and g is the additive genetic effect of the the SNP
under study, q and x are vectors of SNP genotype dosages
(ranging from 0 to 2), and u is a vector of random poly-
genic effects, which are normally distributed u~N(0,Aσu

2),
where A is the pedigree-based additive relationship matrix,
σu
2 is the polygenic variance, Z is an incidence matrix

relating phenotypes to the corresponding random poly-
genic effects, and e is a vector of residual effects, which are
normally distributed e~N(0,Dσe

2), where D is a diagonal
matrix with elements dii = (1− rDRP

2 )/rDRP
2 to account for

heterogeneous residual variances due to different reliabil-
ities of DRP (rDRP

2 ), and σe
2 is the residual variance. Analyses

were performed using the DMU package [27]. Signifi-
cance testing of SNP effects was performed using a
two-sided t-test. The null hypothesis was g = 0. After
that, the Bonferroni correction was applied same as
in the EMMAX analysis to control for false positive
associations.
The genome-wise significance threshold corresponding

to an error rate of 0.05 was set at 3.16 × 10−9 after correc-
tion for multiple testing using a Bonferroni correction of
15,679,852, 15,679,853 and 15,679,844 independent tests
for fat, milk and protein yield respectively. Only SNPs
with the p value less than 3.16 × 10−9 (−log10(p) ≥ 8.50)
were annotated with the variant effect predictor (VEP)
tool using the Ensembl database, Release 82 [28]. The
prediction whether an amino acid substitution caused by
missense variation affects protein function was estimated
by SIFT analysis [29] implemented in VEP tool [28]. The
SIFT prediction is based on sequence homology and the
physical properties of amino acids. Manhattan plots were
created with the qqman v.0.1.2 R package [30]. In
addition, we compared our findings to results obtained
from study by Höglund et al. [17] where a similar
genome-wide association study for female fertility in
Nordic Red cattle was conducted.

Ingenuity pathway analysis and enrichment analysis
Lists of genes with significant hits from the QTL peak
regions associated with each milk trait were uploaded
into the Qiagen’s Ingenuity® Pathway Analysis IPA® [31].
For this purpose, also SNPs significantly associated with
Fertility index (FI) in the Nordic Red Cattle [17] were
annotated with the VEP tool [28] and genes having one
or more significant SNP were analyzed with IPA® [31].
Biomart tool [32] embedded in Ensembl database [33],

was used for searching human homologs for cow
Ensembl IDs for the genes. In case there was more than
one, all reported human orthologs were kept. The
human homologue lists for each trait included 214, 69,
66 and 263 genes for fat, milk, protein yields and fertility
index, respectively. After running core analysis for
each trait, networks based on the information of gene
connectivity in Ingenuity Knowledge Database with
highest score-values were considered. Score-value
represents the negative log of the p-value for the likeli-
hood that the molecules would be found together by
chance.
Gene ontology (GO) term enrichment analysis with

genes found within the top SNPs was performed with a
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Singular Enrichment Analysis (SEA, Fisher’s exact test,
FDR < 0.01) provided by AgriGO webpage [34].

Results
Depending on the trait we could identify several thou-
sands (3594, FY), less than a thousand (755, MY) or less
than a hundred (85, PY) significantly associated SNPs
(Bonferroni corrected threshold for significance
-log10(p) ≥ 8.50; Additional files 2, 3 and 4). No common
significantly associated SNPs were found between this
study and with those found for female fertility traits
[17]. However, significantly associated SNPs were found
in five common genes between fertility and fat yield.
These five genes are located on chromosomes 25
(ENSBTAG00000034643) and 26 (GBF1, TMEM180,
ACTR1B, and bta-mir-146b).
The summary of the annotations for significantly associ-

ated SNPs are presented in Table 1. Among annotated
SNPs, intron variants are the most common type for each
of the traits. SNPs changing amino acid (missense varia-
tions) are rare, 21 for FY, 1 for MY, 3 for PY and 18 shared
between FY and MY. Seven missense variations were
predicted by SIFT analysis [29] to be deleterious, i.e.
potentially leading to changes in the function of the
protein (Additional file 5). Splice region variants are rarer
forming only one percent or less from the total amount of
significantly associated SNPs (Additional file 5).
Results for fat yield within the larger associated areas

on chromosomes 14, 25 and 26 were further examined
by fixing the effect of top SNP(s). Only peaks that
remained after fixing the other top SNPs were consid-
ered as potential QTL in these chromosomes.
Seven, eight and four separate QTL regions (“peaks”)

were defined for fat, milk and protein yield, respectively
(Fig. 1, Additional files 6, 7, 8, 9, 10, 11, 12 and 13). The
peaks were defined as continuous regions containing
SNPs having –log10(p) ≥ 8.50. Top SNPs with the conse-
quences for each defined QTL region per trait are listed
in Table 2.
The highest peak was observed on Bos taurus

chromosome 14 (BTA14) (Additional file 7) spanning
the region from 1,448,510 bp to 2,271,832 bp for fat

yield (509 SNPs having –log10(p) ≥ 8.50) and from
1,448,510 bp to 2,271,832 bp for milk yield (455 SNPs
having –log10(p) ≥ 8.50). The highest –log10(p) values
within these regions were obtained for SNPs rs136783505
(bp 1,807,140) for fat yield and rs133033480 (bp 1,743,939)
for milk yield. The highest peak for protein yield was
located on BTA25 (Additional file 11) within the region
3,306,363–3,516,671 which contained 40 SNPs, the highest
p value being for SNP rs110749311 (bp 3,498,960).

Fat yield
We identified seven different QTL regions on five different
chromosomes affecting fat yield (Table 2, Fig. 1, Additional
file 2). The strongest association found for fat yield was lo-
cated on BTA14 (Additional file 7) in the DGAT1 (Diacyl-
glycerol O-acyltransferase 1) gene region. In our data the
strongest association is for the variation rs136783505 (bp
1,807,140) with no functional annotation, located 2578 bp
downstream of the DGAT1 gene (Table 2). However, sev-
eral other variants located nearby, including the previously
identified causative variant K232A [35] at bp 1,802,266,
show similarly high -log10(p) (Additional file 2). To investi-
gate the significance of other SNPs in the region, we fitted
the variation K232A as fixed effect. None of the other SNPs
remained significant (Additional file 14) after the fixation
of the K232A variation.
Other SNPs with strong associations with fat yield

were found on BTA5 (Additional file 6), BTA23
(Additional file 11), BTA25 (Additional file 12) and
BTA26 (Additional file 13).
The QTL region on BTA5 is located between

92,372,732 bp and 94,425,668 bp and the variation with
the strongest association (rs209818856, pos. 93,945,694) is
located in an intron of the gene MGST1 (Table 2). On
BTA23 the association signal for fat yield comes from the
region 28,567,796–28,591,530, the top variation being lo-
cated at bp 28,567,796 in the intron of gene TRIM26
(Table 2).
On BTA25 and BTA26, complex patterns of associ-

ation were seen (Additional files 12 and 13). To clarify
the number of independent QTL within these regions
we investigated the significance of the SNPs by fitting

Table 1 The number of significant SNPs (- log10(p) ≥8.50) for each trait and how SNPs are divided into different consequences. SNPs
were annotated with the variant effect predictor –tool [28]. One SNP can have more than one annotation

Trait Number of
significant
SNPs

Intron
variant

Intergenic
variant

Downstream
gene variant

Upstream gene
variant

Synonymous
variant

Missense
variant

3′ UTR
variant

Splice region
variant, intron
variant

5′ UTR
variant

Splice region
variant,
synonymous
variant

Fat yield 3594 1641 1307 600 551 94 40 39 9 6 2

Milk yield 755 322 195 301 240 42 20 16 5 1 2

Prot. yield 85 50 14 32 12 3 3 1 1
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the top SNPs (five for BTA25 and eight for BTA26,
Additional file 1) as fixed effects alone and in different
combinations. On BTA 25, significant associations
remained at bp 9,870,005 (intronic region of the
CLEC16A gene) and at bp 36,226,978 (intergenic region)
(Table 2). Two QTL remained also on BTA26, one in
the region of the NEURL1 gene (position 24,379,571)
and the other in an intergenic region (top SNP at bp
44,802,991) (Table 2).

Milk yield
In all, eight QTL regions were found for milk yield
(Table 2, Fig. 1, Additional file 3). They were located on
six different chromosomes (BTA5, BTA14, BTA16,
BTA19, BTA20 and BTA25). The strongest association
with milk yield was found on BTA14 (1,448,510–
2,271,832) having top variation located at bp 1,743,939.
This variation is within two overlapping genes, CPSF1
and ADCK5. The QTL region is the same as was found
associated with fat yield but with different top vari-
ation. As for fat yield, the significance of other than the
previously known causative DGAT1 variation [35] was
tested by fitting the variation K232A as a fixed effect.

None of the other SNPs remained significant after
fixing the K232A effect (Additional file 15).
The weakest significant association was located on BTA5

with top variation rs383553819 (position 112,343,204)
located in an intron of the gene MKL1 (Additional file 6).
On BTA19 the associated region contained no annotated
genes (61,447,138–61,449,096), and the top variation
rs210324693 (bp 61,449,096 bp) was located in an inter-
genic region (Table 2, Additional file 9). Two QTL regions
were detected on BTA20 (Additional file 10). The QTL
were located in the regions 30,531,217–32,952,019 and
37,766,226–39,183,141. The known causative variation
F279Y (bp. 31,909,478) for milk traits in the gene GHR
[36] was the top SNP in our analysis for the QTL lo-
cated in the first region. The top variation within the
second QTL was located at bp 38,828,254 in the
intergenic region, but this QTL region also includes
the PRLR gene previously indicated to be linked to
milk production (e.g. [37]). BTA25 harbors two QTL,
the first at bp 2,669,704 and the second in the region
from 3,494,706 bp to 3,516,671 bp, the top SNP lo-
cated at bp 3,498,960 downstream from the gene
PAM16 (Additional file 12).

Fig. 1 Genome-wide Manhattan plots for the fat yield (FY), milk yield (MY) and protein yield (PY). Red line indicates the genome-wide significance
level (−log10(p) = 8.50)
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Table 2 QTL regions for each of the trait. Top SNP for each QTL are shown including position, -log10(p)-values, minor allele frequency (MAF), gene information, annotation of
the top SNP, allele substitution effect (b.value) and standard error for b.value (SE)

CHR Start (bp) End (bp) Length of the
QTL region (bp)

Significant SNPs
in region

No of genes with
significant SNPs
within the QTL region

Top SNP Position of the
top SNP (bp)

- log10(p) MAF Gene Annotation of
the top SNP

b.value SE

Fat yield

5 92,372,732 94,425,668 2,052,936 330 3 rs209818856 93,945,694 27.49 0.38 MGST1 intron variant −2.807 0.253

14 1,448,510 2271832 823,322 509 49 rs136783505 1,807,140 42.01 0.07 DGAT1/HSF1 downstream variant/
intron variant

−6.709 0.484

23 28,567,796 28,591,530 23,734 5 1 rs381390819 28,567,796 9.36 0.45 TRIM26 intron variant 1.148 0.184

25 8,222,347 11,507,986 3,285,639 883 16 rs379546164 9,870,005 14.40 0.24 CLEC16A intron variant −1.769 0.224

25 36,226,978 36,227,132 154 2 rs109480808 36,226,978 8.72 0.16 intergenic variant 1.635 0.272

26 22,144,777 24,793,744 2,648,967 595 32 rs438420348 24,379,571 14.28 0.16 NEURL1 intron variant −2.273 0.290

26 44,802,991 44,802,991 0 1 rs135624939 44,802,991 9.72 0.28 intergenic variant −1.474 0.231

Milk yield

5 112,343,204 11,2450,860 107,656 2 1 rs383553819 112,343,204 8.70 0.36 MKL1 intron variant 1.437 0.239

14 1,448,510 2,271,832 823,322 455 48 rs133033480 1,743,939 33.01 0.09 CPSF1/ADCK5 downstream variant/
splice region variant,
intron variant

6.266 0.513

16 1,322,611 1,322,611 0 1 1 rs108979795 1,322,611 8.58 0.28 LAX1 upstream variant −1.451 0.243

19 61,447,138 61,449,096 1958 5 rs210324693 61,449,096 8.93 0.32 intergenic variant 1.490 0.244

20 30,531,217 32,952,019 2,420,802 74 5 rs385640152 31,909,478 15.56 0.11 GHR missense variant −3.877 0.472

20 37,766,226 39,183,141 1,416,915 34 3 NA 38,828,254 9.54 0.16 intergenic variant −2.250 0.356

25 2,669,704 2,669,704 0 1 rs209691835 2,669,704 9.21 0.13 intergenic variant −2.855 0.460

25 3,494,706 3,516,671 21,965 13 4 rs110749311 3,498,960 9.32 0.41 PAM16/GLIS2 downstream variant 1.225 0.196

Protein yield

5 112,450,860 112,450,860 0 1 rs109041054 112,450,860 8.88 0.48 intergenic variant −1.473 0.242

14 1,802,667 1,802,667 0 1 2 NA 1,802,667 8.52 0.06 DGAT1/HSF1 intron variant/
downstream variant

3.354 0.564

25 1,094,996 1,257,612 162,616 12 3 rs136085792 1,103,856 10.83 0.22 UNKL intron variant 1.694 0.250

25 3,306,363 3,516,671 210,308 40 8 rs110749311 3,498,960 11.70 0.41 PAM16/GLIS2 downstream variant 1.427 0.202
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Protein yield
In all, protein yield did not show as many significantly
associated SNPs as observed for fat and milk yield
(Table 2, Fig. 1, Additional file 4). Chromosomes having
QTL for protein yield were BTA5, BTA14, and BTA25.
For both BTA5 and BTA14, only one variant for each
reached the significance cut-off level; on BTA5 an inter-
genic variation at bp 112,450,860 (Additional file 6) close
to the variant found for milk yield and on BTA14, the
variation (bp 1,802,667) located in an intron of the
DGAT1 gene (Additional file 7).
The two other QTL for protein yield were both lo-

cated on BTA25. The QTL on BTA25 at 3,306,363–
3,516,671 overlapped with the QTL found for milk
yield and displayed the same top SNP (bp 3,498,960).
The other QTL on BTA25 was unique for protein
yield, top SNP (bp 1,103,856) located in the gene
UNKL.

Networks of associated genes and enrichment analysis
The networks with highest scores for each trait are
presented in Additional files 16, 17 and 18. The two
top networks from genes associated with fat yield
(Additional file 16) had scores of 49, the network associ-
ated with carbohydrate metabolism, gene expression and
lipid metabolism is presented in Additional file 16a.
Additional file 16b shows the network generated from the
genes associated to fertility index. The score value for this
network is 41 and it consists of genes associated with
inflammatory response, cell-to-cell signaling and lymphoid
tissue structure and development. Even though common
significantly associated SNPs were not found between this
study and that of [17] on female fertility traits, significantly
associated SNPs were found in five common genes. Two
of them (GBF1 and bta-mir-146b) are present in both fat
and fertility networks (Additional file 16a and b). The top
network for milk yield (score 43, Additional file 17) was
associated with functions molecular transport, organ
morphology and organismal development. It includes the
known milk candidate genes DGAT1, GHR and PRLR, as
well as the top hits from BTA5 (MLK1) and BTA16
(LAX1). The top network for protein yield (score 35,
Additional file 18) is connected to functions cell death
and survival, cancer and organismal injury.
Altogether 18, 18, 11 and 16 GO terms were signifi-

cantly (false discovery rate, FDR < 0.01) enriched for FY,
MY, PY and FI, respectively. A broad GO term, multi-
cellular organismal process, was the most significant
for all four traits, totally eight terms were shared
between them. For example all traits were having QTL
in the regions containing significant enrichment of
genes related to reproduction and reproductive pro-
cesses (Table 3).

Discussion
A large number of variants were found significantly
associated with milk, fat and protein yield. Our findings
support previous QTL findings from the Nordic Red
breeds, e.g. on BTA 5, 14, 20 [37, 38] and locate new
variations that are good candidates to be causative
variations. This is the first time when NRC population is
studied with imputed whole genome sequence variants
in order to refine QTL associated with milk production.
However, it is still difficult to pinpoint the causative
variant among several closely linked, almost equally
significantly associated variations. One way to classify
the variations is to look at the predicted functional con-
sequence of the SNP [29]. The possibility that a variation
has an impact on the phenotype is higher if the variation
causes an amino acid change (missense variation) which
is predicted (e.g. with SIFT analysis, [29]) to have an
effect for protein function, is located on splicing site, or
is located downstream or upstream of the known gene
(possible regulatory regions of the transcription). On the
other hand, genome annotation for cattle is still incom-
plete and most regulatory elements remain unknown. In
the search for biologically relevant markers the informa-
tion of interactions between genes in known pathways
or networks can be useful. In this study, we identified some
interesting gene interaction networks based on the signifi-
cantly associated variants within genes (even though the
functional effects of the variants could not be predicted).
The results may be used to have a closer look at also other
genes in the indicated networks for functional variants.
Although no common SNPs were found associated with

milk production traits and fertility, the five common genes
between fat yield and fertility give some indication of the
relationship between those traits. The genes bta-mir-146b
and GFB1 are associated with a fertility gene network
linked with inflammatory response and cell-to-cell signal-
ing and the fat yield network connected with lipid and
carbohydrate metabolism. Further support was gained
from the gene enrichment analysis, both the traits show
significant enrichment of the genes related for example to
reproduction and reproduction and reproductive pro-
cesses, altogether having 16 common GO terms.
From the four chromosomes reported to harbor highest

number of QTL for milk production [39], two were indi-
cated by our data (BTA14 and BTA20). Strucken et al. [40]
summarized 14 genes from ten different chromosomes to
be the major genes involved in milk production. Among
those genes are DGAT1 and GHR. Some commonly found
QTL (e.g. BTA6, [41]) were not seen in our data; that could
be due to fixation of the QTL or very low MAF in the
NRC population. One explanation could be that the
EMMAX method chosen for association analysis might be
too conservative. EMMAX uses approximations for con-
structing test of the fixed SNP effects of interest in the
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linear mixed model because fitting a full linear mixed
model for each SNP in turn across the genome is computa-
tionally challenging [42]. This leads to systematic under-
estimation of the most significant p values [43], but makes
EMMAX one of the fastest LMM based programs [42]; an
argument that has to be considered when having whole
genome sequence level data from substantially large
amount of individuals.

DGAT1 (BTA14)
The strongest signal for association was found from
BTA14 for fat and milk yield. Also protein yield is
significantly associated with the same region on
BTA14. The top SNP varied depending on the trait
(see Table 2). Daetwyler et al. [13] analyzed associ-
ation of early lactation milk fat percentage with whole
genome sequence variation data in Fleckvieh and
Holstein bulls. As in our study, the previously reported
causative variation K232A (bp 1,802,266, [35]) of DGAT1
gene was not the variant with the lowest p value in Hol-
stein and Fleckvieh for milk fat production although
K232A was among the top SNPs. Pausch et al. [44] used
whole genome sequence data to impute German Fleckvieh
and Holstein-Friesian cattle genotypes from a larger set of
animals candidate regions and were able to confirm the
association of K232A mutation, however, their approach

was biased as only known candidate SNPs were tested for
association.
In our data, closer inspection of the associated variations

(−log10(p) ≥ 8.50, fat yield) in the DGAT1 region revealed
that when the effect of the K232A mutation was fixed, no
additional statistically significant SNP effects were left. The
causative mutation (K232A/rs109326954) of DGAT1 was
reported already over a decade ago [45] and has been
functionally confirmed [35]. The K allele increases milk fat
percentage [35], whereas allele A increases milk production
[46]. There are different possible explanations why K232A
did not turn out to be the most significantly associated
variation in this study. Imperfect imputation may affect
association results. Accuracy of the imputation is consider-
ably improved by increasing the size of reference panel, i.e.
sequenced animals [47] and imputation accuracy seems to
be higher when populations under study are combined for
the imputation processes [13]. Our reference panel
consisted of a multi-breed population with 1228 indi-
viduals from several breeds including both dairy and
beef cattle. The DGAT1 region would be an interest-
ing candidate to study with the information from
1000 Bulls Genomes Project [13, 21]. It would give a
chance to study the haplotype structure of the region
in the cattle population worldwide and possibly trace
back the evolution of the QTL effect.

Table 3 GO enrichment terms having FDR < 0.01 from the genes having significant variations (−log10(p) ≥8.50) for fat yield (FY), milk
yield (MY), protein yield (PY) and fertility index (FI)

FY MY PY FI

GO term Description FDR FDR FDR FDR

GO:0022610 Biological adhesion 6.20E-07 0.0013 2.00E-06

GO:0065007 Biological regulation 9.40E-12 6.80E-05 0.072 2.40E-28

GO:0044085 Cellular component biogenesis 3.60E-09 0.048 1.00E-22

GO:0016043 Cellular component organization 1.00E-37 2.90E-12 0.00027 1.80E-76

GO:0009987 Cellular process 4.90E-14 4.60E-05 0.0074 3.80E-20

GO:0016265 Death 7.80E-21 2.00E-07 4.00E-25

GO:0032502 Developmental process 8.80E-102 2.10E-41 1.40E-14

GO:0051234 Establishment of localization 1.80E-14 2.80E-05 0.0057 1.70E-27

GO:0040007 Growth 5.60E-42 2.10E-17 9.40E-45

GO:0002376 Immune system process 0.00022 0.0032 9.80E-10

GO:0051179 Localization 5.90E-20 1.10E-07 0.0059 4.70E-44

GO:0008152 Metabolic process 9.40E-12 0.00035 0.57 7.80E-18

GO:0032501 Multicellular organismal process 8.00E-126 1.10E-44 1.50E-20 1.20E-161

GO:0048519 Negative regulation of biological process 2.80E-50 1.30E-25 1.20E-07

GO:0048518 Positive regulation of biological process 1.70E-32 1.60E-08

GO:0050789 Regulation of biological process 7.10E-10 0.00011 0.32 6.90E-22

GO:0000003 Reproduction 3.70E-57 3.70E-14 3.50E-09 1.20E-54

GO:0022414 Reproductive process 1.70E-50 7.50E-11 1.90E-07 6.30E-38

GO:0050896 Response to stimulus 6.00E-31 5.50E-06 8.80E-07 8.60E-44
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MGST1 and MKL1 (BTA5)
Viitala et al. [16] showed that Finnish Ayrshire has a milk
production QTL at the proximal end of BTA5. Wang
et al. [48] reported of a QTL for milk fat percentage in
German Holstein-Friesian at the location of 94,551,792 bp
and suggested a candidate gene to be EPS8. One of the
most significant SNP in the study by Aliloo et al. [11] for
milk yield (Jersey and Holstein) was located at bp
94,518,850 on BTA5. For fat yield, we observed an associ-
ation peak at bp 93,945,694 (Table 2). This variation is in
intronic region of the gene MGST1 having a role in
oxidative stress reaction [49] QTL peak for the milk
yield on BTA5 is located within an intron of the
MKL1gene (bp 112,343,204). MKL1 is related to tran-
scription regulation. Protein yield association peak is
located at bp 112,450,860 on BTA5 and is annotated
to the non-coding region. Previously QTL related to
body weight have been mapped nearby [50].

GHR and PRLR (BTA20)
BTA20 is among the chromosomes harboring many QTL
related to milk production [39]. GHR has been reported as
one of the major genes involved in milk production [40].
First Blott et al. [36] found that variation F279Y (bp
31,909,478) in the GHR gene is associated with a strong
effect on milk yield and composition and other studies
have confirmed it (e.g. [44]). Other variations than F279Y
have also been found to affect milk production nearby the
GHR gene [38]. In our study, F279Y has the strongest
association to milk yield among the NRC population on
BTA20. Further confirmation for the causality of the
F279Y comes from SIFT analysis predicting the mutation
to be deleterious for protein structure, i.e. potentially alter-
ing the protein structure thus possible leading to changes
in function of the protein. The top SNP (bp 31,909,478) in
the GHR gene region is clearly the most significant one
(Additional file 10) in contrast to DGAT1 region where
several variations are strongly associated to milk yield
(Additional file 7). The Y allele is predicted to be unfavor-
able for milk production [36], but it is still fairly common
in the NRC population. GHR has been suggested to be
under balancing selection because of the observed high
variation in the cytoplasmic region [51].
Another gene on BTA20 of special interest is PRLR and

the variation S18N (positions 39,115,344-39,115,345) [37].
However, it has been suggested that S18N is rather linked
to the causative mutation than being causative itself [44].
We found that the variation at bp 38,828,254 on BTA20
located in the intergenic region, was indicated to be the
most likely candidate responsible for the QTL effect seen.
This variation is located approximately 245,000 base pairs
downstream of the PRLR gene and additional studies are
required to resolve the mechanisms how it may influence
milk production.

TRIM26 (BTA23)
An intronic variant in the gene TRIM26 at bp 28,567,796
on BTA23 has an association with fat yield. The function
of the TRIM26 gene, a member of the tripartite motif
(TRIM) gene family, is unknown [52]. It is located close to
the major histocompatibility complex (MHC) class I
region. Feed intake QTL have been mapped close to the
association peak observed in this study [53].

PAM16, UNKL and CLEC16A (BTA25)
Altogether six association peaks (QTL) were observed
from BTA25 for different traits. The same variation
(bp 3,498,960) in gene PAM16 is associated with both
milk and protein yield. The gene has a critical role in
protein translocation across the inner mitochondrial
membrane [54]. Other QTL on BTA25 were found
for milk yield in the intergenic region (bp 2,669,704)
and for protein yield QTL at bp 1,103,856 in the gene
UNKL that has a role on protein, zink ion and metal
ion binding. Two distinct QTL were identified for fat
yield, peak variations located at positions 9,870,005 and
36,226,978. Variation at bp 9,870,005 is located in the
CLEC16A gene (Table 2). Variations of CLEC16A in
humans are associated with increased type I diabetes risk
[55]. In addition, milk protein percentage QTL has previ-
ously been found from the region 9.3–10.6 Mb [56].

NEURL1 (BTA26)
After the significance test by fixing of the top SNPs, two
QTL were left on BTA26 for fat yield at bp 24,379,571
in NEURL1 gene and at bp 44,802,991 (Table 2).
NEURL1 gene is associated with lactation (GO term
0007595) thus making the variation an interesting candi-
date to be a causative mutation.

Conclusions
Association analyses among Nordic Red Cattle using
over 15 million sequence variations across the whole
genome imputed for over 4000 progeny tested Nordic
Red Cattle bulls indicated several variations likely to
have an impact for milk production. We show that
imputation is robust and cost-effective way to expand
the information available and to increase knowledge of
the causative mutations affecting traits important to pro-
duction animals. The availability of the whole genome
level sequence data opens endless possibilities to study
quantitative trait architecture more closely. Still finding the
quantitative trait nucleotides is challenging, with linkage
disequilibrium and many small-effect QTL creating the
puzzle that is not easy to solve. Furthermore, better anno-
tation of the cattle genome is required to be able to predict
the effects of variations on the phenotypes more accur-
ately. The knowledge from gene interactions (although
human/rodent based) may help to identify likely candidate
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genes and variations. Network and pathway information
also indicates ways through which the traits are correlated.

Availability of data and materials
Genome assembly data were taken from publicly available
sources. The assembly is available for download (ftp://
ftp.ncbi.nlm.nih.gov/genomes/Bos_taurus/GFF/). Part of
the whole genome sequencing data from the 1000 Bull
Genomes Project are publically available (variations in
dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) and
sequence data at NCBI using SRA no. SRP039339 (http://
www.ncbi.nlm.nih.gov/bioproject/PRJNA238491)) and for
the rest, the Board of the 1000 Bull Genome Consortium
should be contacted. All annotation information was
obtained from a publicly available source (http://www.
ensembl.org). Whole genome sequences from Aarhus
University and individual SNP genotype data is available
only upon agreement with the breeding organization and
should be requested directly from the authors.

Ethics (and consent to participate)
Not applicable.

Consent to publish
Not applicable.

Additional files

Additional file 1: List of variations tested by fixing the effect of the
variation in question. (TXT 226 bytes)

Additional file 2: SNPs with Bonferroni corrected p-values higher than
0.05 (−log10(p)≥ 8.50) for the fat yield. Columns on table: SNP =marker
name, CHR, position on bp, alleles, Beta = variation effect, SE = standard
error for effect, P = p-value, minuslog10 = (−log10(p)-values), Bonferroni
corrected p-value. For the rest of the columns, see explanation from
http://www.ensembl.org/common/Help/Glossary?db=core. (XLSX 859 kb)

Additional file 3: SNPs with Bonferroni corrected p-values higher than
0.05 (−log10(p) ≥ 8.50) for the milk yield. Columns on table: SNP =marker
name, CHR, position on bp, alleles, Beta = variation effect, SE = standard
error for effect, P = p-value, minuslog10 = (−log10(p)-values), Bonferroni
corrected p-value. For the rest of the columns, see explanation from
http://www.ensembl.org/common/Help/Glossary?db=core. (XLSX 209 kb)

Additional file 4: SNPs with Bonferroni corrected p-values higher than
0.05 (−log10(p)≥ 8.50) for the protein yield. Columns on table: SNP =marker
name, CHR, position on bp, alleles, Beta = variation effect, SE = standard
error for effect, P = p-value, minuslog10 = (−log10(p)-values), Bonferroni
corrected p-value. For the rest of the columns, see explanation from
http://www.ensembl.org/common/Help/Glossary?db=core. (XLSX 30 kb)

Additional file 5: Significantly associated missense variation listed per
trait. (XLSX 26 kb)

Additional file 6: BTA5, −log10(p) values plotted against the genomic
positions for each trait. (PNG 306 kb)

Additional file 7: BTA14, −log10(p) values plotted against the genomic
positions for each trait. (PNG 204 kb)

Additional file 8: BTA16, −log10(p) values plotted against the genomic
positions for each trait. (PNG 415 kb)

Additional file 9 BTA19, −log10(p) values plotted against the genomic
positions for each trait. (PNG 456 kb)

Additional file 10: BTA20, −log10(p) values plotted against the genomic
positions for each trait. (PNG 396 kb)

Additional file 11: BTA23, −log10(p) values plotted against the genomic
positions for each trait. (PNG 519 kb)

Additional file 12: BTA25, −log10(p) values plotted against the genomic
positions for each trait. (PNG 473 kb)

Additional file 13: BTA26, −log10(p) values plotted against the genomic
positions for each trait. (PNG 523 kb)

Additional file 14: Plot of the –log10(p) values on BTA14 for fat yield
when causative DGAT1 variation is fixed. No significance associations left.
(PNG 35 kb)

Additional file 15: Plot of the –log10(p) values on BTA14 for milk yield
when causative DGAT1 variation is fixed. No significance associations left.
(PNG 36 kb)

Additional file 16: Gene networks generated by the IPA® platform for
fat yield (a) and fertility index (b). Genes marked with blue are having
variations associated statistically significantly. Yellow color represents genes
that are having a candidate causative variation for fat yield; genes marked
with orange are the ones that have significantly associated SNPs between
fertility and fat yield. Genes with white or grey color are added by IPA to
connect the network. Dotted lines indicate indirect interactions and solid
lines indicated direct interaction between the genes. (PNG 233 kb)

Additional file 17: Gene network generated by the IPA® platform for
milk yield. Genes marked with blue are having variations associated
statistically significantly. Yellow color represents genes that are having
a candidate causative variation for milk yield. Genes with white or
grey color are added by IPA to connect the network. Dotted lines
indicate indirect interactions and solid lines indicated direct
interaction between the genes. (PNG 153 kb)

Additional file 18: Gene network generated by the IPA® platform for
protein yield. Genes marked with blue are having variations associated
statistically significantly. Yellow color represents genes that are having a
candidate causative variation for protein yield. Genes with white or grey
color are added by IPA to connect the network. Dotted lines indicate
indirect interactions and solid lines indicated direct interaction between
the genes. (PNG 118 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Conceived and designed the experiment: TI-T, GS, BG, MSL, JV. Analyzed the
data: TI-T, GS, JV. Wrote the paper: TI-T, GS, JV. All authors contributed to the
discussion of the results, read and approved the final manuscript.

Acknowledgements
Authors like to thank NAV for providing the phenotypic data used in this study
and Finnish, Swedish and Danish federations for allowing their use. The 1000
Genomes Project is kindly acknowledged for sharing data to impute the genome
sequence. This work is part of the research project ‘Genomics in herds’ funded by
Viking Genetics (Randers, Denmark) and Nordic Cattle Genetic Evaluation (Aarhus,
Denmark) and part of the project Tiineeksi (grant no 1729/03.01.02) funded by
Ministry of agriculture and forestry, Finland.

Author details
1Animal Genomics, Green Technology, Natural Resources Institute Finland
(Luke), Jokioinen, Finland. 2Center for Quantitative Genetics and Genomics,
Department of Molecular Biology and Genetics, Aarhus University, Tjele,
Denmark.

Received: 21 December 2015 Accepted: 17 March 2016

References
1. Åby BA, Kantanen J, Aass L, Meuwissen T. Current status of livestock

production in the Nordic countries and future challenges with a changing
climate and human population growth. Acta Agric Scand Sect A Anim Sci.
2014;64(2):73.

Iso-Touru et al. BMC Genetics  (2016) 17:55 Page 10 of 12

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bos_taurus/GFF/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bos_taurus/GFF/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA238491
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA238491
http://www.ensembl.org
http://www.ensembl.org
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
http://www.ensembl.org/common/Help/Glossary?db=core
dx.doi.org/10.1186/s12863-016-0363-8
http://www.ensembl.org/common/Help/Glossary?db=core
dx.doi.org/10.1186/s12863-016-0363-8
http://www.ensembl.org/common/Help/Glossary?db=core
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8
dx.doi.org/10.1186/s12863-016-0363-8


2. Milk and Milk Products Statistics. Natural Resources Institute Finland. 2015.
http://stat.luke.fi/en/milk-and-milk-product-statistics.

3. FAO. Expert Meeting on How to Feed the World in 2050. 2009.
4. Atashi H, Zamiri MJ, Sayyadnejad MB, Akhlaghi A. Trends in the reproductive

performance of Holstein dairy cows in Iran. Trop Anim Health Prod. 2012;44:
2001–6.

5. Butler ST. Genetic control of reproduction in dairy cows. Reprod Fertil Dev.
2013;26:1–11.

6. Dochi O, Kabeya S, Koyama H. Factors affecting reproductive performance
in high milk-producing Holstein cows. J Reprod Dev. 2010;56(Suppl):S61–5.

7. Nordic Cattle genetic evaluation, NAV, sire evaluation. http://www.sweebv.
info/ba52nycknav.aspx.

8. Berry DP, Friggens NC, Lucy M, Roche JR. Milk production and fertility in
cattle. Annu Rev Anim Biosci. 2016;4:269–90.

9. Berry DP, Wall E, Pryce JE. Genetics and genomics of reproductive
performance in dairy and beef cattle. Animal. 2014;8 Suppl 1:105–21.

10. Minozzi G, Nicolazzi EL, Stella A, Biffani S, Negrini R, Lazzari B, et al. Genome
wide analysis of fertility and production traits in Italian Holstein cattle. PLoS
One. 2013;8, e80219.

11. Aliloo H, Pryce JE, Gonzalez-Recio O, Cocks BG, Hayes BJ. Validation of
markers with non-additive effects on milk yield and fertility in Holstein and
Jersey cows. BMC Genet. 2015;16:89. 015-0241-9.

12. Meuwissen T, Hayes B, Goddard M. Accelerating improvement of livestock
with genomic selection. Annu Rev Anim Biosci. 2013;1:221–37.

13. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum
RF, et al. Whole-genome sequencing of 234 bulls facilitates mapping of
monogenic and complex traits in cattle. Nat Genet. 2014;46:858–65.

14. Nordic Cattle genetic evaluation, NAV. http://www.nordicebv.info/.
15. Mai MD, Rychtarova J, Zink V, Lassen J, Guldbrandtsen B. Quantitative trait

loci for milk production and functional traits in two Danish Cattle breeds.
J Anim Breed Genet. 2010;127:469–73.

16. Viitala SM, Schulman NF, de Koning DJ, Elo K, Kinos R, Virta A, et al.
Quantitative trait loci affecting milk production traits in Finnish Ayrshire
dairy cattle. J Dairy Sci. 2003;86:1828–36.

17. Höglund JK, Buitenhuis B, Guldbrandtsen B, Lund MS, Sahana G. Genome-
wide association study for female fertility in Nordic Red cattle. BMC Genet.
2015;16:110. 015-0269-x.

18. Nordic Cattle genetic evaluation, NAV, production traits. http://www.
nordicebv.info/production.

19. Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, et al. A whole-
genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10:
R42. 2009-10-4-r42. Epub 2009 Apr 24.

20. van Binsbergen R, Bink MC, Calus MP, van Eeuwijk FA, Hayes BJ, Hulsegge I,
et al. Accuracy of imputation to whole-genome sequence data in Holstein
Friesian cattle. Genet Sel Evol. 2014;46:41. 9686-46-41.

21. 1000 Bull Genome Project. http://www.1000bullgenomes.com/.
22. Höglund JK, Sahana G, Brondum RF, Guldbrandtsen B, Buitenhuis B,

Lund MS. Fine mapping QTL for female fertility on BTA04 and BTA13 in
dairy cattle using HD SNP and sequence data. BMC Genomics. 2014;15:
790. 2164-15-790.

23. Browning BL, Browning SR. Improving the accuracy and efficiency of
identity-by-descent detection in population data. Genetics. 2013;194:459–71.

24. Fuchsberger C, Abecasis GR, Hinds DA. Minimac2: faster genotype
imputation. Bioinformatics. 2015;31:782–4.

25. Brøndum RF, Guldbrandtsen B, Sahana G, Lund MS, Su G. Strategies for
imputation to whole genome sequence using a single or multi-breed
reference population in cattle. BMC Genomics. 2014;15:728. 2164-15-728.

26. Kang HM, Sul JH, Zaitlen NA, Kong S, Freimer NB, Sabatti C, et al. Variance
component model to account for sample structure in genome-wide
association studies. Nat Genet. 2010;42:348–54.

27. Madsen P, Jensen J, Labouriau R, Christensen OF, Sahana G. DMU - A
Package for Analyzing Multivariate Mixed Models in quantitative Genetics
and Genomics. In: Proceedings, 10th World Congress of Genetics Applied to
Livestock Production, Vancover, Canada. 2014.

28. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving
the consequences of genomic variants with the Ensembl API and SNP
Effect Predictor. Bioinformatics. 2010;26:2069–70.

29. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein
function. Nucleic Acids Res. 2003;31:3812–4.

30. Turner SD. qqman: an R package for visualizing GWAS results using Q-Q
and manhattan plots. bioRxiv. 2014.doi: http://dx.doi.org/10.1101/005165

31. IPA®, Qiagen Redwood City. www.ingenuity.com.
32. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al.

Ensembl BioMarts: a hub for data retrieval across taxonomic space.
Database (Oxford). 2011;2011:bar030.

33. Ensembl database, Release 82. http://www.ensembl.org/index.html.
34. AgriGO, GO Analysis Toolkit and Database for Agricultural Community.

http://bioinfo.cau.edu.cn/agriGO/index.php.
35. Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, et al. Genetic and

functional confirmation of the causality of the DGAT1 K232A quantitative trait
nucleotide in affecting milk yield and composition. Proc Natl Acad Sci U S A.
2004;101:2398–403.

36. Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A, Berzi P, et al.
Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine
substitution in the transmembrane domain of the bovine growth hormone
receptor is associated with a major effect on milk yield and composition.
Genetics. 2003;163:253–66.

37. Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Maki-Tanila A, et al. The
role of the bovine growth hormone receptor and prolactin receptor genes
in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics.
2006;173:2151–64.

38. Kadri NK, Guldbrandtsen B, Lund MS, Sahana G. Genetic dissection of milk
yield traits and mastitis resistance QTL on chromosome 20 in dairy cattle.
J Dairy Sci. 2015;98(12):9015-25.

39. Lemay DG, Lynn DJ, Martin WF, Neville MC, Casey TM, Rincon G, et al. The
bovine lactation genome: insights into the evolution of mammalian milk.
Genome Biol. 2009;10:R43. 2009-10-4-r43. Epub 2009 Apr 24.

40. Strucken EM, Laurenson YC, Brockmann GA. Go with the flow-biology and
genetics of the lactation cycle. Front Genet. 2015;6:118.

41. Hu Z-L, Park CA, Reecy JM. Developmental progress and current status of
the Animal QTLdb. Nucleic Acids Res. 2016. doi:10.1093/nar/gkv1233.

42. Eu-Ahsunthornwattana J, Miller EN, Fakiola M, Wellcome Trust Case Control
Consortium 2, Jeronimo SM, Blackwell JM, et al. Comparison of methods to
account for relatedness in genome-wide association studies with family-
based data. PLoS Genet. 2014;10:e1004445.

43. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for
association studies. Nat Genet. 2012;44:821–4.

44. Pausch H, Wurmser C, Reinhardt F, Emmerling R, Fries R. Short
communication: Validation of 4 candidate causative trait variants in 2 cattle
breeds using targeted sequence imputation. J Dairy Sci. 2015;98(6):4162–7.

45. Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, et al. Positional
candidate cloning of a QTL in dairy cattle: identification of a missense
mutation in the bovine DGAT1 gene with major effect on milk yield and
composition. Genome Res. 2002;12:222–31.

46. Näslund J, Fikse WF, Pielberg GR, Lunden A. Frequency and effect of the
bovine acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) K232A
polymorphism in Swedish dairy cattle. J Dairy Sci. 2008;91:2127–34.

47. Georges M. Towards sequence-based genomic selection of cattle. Nat
Genet. 2014;46:807–9.

48. Wang X, Wurmser C, Pausch H, Jung S, Reinhardt F, Tetens J, et al.
Identification and dissection of four major QTL affecting milk fat
content in the German Holstein-Friesian population. PLoS One. 2012;7,
e40711.

49. Maeda A, Crabb JW, Palczewski K. Microsomal glutathione S-transferase 1 in
the retinal pigment epithelium: protection against oxidative stress and a
potential role in aging. Biochemistry. 2005;44:480–9.

50. Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic or
closely linked QTL segregate within and across ten US cattle breeds. BMC
Genomics. 2014;15:442. 2164-15-442.

51. Varvio SL, Iso-Touru T, Kantanen J, Viitala S, Tapio I, Maki-Tanila A, et al.
Molecular anatomy of the cytoplasmic domain of bovine growth
hormone receptor, a quantitative trait locus. Proc Biol Sci. 2008;275:
1525–34.

52. Chu TW, Capossela A, Coleman R, Goei VL, Nallur G, Gruen JR. Cloning of a
new “finger” protein gene (ZNF173) within the class I region of the human
MHC. Genomics. 1995;29:229–39.

53. Rolf MM, Taylor JF, Schnabel RD, McKay SD, McClure MC, Northcutt SL, et al.
Genome-wide association analysis for feed efficiency in Angus cattle. Anim
Genet. 2012;43:367–74.

54. Sinha D, Joshi N, Chittoor B, Samji P, D’Silva P. Role of Magmas in protein
transport and human mitochondria biogenesis. Hum Mol Genet. 2010;19:
1248–62.

Iso-Touru et al. BMC Genetics  (2016) 17:55 Page 11 of 12

http://stat.luke.fi/en/milk-and-milk-product-statistics
http://www.sweebv.info/ba52nycknav.aspx
http://www.sweebv.info/ba52nycknav.aspx
http://www.nordicebv.info/
http://www.nordicebv.info/production
http://www.nordicebv.info/production
http://www.1000bullgenomes.com/
http://dx.doi.org/10.1101/005165
http://www.ingenuity.com/
http://www.ensembl.org/index.html
http://bioinfo.cau.edu.cn/agriGO/index.php
http://dx.doi.org/10.1093/nar/gkv1233


55. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, et al.
A genome-wide association study identifies KIAA0350 as a type 1 diabetes
gene. Nature. 2007;448:591–4.

56. Schopen G, Visker M, Koks P, Mullaart E, van Arendonk J, Bovenhuis H.
Whole-genome association study for milk protein composition in dairy
cattle. J Dairy Sci. 2011;94:3148–58.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Iso-Touru et al. BMC Genetics  (2016) 17:55 Page 12 of 12


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	SNP array genotyping
	Imputation to whole genome sequences
	Association analysis
	Search for multiple QTL in a genomic region
	Ingenuity pathway analysis and enrichment analysis

	Results
	Fat yield
	Milk yield
	Protein yield
	Networks of associated genes and enrichment analysis

	Discussion
	DGAT1 (BTA14)
	MGST1 and MKL1 (BTA5)
	GHR and PRLR (BTA20)
	TRIM26 (BTA23)
	PAM16, UNKL and CLEC16A (BTA25)
	NEURL1 (BTA26)

	Conclusions
	Availability of data and materials
	Ethics (and consent to participate)
	Consent to publish
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



