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The model presented provides a compact general
description of how the stem form of Scots pine varies
as a multidimensional object. Stem dimensions are de-
termined in polar coordinates, and tree size is defined
as a weighted mean of logarithmic dimensions. Logar-
ithmic fimensions are analyzed by a linear model in
which the size and relative size of a tree are fixed ex-
planatory variables. The random variation in stem di-
mensions is partitioned into variation between stands
and variation within stands. The principal components
of the between-stand and within-stand covariance mat-
rices are used to give a more economical description of
the random variation.

In applications, tree sizes are the parameters to be
estimated, and parameters of the stem form model are
known variables. After some approximative derivations,
the model can be presented in the standard form. The
stem curve can be calibrated for a given stand by esti-
mating the random stand effects by means of the first
few principal components of the between-stand covari-
ance matrix. The model can be applied if any stem di-
mensions are measured. With the usual measurements
the model is as good as normal regression equations. If
the height and diameter at breast height are measured
for a single tree in a stand, the between-stand error vari-
ance is already reduced by 70 % when the volumes of
tally trees (i.e., trees for which only diameter at breast
height has been measured) are estimated. Error vari-
ances for diameters and for stem volumes are also ob-
tained. Hence the model can be used to study theoreti-
cally different measurement strategies, e.g., optimal
heights for diameter measurements and optimal measu-
rement combinations for sample trees. The model can
also be applied in timber assortment problems. Measure-
ment errors can be corrected to some extent by incor-
porating variances of the measurement errors into the
model.

The stem form model is based on the standard the-
ory of mixed linear models. Because the most compact
prediction formulas for a mixed linear multivariate mo-
del apparently are not available elsewhere, they are de-
rived in this study.

Tutkimuksessa esitetdin yleinen minnyn runkomuo-
don vaihtelun malli. Mallissa runkomuoto kuvataan li-
pimittojen moniulotteisena vektorina. Lipimitat ilmais-
taan napakoordinaatistossa. Puun koko miiritelldin lo-
garitmisten lipimittojen painotettuna keskiarvona. Lo-
garitmiset lipimitat kuvataan yksinkertaisella lineaari-
sella mallilla, missi puun koko ja suhteellinen koko ovat
joiden avulla runkomuodon satunnaisvaihtelu jaetaan
metsikdiden viliseen ja metsikon sisdiseen vaihteluun.
Metsikoiden vilisen ja metsikon sisiisen vaihtelun ko-
varianssimatriiseja  analysoidaan  piikomponenttien
avulla.

Mallia sovellettaessa puun koko tulkitaan satunnai-
seksi tai kiinteiksi parametriksi, ja analyysivaiheen pa-
rametrit ovat muuttujia. Malli kalibroidaan metsikko-
kohtaisesti estimoimalla satunnaiset metsikkotekijit
piaikomponenttien avulla. Mallia voidaan soveltaa olipa
metsikon puista mitattu miti tahansa dimensioita. Ylei-
silli mittauskombinaatioilla malli antaa yhti hyvii tu-
loksia kuin normaalit regressiomallit. Lukupuiden tila-
vuusestimaattien metsikkdvirhe pienenee jo 70 prosen-
tilla, kun yhdesti koepuusta on mitattu pituus ja rin-
nankorkeuslipimitta. Lipimittojen ja tilavuuksien vir-
hevariansseille saadaan estimaatit. Niiden avulla voi-
daan tutkia teoreettisesti mittausstrategioita, esim. et-
sittiessi optimaalista lipimitan mittauskorkeutta tai
optimaalista koepuiden mittauskombinaatiota. Virhe-
variansseja kiytetdan myds puutavaralajiongelmissa.
Mittausvirheiden varianssit voidaan ottaa estimoinnissa
huomioon.

Tutkimuksessa sovelletaan yleisti lineaaristen seka-
mallien teoriaa. Yleinen lineaarinen ennustin ja sen vir-
hevarianssi johdetaan sekamalleissa helpommin soveltu-
vaan muotoon.
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1. INTRODUCTION

11. Background

In forestry, modelling of stem form is of
prime importance for both practical and
theoretical reasons. For forest mensuration,
stem form is of interest in the determination
of the volume and value of the whole stem
or a part of it. In this study, a general statis-
tical model will be presented, which is used
for analyzing variation in stem form and for
estimation problems. Biological theories are
of less interest here, as are empirical studies
that relate some specific variables to each
other or use geometrical solids to describe
different parts of the stem. Only a small
fraction of the vast literature on stem form
(reviewed by Sterba 1980) is directly related
to this work.

Fries and Matérn (1966) and later Liu and
Keister (1978) used multivariate statistical
methods (principal component analysis) to
describe stem form and its variation. In this
study stem form is also described as a multi-
dimensional variable rather than a relation
between diameter and height. According to
Sloboda (1977a), stem dimensions are ex-
pressed in polar coordinates.

Sloboda (1977b) and Lahtinen and Laasa-
senaho (1979), for example, have used spli-
nes to interpolate the stem curve between
measured points. Here splines are used to
interpolate stem curves and various parame-
ters. Covariances are interpolated with two-
dimensional splines.

In biology, problems of shape and size
have a long research tradition. Here a new
approach is sought for these allometric pro-
blems. The papers of Mosimann (1970) and
Sprent (1972) provided the key insights into
the definition of size.

This study is based on the data Laasasen-
aho (1982) used to formulate his taper cur-
ve and volume functions for pine. His re-
sults will be the main reference when models
derived from the general model for stem
form are compared with special functions.

The starting points for this study were
the papers of Kilkki et al. (1978), and Kilkki
& Varmola (1981), in which a multi-equa-

tion model introduced the idea of a single
general model that can be used when any
combination of measurements is available.
Kilkki’s study of sample tree selection
(Kilkki 1983) has also brought about the de-
composition of total variation into variation
between forest stands and variation within
stands. In this respect, the study of Pekko-
nen (1983) also guided the formulation of
the problem.

12. Purpose of the study

The goal of this study is to provide a uni-
fying framework for stem curve problems
where the essential features of stem form va-
riation can be analyzed and the analysis is
then directly applicable for various pur-
poses.

In this analysis, the size of a tree is first
defined as a fixed artificial variable. Simple
linear models are then used to describe ex-
pected (average) stem dimensions as func-
tions of size. Together these functions de-
scribe the dependence of the stem form on
the size. Deviations from the expected stem
curve are partitioned into two random com-
ponents: stand effects and tree effects. Esti-
mation and interpretation of both variances
and covariances of the stand effects, as well
as the tree effects, are the main tasks in ana-
lysis of the random variation of the stem
form.

In applications, the model should satisfy
the following requirements:

a) A stem curve can be predicted if any dimensions of
the tree are measured.

b) Predicted stem curves pass through the measured
points, if there are no measurement errors.

c) Estimates of the error variances are obtained.

d) The results are unbiased for the main population
without any stand information.

e) The general model can be efficiently calibrated for a
stand if any dimension combinations of different trees
are measured.

f) Knowledge of possible measurement errors is taken
into account in the prediction.

Several existing ideas can be synthesized
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in a new way, so that the variation in stem
form is analyzed in a theoretically compact
and informative model satisfying the above
requirements. The model is kept as simple
as possible; it is aimed to be a starting point
for more sophisticated models.

The purpose of this report is to describe
the ideas and derivation of the model and to
demonstrate its applicability. The study is
based on the standard theory of linear mo-
dels. However, to be more applicable in the
multivariate case with both random and fi-
xed parameters, the available prediction
formulas need to be developed further.
Mathematical derivations and details are
presented in appendices; readers interested
only in the general ideas of the model may
omit these details. Appendix A is re-
commended for readers not familiar with the
basic concepts of mixed linear models. Pre-
liminary ideas of this study were presented
in Lappi (1983); more recent results were
summarized in Lappi (1985).

13. Computational aspects

All calculations are based on standard
matrix algebra and on spline interpolation.
Programs were written in Fortran-77 and
run in the VAX-11/780 computer of the
Finnish Forest Research Institute. IMSL-
subroutines (IMSL ... 1982) were used when-
ever possible and applicable. In order to
guarantee sufficient numerical accuracy,
computing was done in double precision and
some attention was also paid to the scaling
of variables.

Interpolations were done by cubic splines,
L.e., by cubic polynomials joined so that the
first and second derivatives are continuous.
The stem curves were interpolated using
spline-subroutines based on the study of
Lahtinen and Laasasenaho (1979). The par-
ameters were interpolated by an IMSL-rou-
tine, which uses the ’not-a-knot” condition
requiring that the third derivative be conti-
nuous at the second and penultimate knots.

Direct application of matrix operations
would in some cases lead to inefficient com-
putations, and therefore some attention is
paid to the usage of special matrix struc-
tures. Explicit presentation of special matrix
structures may also help to understand the
link between general theory and the special
case.

6

14. Terminology and notation

In this study, nonelementary statistics is
applied in a specific problem of forestry.
This report is intended both for foresters
with limited background in statistics and for
statisticians without any knowledge of fo-
restry. Readers may thus have conflicting
wishes for the level and details of the pre-
sentation. To make the following text easier
to understand, some terminology is first ex-
plained.

Forest stands and pine trees within stands
are considered here. A stand is a forest area
that is relatively homogenous both with re-
spect to the site and structure of the forest.
In statistics these kinds of groups are normal-
ly called classes. Thus in this study random
ébetween-)class effects (or just ’random ef-
ects’) are called random (between-)stand ef-
fects. In the context of the general linear
model, random effects and random parame-
ters are used as synonyms. In standard sta-
tistical writing, random tree effects (within-
stand effects) correspond to random errors
(= residual erros = within-class effects).

If % is said to be an unbiased estimator of
x, this can have three different meanings de-
pending on the statistical characters of x and
X. If x is a fixed parameter and % is com-
puted from the observed values of random
variables, then E(%)=x. If x is a random vari-
able and % is fixed, then E(x)=%. Estimator
X can be fixed either because it is computed
from observed values of fixed variables or
from conditionally fixed random variables
(expectation is taken with respect to the
conditional distribution). If both x and %
are random, then X is unbiased for x if
E(x)=E(X). If x is random, X is usually called
a predictor instead of an estimator.

In this report formulas are numbered ac-
cording to sections. Vectors and matrices
are printed in boldface; lower case letters are
used for vectors and capital letters for matri-
ces. Vectors are column vectors by default.
Many symbols have only a local meaning de-
fined as they are used, sometimes the same
letters may be needed for different purposes
in different parts of the text. The symbols
are defined as they appear, but general sym-
bols are collected to Appendix D for easy
reference.



2. DATA

Three sets of data were used in this study: a data set
collected by Laasasenaho (the primary data), a second
set collected by Kilkki and Varmola and a third one
collected by Pekkonen and Laasasenaho. Detailed de-
scriptions of these respective sets are given by Laasasen-
aho (1982), Kilkki and Varmola (1981), and Pekkonen
and Laasasenaho (1985).

Trees in the data of Laasasenaho were collected from
sample plots selected from the tracts of the National
Forest Inventory and covering the whole of Finland
(Fig. 1). Sample trees within each sample plot were se-
lected using relascope with factor 2 (i.e., sampling pro-
babilities are proportional to the square of the diameter
at 1.3 m). However, at most 5 trees per plot have been
accepted. Each sample plot is supposed to represent a
stand. Data set consists of 956 sample plots with 2326
trees. Sample plots with one sampled tree do not con-
tain any information about the within-stand variation
and the effect of the relative size of the trees, which are
both constituents of the model. Therefore all sample

lots with one sampled tree (340 plots) were excluded
Erom the data in the analysis stage. The data thus re-
duced consisted of 616 plots and 1986 trees.

On the sample trees of Laasasenaho, the diameter
was measured at relative heights of 1, 2.5, 5, 7.5, 10, 15,
20, 30, 40, 50, 60, 70, 80 anj 90 percent, and at heights
of 1.3 and 6 meters. The crown height (i.e., the height
at which the live crown begins) and the height of the
uppermost root collar were also measured. The data of
Laasasenaho were used to estimate the model param-
eters and also to test the performance of the model in
different applications.

Standwise calibration of the stem curve was also test-
ed with the data of Kilkki and Varmola and with that
of Pekkonen and Laasasenaho. The data of Kilkki and
Varmola consist of 492 trees in 29 subjectively chosen
stands in southern and central Finland. From each
stand, 5—20 trees were measured. Measured trees were
selected systematically so that there would be about
equal numbers of trees in different breast-height diam-
eter and height classes in the whole data set. The abo-
ve-mentioned measurements are also available in the da-
ta of Kilkki and Varmola, except for the height of the
uppermost root collar.

From the data of Pekkonen and Laasasenaho, 2418
Scots pines from 26 pine-dominated stands were used.
In their data the diameters were measured at 1.3 and 6
meters and at one-meter intervals.

It is assumed for all three data sets that cubic splines
going through the measurements give the stem curves
precisely. Thus volumes are also assumed to be *measur-

ed’.

Fig. 1. Number of trees in the data of Laasasenaho ac-
cording to climatic regions; trees growing on waste-
lands (N=274) are not included.



3. SHAPE, SIZE AND DIMENSIONS OF A TREE

31. Dimensions

When studying the shape and size of an
organism quantitatively, one must first de-
cic%e how its dimensions are to be defined
and measured. Generally, dimensions are de-
fined as distances between biologically ana-
logous points. With trees, however, defini-
tions ofp dimensions are not as evident as in
most allometric studies. Height, H, (i.e., the
distance between ground level and the top
of the tree) is in any case a basic dimension
of a tree stem. Ignoring the noncircularity of
tree stems, other dimensions of a stem can
be defined in terms of diameters. The only
problem is to determine which diameters of
different trees represent the same dimen-
sions.

In this study a polar coordinate system
(Fig. 2) is used to define the dimensions of a
tree stem (as did Sloboda 1977a). Relative-
height diameters, which have been more po-
pular (see, e.g., Cajanus 1911), could not be
used in this study, because the estimation is
set to work when any dimensions are measur-
ed, e.g., even if height is not measured.

In a polar coordinate system the dimen-
sions can be either rays or diameters corre-
sponding to different angles. There is a sim-
ple one-to-one relationship between the rays
and diameters. Let R(u) be the ray and D(u)
the diameter at angle u. Then

D(u) = cos(u)R(u), or (31.1)
R(u) = D(u)/cos(u). (31.2)

When u = 90°, R(u) cannot be expressed
in terms of D(u). If rays at different angles
are used as basic variables, then the height is
just one ray among others.

Geometric properties of plane figures are
independent of the scaling of the coordi-
nates. Thus scaling can be chosen on practi-
cal grounds and has no real effect on the
properties of the model. In order to get
roughly circular forms with understandable
angfes, diameters are expressed in centim-
eters and heights in meters. This scaling is

8

hetght, m
16
12 —
8_.
4 D(u)
1 u
4—.
. R(u)
u
0 L] l ] l L l
8] 10 20 30

diameter, cm

Fig. 2. The polar coordinate sz;stem where the stem di-
mension for angle u is either ray R(u) or diameter

D(u).

also reasonable for the numerical accuracy of
the computations.

As noted, height is naturally included
among the dimensions. For angles other
than 90° one can equally well use either rays
or diameters. Within this artificial scaling,
the rays are not in any physical measurement
units, so the results will be expressed in
terms of diameters. As height is not any
diameter at some angle, there exists a conti-
nuity gap between the uppermost diameter
and the height. Thus the interpolations are,
in fact, based on the rays, even though this
report is written in terms of diameters.



In the data used here diameters were
measured at given heights. Diameters at
different angles were computed with splines.
A sufficiently good presentation of the
stems seems to be attainable with 12 diffe-
rent angles (plus 90° for the height) which
are called ’knot angles’. The knot angles we-
re selected with a heuristic ’inverse spline’
criterion.

Let g be any function having an inverse
g—1. Then g—1[g(x)] = x for all x. Thus
when moving from x to g(x), no information
about x is lost, if the inverse of g exists and
is known. This idea is extended to splines,
which are functions defined by the knot
points. The problem is to find angles in the
polar coordinate system so that the informa-
tion contained in the original measurements
prevails. This is the case if, using an ’inverse
spline’, we can move to the original points.
The orlgmal splines were first defined for
each tree with the available measurements.
Then the knot points for the inverse splines
were interpolated in accordance with the po-
lar coordinate system. The selected knot an-
gles (Fig. 3), and the mean and standard de-
viation of the corresponding relative heights
(H(u)/H) were:

u, deg. H(u)/H, %
mean sd

1 0.25 0.87 0.22

2 0.7 2.2 0.54

3 1.5 4.3 1.0

4 3 7.9 1.9

5 5 12,5 2.9

6 8 18.8 4.3

7 14 30.3 6.2

8 21 41.9 7.3

9 31 55.4 7.2
10 41 65.9 6.3
11 56 78.1 4.5
12 72 88.7 2.6

When the inverse splines were used for
computing the diameters at relative heights,
biases for all relative heights were less than
0.7 mm in absolute value and standard devi-
ations less than 2.7 mm.

In the analysis stage, finite-dimensional
multivariate models are formulated in which
the knot angles determine the dimensions.
The true models, however, are assumed to
be continuous with respect to the measure-
ment angle. In the applications the model
quantities are interpof) ted for all angles.
Thus, already in the analysis stage the param-
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Fig. 3. Knot angles used in the analysis.

eters are written as functions of angle rather
than using indices.

To simplify the notation, we write u =
1,..,12 for the knot angles, u = 13 for the
height and u = 14 for the crown height.
Thus for a parameter v, for example, v(3) is
equivalent to v(1.5°), and v(14) is the param-
eter for the crown height.

32. Shape and size

This study analyzes the relationship be-
tween the shape and size of a tree stem.
Two stems have, by definition, the same
shape if

D,(u) = ¢D,(u) for all u. (32.1)

Suppose first that all stems have the same
shape. Then any weighted mean of stem di-
mensions can be defined to be the size of the
stem. Thereafter the stem of any tree i can
be presented as:



D;(u) = S,F(u),

where S, is the size of the stem and the func-
tion F describes the common shape of
stems. Every stem is determined precisely
when any dimension is known.

As not all stems have the same shape, the
model must be modified. First, the dimensi-
ons may not increase in proportion to the
size but to some function of it. Second, the-
re exists random variation, which, one can
assume, enters into the model multlphcatl-
vely, ie., is roughly proportional to size.
Thus, any stem i can be presented as:

Dj(u) = G(u,S)E;(u), (32.2)

where G expresses how the average shape
depends on the size and E;(u) is a random
error independent of size. Even if not expli-
citily indicated, G may be a function of other
tree and stand variables as well.

Taking logarithms, we obtain:

In[D.(u)] = In[G(u,5)] + In[E;(u)]. (32.3)
Let us then define:

d(u) = In[D(u)]

s=In(S)

g(u,s) = In[G(u,S)] (32.4)
€(u) = In[E(u)].

Then (32.3) can be written as:
d,(u) = g(u,s,) +€;(u). (32.5)

The presented formulation has no con-
crete meaning before the size is defined ope-
rationally. In addition, the statistical nature
of the size needs special consideration. In
the following, S and s are called "arithmetic
size’ and ’logarithmic size’, respectively.

33. Operational definition of size

There is no universal definition of size of
an organism, although it is generally under-
stood as an aggregate quantity combining
different variables associated with it. When
the whole interest lies in geometric aspects,
the relevant variables are distances, and the
arithmetic size (S) can be expressed in the
same physical units as the dimensions. Thus,
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size S (or s) must be defined so that if all
dimensions are multiplied by «, so is the size
S; and the logarithmic size s is thus in-
creased by In(e).

Principal components have been used to
define and study the variation in shape and
size (e.g., Fries and Matérn 1966). Here the
first principal component is interpreted as
the size component (see, e.g., Sprent 1972,
and Morrison 1976). If different individuals
have approximately the same shapes but dif-
ferent sizes, then the greatest variation in
the vectors of measured dimensions is in the
direction of size. Using logarithms, the vari-
ation is measured in relative units.

The sample covariance matrix of log-
diameters was computed without paying any
attention to the stand structure. Then the
first characteristic vector of the matrix was:

(.286, .280, .279, .279, .279, .280, .284,
.284, .281, .278, .271, .264, .261) (33.1)

The characteristic vectors are scaled so
that the sum of the squared elements is one.
Because the arithmetic size S is to be multi-
plied by the same constant by which every
dimension is multiplied, coefficients in the
definition of the logarithmic size s must be
scaled to add up to one. Thus the elements
of the vector (33.1) must be divided by the
sum of elements (3.604) yielding a vector

w = [w(l) .., W(13)]. The size 1s then de-
fmed to be:

13
s= 3 w(u)d(u)
u=1

=0.0793d(1) + 0.0776d(2) + 0.0774d(3) +

0.0775d(4) + 0.0773d(5) + 0.0778d(6) + (33.2)
0.0787d(7) + 0.0787d(8) + 0.0780d(9) +
0.0770d(10) + 0.0753d(11) + 0.0731d(12) +
0.0723d(13)

Since the coefficients are approximately
equal, an alternative definition of the arith-
metic size would be:

leading to the logarithmic size

13
=[ X d(u))13.
u=1

If the coefficients of the first principal
component of a multinormal distribution of



logarithmic dimensions are all equal, the
growth of the dimensions is isometric, or
1n constant proportion to the increasing size
(Mosimann 1970). As it is not assumed here
that the measured diameters come from a
single multinormal distribution, the standard
statistical interpretation and testing proce-
dures cannot be used. The definition of size
used here seems to give a good operational
basis for the analysis of stem form variation,
but it is not necessarily the ’correct’ one.

At an earlier stage of this study, the
arithmetic size of the stem was defined as
the cubic root of the volume. From a practi-
cal point of view, the results were as good as
those presented here. This definition would,
however, lead to a slight logical inconsisten-
cy. When moving from volume to diameters
and then back to volume, we do not neces-
sarily get the same volume we started with.
Defining the size by formula (33.2), a logi-
cally consistent system can be achieved. In
practice, these two possible definitions of
size are closely related; volume (in liters) can
be predicted by the equation:

V =0.05962 $3042, (33.3)
The value of R? for the above regression

was 0.995. The regression equation for the
logarithms was:

In(V) = 3.042s — 9.728. (33.4)

The logarithmic regression showed that
the standard deviation of relative errors was
4 %.

Size is defined as a weighted mean of
diameters, and each diameter is supposed to
have a random component. Thus size, as the
sum of random variables, 1s also a random
variable. Nevertheless, it will be considered
as fixed, and this is claimed to be logically
consistent.

First, the main task in the analysis stage is
to model the variation in stem form. It is
then quite natural to take the size as given,
i.e., determined outside the system that de-
termines the shape of stem. In the appli-
cation stage, the situation can be different,
as will be discussed later. Second, even if the
size is formally a random variable, it behaves
like a fixed variable, if the parameters of the
model meet certain constraints. These con-
straints will be discussed later in more detail.

The primary reason for insisting on the
nonrandomness of the size is, of course, that
the statistical treatment becomes simpler
and more straightforward. The characteriz-
ation and use of size is perhaps the clearest
point at which our approach diverges from
the traditional allometric studies.

11



4. STEM FORM MODEL

41. Model specification

After defining the size of a stem, let us
study the dependence of the expected stem
form on size and the behavior of the random
variation. Introduce the stand structure into
the model (32.5) through the index k:

dy(u) = g(u,sy,) + €, (). (41.1)

The first assumption will be that
E[€k(u)] = 0. Thereafter ordinary least
squares regression can be used to search for
an appropriate model, even if alternative
models cannot be compared exactly with F-
values. A good starting point in the model
development is:

g(u,s) = s + f(u), (41.2)

where f(u) describes the average stem form.
In this model the expected shape of a stem
is independent of the size.

As noted in section 32, g can, in addition
to s and u, be a function of any stand and
tree variables. If g is defined in terms of size
variables only, the following model seemed
to describe the stem form of tree i in stand

k:

dy(w) = ay(u) +a,(u)s,; + az(u)sii (41.3)
+a,(u)s, +vi(u) +ey(u),

where d is logarithmic diameter,

s is logarithmic size,

5, is the average size in stand k, ]

v, is a random stand effect with zero mean and fixed
variance,

e, is a random tree effect with zero mean and fixed
variance, and ay, a;, a, and a, are fixed parameters.

The random effects v and e are assumed
to be uncorrelated with each other, and the
e’s are also assumed to be uncorrelated for
different trees. For a given stand the v’s of
different angles are correlated, and for a gi-
ven tree the e’s of different angles are corre-
lated. In the analysis stage, the distributions
of v and e need not be specified. In appli-
cations some derivations are valid only if v
and e, for different angles u, follow multi-
normal distributions. Normality assumpti-
ons will be always stated explicitly.
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The model contains both ordinary fixed
parameters (a’s) and random parameters
(v’s), thus it 1s a special case of mixed linear
models (see Appendix A). Note that the
model contains both a fixed stand effect
a3(u)s. and a random stand effect vkgu).
The model (41.3) can be written in the fol-
lowing equivalent form:

di(v) = ay(u) + aj (wsy,; + az(u)sﬁi (41.4)

— a,(u) (Ski—gk.) + v, () + ey (),
where

2, (u) = a,(u) + a;(0). (41.5)

The term s,;—3; represents the relative
size of a tree in comparison to other trees in
the same stand. The competitive status of a
tree is taken into account through this term.

The model is a three-level model. Its fix-
ed part defines the ’population stem curve’;
the fixed part plus the v-effects define the
>stand stem curve’, and the whole model de-
fines the ’tree stem curve’. Since the v-ef-
fects are taken to be random, we can study
the variation of the stand stem curve using
their variances and covariances. The effect
of the average size in (41.3) could also be
included in the ’stand stem curve’, similarly
the effect of the relative size in (41.4) could
be included in the ’tree stem curve’.

The fixed part of the model was first
fitted by ordinary least squares. The expec-
ted values of the obtained residuals are zero
under the assumptions of the model, even if
the residuals within the same stands are cor-
related. Then, in order to study systematic
deviations from the model, the residuals we-
re tabulated by different variables describing
stand and tree characteristics.

The most important differences seemed
to be between climatic regions. These dif-
ferences may be explained, in addition to the
pure climatic factors, by differences in site
quality and silvicultural history of the
stands. These characteristics have the same
systematic geographic trends as the climatic
factors. Consequently, the coefficients of
the fixed effects were estimated separately
for each climatic region. The stands growing
on sites classified as wastelands deviated so



much from the others that they were treated
as a separate class. To simplit); the termin-
ology, hereafter this class is also called a re-
gion.

The random part of the model was assu-
med to be the same for all climatic regions,
so the model parameters were estimated si-
multaneously, 1.e., technically as a single
model. As the representativeness of the data
is not very good with respect to climatic re-
gions, a single model was also estimated for
the whole country. The differences between
the overall model and the regionalized mo-
del illustrate what happens when the model
is made more specific.

It is logically consistent to assume that
both the overall and regionalized models are
correct simultaneously. The overall model
applies when a stand is taken randomly from
the population formed by all the stands in
the country while in the regionalized model
conditional inferences are made for a given
region.

The age of the tree, the site class, and the
density of the stand had also a noticeable ef-
fect on the stem form. In order to concen-
trate on the main allometric relations, these
variables were not included in the model. So
the model will be applicable even if the
values of these variables are not known.

42. Fixed parameters

Intuitively, it is more natural to consider
the fixed part of the model first, even if the
variance-covariance components must be
estimated before the fixed parameters. Es-
timation of the parameters of a mixed linear
model is presented in general terms in Ap-
pendix A.2. A more detailed description of
the estimation of the parameters in the pre-
sent special case is given in Appendix B.2.

Briefly, there are two dl&erent ways of
estimating the fixed parameters of the mo-
del. Model (41.3) or (41.4) has separate
parameters for each angle u. Thus the param-
eters can also be estimated separately for
each angle. The random stand effects and
tree effects of different angles are, however,
correlated. Therefore the parameters can be
estimated more efficiently by estimating
them simultaneously for all angles. This is
known as estimation of seemingly unrelated
regressions (see, e.g., Johnston 1972). \With
the computing capablhtles available, the si-

multaneous system could be solved only for
regions with a small number of stands in the
regionalized model.

Table 1 shows a5(u), 3;(u), 3,(u) and 2
(u=1,...,14) with their estimated standltrd
errors for the overall model and for each re-
gion in the regionalized model. The sums of
w(u)a(u) over the knot angles are also given
for later discussion; the w-coefficients are
the coefficients in the definition of the size
(33.2). The parameters for regions 1, 2, 3
and 7 were estimated using the multivariate
model (’seemingly unrelated regressions’).
These parameters were also estimated using
the univariate model. The estimates and
their standard errors were very close for
both methods of estimation. The advantage
of using the multivariate model would be
even smaller for regions with more trees and
stands.

The regional differences in the average
stem curves are illustrated in Fig. 4. The

D, cm

Fig. 4. Expected stem form for a tree with size s=2.7
(about 220 dm?) for each region (see Fig. 1) accord-
ing to the regionalized mode%when the relative size is
zero. The most exceptional regions are indicated;
region 1 is northern Lapland, region 6 is southern
Finland, region 7 is the southwestern coast, and re-
gion 8 is the class of wastelands.
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Table 1. Estimates of ag(u), a;(u), ay(u) and a5(u) (upper figures) with their estimated standard errors (lower figures)
for the overall mode(i (region=0) and for each region in the regionalized model; region 1 is northern Lapland,
region 7 southwestern coast and region’ 8 is the class of wastelands. The sums of w(u)a(u) over the basic angles
(u=1,...,13) are also given, where w(u) is the coefficient of d(u) in the definition of size (33.2). Parameters for
regions 1, 2, 3 and 7 have been estimated using the multivariate model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Y wua)
Region

Eh)
0 .784 .793 .746 .558 521 .483 318 .065 —.313 —.644 —1.141 —1.798 —.630 —2.168 —.00438
.043 .035 .033 .030 .028 .026 .021 .016 .021 .030 .042 .051 .057 .169

1 1320 972 620 371 547 317 .079 —.215 —.588 —.741 —1.053 —1.502 —.292  .668 .00000
271 226 212 188 178 160 135 111 134 191 263 315  .354 1.105

2 640 636 572 373 363 356 .243 100 —.261 —.491 —.920 —1.502 —.260 —1.429 .00000
.09% .082 .077 .070 .066 .059 .048 .038 .048 .071 .099 118 .133 416

3 1.049 1.008 927 .756 .705 .621 .343 .058 —.436 —.848 —1.395—2.033 —1.010 —2.645 .00000
157133 126 113 107 095 078 062 077 115 161 192 217 .676

4 807 774 751 507 461 438 331 .072 —.328 —.640 —1.088 —1.758 —.553 —2.489 —.00240
.084 070 .066 .059 .056 .050 .042 .033 .041 .060 .082 .098 .110 .345

5 .948 1.018 1.006 .831 .727 .637 373 .043 —.422 —.851 —1.449 —2.165 —1.053 —4.248 —.00722
.091 076 .072 .064 .061 .055 .046 .035 .044 065 .089 .107 .120 .375

6 592 621 543 461 431 406 331 .093 —.264 —.542 —1.002 —1.525 —.240 —2.743 .00443
33 112 106 .095 .090 .081 .067 .050 .065. Q96. 133 159 178 558

7 —369 —.156 —.047 —.413 —.342 —.146 —.127 358 549 479  .353 —.555 429 2.601 .00000
902 760 715 638 .603 .538 448 363 447 647 900 1.077 1.210 3.756

8 244 280 244 195 192 246 233 .036 —.082 —.245 —.496—1.024  .147 —.089 .00174
091 .077 .073 .065 .062 .056 .046 .034 044 066 .092 .110 .123  .386

4
0 958 .897 .853 .933 903 .862 .866 .939 1.054 1.120 1.194 1.230 1.276 1.396 1.00348
.038 .031 .029 .025 .024 .022 .019 .015 .018 .026 .035 .042 .047 143

1 .291 497 641 736 577 739 904 1.175 1.442 1.489 1.552 1.515 1.537  .693 1.00000
209 172 160 141 134 120 .104 .088 .103 .144 195 .234 262 816

2 868 846 .818 929 915 881 .896 919 1.098 1.142 1.223 1.246 1.263  .905 1.00000
.083 .069 .064 057 .054 .048 .041 035 .041 .058 .078 .094 .105 .326

3 820 .739 709 .753 748 729 824 952 1.155 1.286 1.383 1.407 1.578 1.208 1.00000
174 146 137 122 115 103 .086 .071 .086 .124 172 206 .231 .720

4 928 889 .832 960 930 .886 .859 942 1.075 1.123 1.168 1.224 1.248 1.601 1.00205
.078 .064 .060 .052 .050 .045 .039 .032 .038 .053 .071 .086 .09  .299

5 .860 .740 671 747 769 776 .835 964 1.130 1.262 1.393 1.461 1.551 2.566 1.00590
.081 .067 .063 .056 .053 .048 .041 .032 .040 .057 .077 .092 .103  .323

6 993 932 948 992 974 933 872 955 1.058 1.079 1.124 1.060 1.047 1.628 .99629
113 .094 089 .079 .075 .068 .057 .043 .055 .080 .109 .131  .147 459

7 1.859 1.802 1.684 1.848 1.658 1.345 1.177 .655 .249 .115 —.059 .166  .365—2.033 1.00000
589 493 463 411 388 347 292 240 292 417 576 690 774 2408

8 1.337 1.292 1.224 1.154 1.059 932 841 .89¢ .886 .880 .818 .779  .846  .846 .99810
.104 .087 .082 .072 .069 .062 .052 .040 .051 .074 .100 .120 .134 420
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Table 1 contd.

u 13
1 2 3 4 5 6 7 8 9 10 1 12 13 14 Y wluhalu)
Region u=1
L)
0 .034 .043 .052 .033 .038 .046 .042 .019 —.018 —.044 —.073 —.093 —.108 —.162 —.00077
.007 .006 .005 .005 .004 .004 .003 .003 .003 .005 .006 .008 .009 .026
1 .16 .127 102 .077 .109 .075 .034 —.030 —.100 —.124 —.148 —.152 —.163 —.007 .00000
.039 .032 .030 .027 .025 .023 .020 .017 .020 .027 .037 .044 .049 154
2 .052 .051 .056 .030 .032 .037 .031 .020 —.029 —.047 —.072 —.085 —.092 —.016 .00000
.015 .013 .012 .010 .010 .009 .008 .006 .008 .011 .014 .017 .019 .060
3 .082 .08 .087 .071 .070 .073 .052 .016 —.043 —.084 —.122 —.137 —.174 —.191 .00000
.028 .024 .022 .020 .019 .017 .014 .011 .014 .020 .028 .034 .038 117
4 040 .047 .060 .030 .032 .041 .046 .022 —.022 —.046 —.071 —.095 —.109 —.216 —.00048
.014 012 .011 .010 .009 .008 .007 .006 .007 .010 .013 .016 .018  .055
5 .050 .071 .08 .069 .063 .064 .050 .017 —.027 —.068 —.112 —.140 —.166 —.417 —.00128
.015 .012 .012 .010 .010 .009 .008 .006 .007 .010 .014 .017 .019 .059
6 .029 .039 .034 .023 .026 .035 .043 .020 —.015 —.033 —.062 —.067 —.073 —.210 .00075
.021 .017 016 .014 .014 .012 .010 .008 .010 .015 .020 .024 .027  .084
7 —.153 —.129 —.104 —.137 —.103 —.052 —.019 .072 .132 .152 .176 .117 .067  .524 .00000
125 104 098 .087 .082 .073 .062 .051 .062 .088 .122 .147 .164 510
8 —.052 —.048 —.034 —.016 .003 .031 .049 .027 .016 .009 .013 .014 —.004 —.041 .00045
.018 .015 .014 .012 .012 .010 .009 .007 .009 .012 .017 .020 .023 .071
4
0—.118 —.123 —.124 —.111 —.101 —.090 —.057 —.011 .056 .113 169 .206 .230 524 .00025
.010 .009 .008 .007 .007 .006 .005 .004 .005 .008 .011 013 015 .042
1 .010 —.009 .007 .046 .034 .035 .033 .001 —.009 —.014 —.042 —.057 —.042 —.321 .00000
.046 .040 .038 .035 .033 .030 .023 .017 .023 .035 .050 .060 .068 .213
2 —019 —.037 —.036 —.027 —.034 —.029 —.018 .004 .026 .038 .046 .049 .045 .258  .00000
.025 .022 .021 .019 .018 .016 .013 .009 .012 .019 .028 .033 .037 .116
3 —208 —.159 —.143 —.107 —.101 —.079 —.046 —.008 .071 .133 .208 237 244 967 .00000
.038 .032 .030 .027 .026 .023 .019 .015 .018 .028 .039 .047 .053 .166
4 —119 —.122 —.128 —.113 —.092 —.086 —.067 —.022 .053 .117 172 .208 237 590 .00011
.021 .018 .017 .015 .014 .013 .010 .008 .010 .015 .022 .026 .029  .092
5—134 —133 —.139 —.132 —.119 —.118 —.075 —.023 .049 .121 .202 .258 291 .850 .00031
.020 .017 .016 .014 .013 .012 .010 .008 .010 .014 .020 .024 .027 .085
6 —082 —.093 —.102 —.113 —.115 —.112 —076 —.042 .030 .097 .175 .227 .245 .672—.00001
.025 .021 020 .018 .017 .016 .013 .010 .012 .019 .026 .031 .035 110
7 —067 —.193 —.223 —.189 —.145 —.070 —.042 .010 .117 .153 177 .233 279 .332  .00000
.098 .084 .081 .073 .069 .062 .049 .037 .048 .074 105 125 141 442
8 .002 —.037 —.033 —.025 —.002 .002 .003 .026 .027 .022 .011 .006 .003 —.126 .00001
.023 020 .019 .017 .016 .015 .012 .009 .011 .017 .025 .029 .033 .104

stems are generally thicker in northern that
in southern Finland and are exceptionally
thick on the wastelands; "thickness’ here and
also later means the relative thickness after
adjustment for size.

The coefficient of the second order term,
a,(u), is in general positive for small angles

and negative for large ones. Both small and
large stems are thicker than stems of inter-
mediate size (see Fig. 5). For regions 7 and 8
(the southwestern coast and the wastelands),
however, the signs of a(u) are opposite.
This requires an explanation, even if the
standard errors of the estimates are large
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Fig. 5. Expected stem form according to the overall
model for trees with sizes s = 1.5, 2.7 and 3.4; these
sizes correspond to stem volumes 5.7 dm3, 220 dm?
and 1850 dm3. The relative size is taken to be zero.
To make the comparison of forms easier, dimensi-
ons are divided by the arithmetic size (S).

compared with the estimates. The reason
might be that in these regions the trees ge-
nerally grow slowly and become thick. How-
ever, if the growing site is good, trees grow
big and have a better stem form. Thus the
controversial stem form may hold for the
trees at a given time (i.e., cross-sectionally)
but not for the stem form development of
individual trees over their life span (i.e., lon-
gitudinally).

The parameter a;(u) is easier to interpret
using equation (41.4) than with equation
(41.3). In general, a; is negative for small an-
gles and positive for large ones: stems that
are bigger than others in the same stand are
also thicker (see Fig. 6). For the two nort-
hern regions (regions 1 and 2), however, a, is
not significantly different from zero. This
indicates that the height competition is not
so heavy in northern Finland as in southern
Finland.

16

D, cm

Fig. 6. Expected stem form for the size s=2.7 when the
relative size is —0.5, 0. or 0.5; the overall model.
Note that 0.5 is approximately twice the sample
standard deviation ofthe relative size in the data.

43. Covariance components

The variances and covariances of v’s and
e’s for different angles, the covariance com-
ponents, are estimated using the fitting
constants method (Henderson’s method 3).
This method is described in general terms in
Appendix A.3, and the computational de-
tails of our special case are given in Appen-
dix B.1.

The estimated between-stand covariance
matrix is denoted by B and the within-stand
covariance matrix by W. The components
of the matrices are written as:

B(uy,up) = covlvi(wy), vi(uy)], (43.1)
B(u) = var[vy(u)], (43.2)
W(uy,up) = covegi(uy), ex;(uy) ], and (43.3)
W(u) = var[ey;(u) ]. (43.4)



Table 2. Estimated between-stand and within-stand standard deviations and correlations for the overall and region-
alized models. The diagonal elements are standard deviations multiplied by 100 (corresponding to relative effects
in percentages), the off-diagonal elements are correlations.

u 1 2 3 4 5 6 7 8 9 10 1 12 13 14
Overall model
Between-stand
1 7.11 971 929 902 889 860 .754 271 —.871 —916 —.938 —.947 —.946 —.579
2 622 980 945 910 .860 .708 .179 —917 —.943 —.946 —.948 —.939 —.585
3 6.12 989 954 909 .748 200 —.942 —974 —967 —960 —.945 —.658
4 5.71 987 956  .808  .275 —.938 —.988 —.979 —.967 —.955 —.726
5 557 .98 .876  .382 —907 —.981 —983 —.974 —.964 —.781
6 5.07 .940 516 —.849 —957 —973 —967 —.961 —.813
7 3.56 775 —.632 —.831 —.886 —.890 —.891 —.782
8 1.84 —.006 —.316 —.419 —.444 —.460 —.481
9 3.14 948 893  .863  .839  .687
10 579 986 966 948  .768
11 888 995 983  .748
12 10.76 995 .709
13 12.42 .689
14 33.05
Within-stand
1 6.40 806 .553 419 308 .177 —.024 —.284 —.593 —.654 —.641 —.606 —.573 —.280
2 518 .845 .636 .503 343 .087 —.287 —.714 —.799 —.792 —.749 —.714 —.367
3 4.80 .806 678 491 216 —.180 —.682 —.811 —.832 —.800 —.774 —.397
4 416 830 .670 .388 —.031 —.603 —.788 —.840 —.831 —.806 —.421
5 3.93 767 498 073 —.534 —.742 —804 —.795 —.772 —.416
6 3.55 .596 234 —379 —.615 —.707 —.718 —.698 —.352
7 3.16 546 —.028 —.356 —.501 —.545 —.557 —.269
8 2.75 446 140 —.097 —.190 —.228 —.045
9 3.20 .784 587 .470 410 348
10 4.27 .864 769 714 458
11 5.65 938 .896 .480
12 6.77 964 427
13 7.53 404
14 23.48
Regionalized model
Between-stand
1 535 965 900 .850 824 793 699 .219 —.817 —.873 —904 —916 —915 —.593
2 4.90 971 925 .887 .846 .703 177 —.883 —.931 —.942 —944 — 936 —.629
3 4.87 .990 954 923 .766 206 —916 —.975 —.972 —962 —948 —.715
4 455 986 966  .811 257 —.907 —.981 —.975 —.959 —.949 —.760
5 4.36 986 .864 331 —881 —971 —971 —957 —.947 —.810
6 385 929 467 —.825 —.952 —967 —.957 —.948 —.842
7 268 .761 —.583 —.823 —.887 —.890 —.881 —.797
8 1.44 .080 —.286 —.401 —.437 —.435 —.407
9 254 931 858 815 .791 721
10 4.61 980 951 930 .809
11 6.95 992 976 .780
12 8.23 994 739
13 9.38 713
14 29.61
Within-stand
1 6.29 .800 538 .407 294 164 —.029 —.284 —.584 —.643 —.629 —596 —.568 —.275
2 5.07 .838 624 490 332 .082 —.289 —.710 —.792 —.783 —.741 —.709 —.366
3 4.70 .801 671 .485 214 —.179 —.678 —.804 —.826 —.795 —.771 —.398
4 410 827 .666  .385 —.028 —.600 —.783 —.837 —.828 —.804 —.424
5 3.88 .765 501 .083 —.527 —.737 —.803 —.795 —.772 —.424
6 3.53 595 236 —.379 —.613 —705 —.716 —.694 —.359
7 3.15 545 —.033 —.361 —.503 —.546 —.556 —.265
8 2.72 437 130 —.103 —.192 —.227 —.039
9 3.10 778 583 469 414 365
10 4.18 862 767 714 467
11 5.53 937 .895 482
12 6.65 964 423
13 7.39 .402
14 23.11

3 461380A
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Table 3. The first 6 characteristic vectors, latent roots (characteristic roots), percentages, and cumulative percentages
of total variance absorbed by principal components for the overall and regionalized models.

Overall model

Regionalized model

Components Components
u 1 2 3 4 5 6 1 2 3 4 5 6
Between-stand Between-stand
1 277 313 —.542 —516 .251 —.128 263 .509 —.425 —.358  .402 —.086
2 244 419 —.175 107 —.295 .235 250 428 —.073  .046 —.354 .143
3 244 309,195 320 —.286  .041 254 194 244 213 —.395 .057
4 229 119 349 225  .068  .009 237 —.005  .345 256 —.046  .049
5 223 —.075  .332  .005 .339 —.336 225 —.152 315 .099 .368 —.375
6 200 —.261  .262 —.117  .289 .047 197 —.290 .205 —.040 .275 .064
7 127 —.447 020 —.267 —.099  .085 124 —.404 —.094 —.335 .043  .069
8 .030 —.417 —.114 —.131 —.336 .320 .028 —.357 —.228 —.275 —.230 .344
9 —.115 —.273 —.265 .262 —.310 —.145 —.117 —.250 —.357 .134 —.334 —.142
10 —.232 —.105 —.326 .362 .124 —.492 —.239 —.052 —.346 .382 .029 —.494
11 —.362 .063 —.145 .266 .377 .242 —.368 .088 —.101 .379 .249 303
12 —.439 143 111 —.087 .243 495 —.437 139 .187 —.003 .236 .447
13 —.504 246 .337 —.435 —.361 —.369 —.495 174 375 —.501 —.244 —.378
Latent root X100 5.974 .147 .085 .022 .013 .003 3,518 .095 .073 .018 .010 .003
% of total variance  95.67 2.35 1.36 .35 .20 .05 94.64 256 1.96 .49 .26 .07
Cumulative % 95.67 98.02 99.39 99.74 - 99.94 99.98 94.64 97.20 99.16 99.65 99.92 99.99
Within-stand Within-stand

1 297 .622 —.450 —.352 —.204 .130 294 629 —.447 —.348 —.204 —.127
2 291 352 052 .279 .331 —.320 289 356 .064 274 339 316
3 277 .087 .331 .500 .215 .011 276 .085 .344 495 212 —.015
4 237 —.114 306 .078 —.337 471 238 —.115 306 .070 —.346 —.465
5 .208 —.207 .278 —.200 —.353  .146 210 —.213 267 —.202 —.349 —.145
6 160 —.273  .138 —.371 —.147 —.703 162 —.276 130 —.373 —.142 .703
7 .093 —.329 —.131 —.286 .499 .109 .095 —.329 —.144 —278 .500 —.107
8 .004 —.301 —.317 —.033 .315 .242 .005 —.298 —.325 —.022 .309 —.250
9 —.134 —.208 —.379 .251 —.079 .065 —.133 —.198 —.374 259 —.079 —.066
10 —.247 —.097 —.286 .341 —.306 —.157 —.247 —.091 —.280 .352 —.308 .167
11 —.361 .060 —.026 .146 —.213 —.158 —.361 .061 —.024 .142 —.209 .162
12 —.432 .181 .203 —.09 .073 .030 —.433 176  .203 —.098 .075 —.032
13 —.469 251 .331 —.268 .208 .135 —.471 237 331 —.275 .205 —.140
Latent root X100 2.295 .406 .174 .088 .053 .034 2200 .398 .169 .086 .053 .034
% of total variance  72.50 12.82 5.50 2.78 1.68 .107 72.01 13.02 554 283 174 1.10
Cumulative %  72.50 85.32 92.82 93.60 95.28 96.34 72.01 85.02 92.56 93.39 95.12 96.23

This notation is used later in a generaliz-
ed meaning when variances and covariances
are interpolated for any angles.

Table 2 shows the between-stand and

within-stand standard deviations and corre-
lations for both the overall and the regional-
ized models. For the overall model the be-
tween-stand variances are larger than the
within-stand variances. When using the re-
gionalized model, the between-stand vari-
ances are reduced to approximately half.
The within-stand variances are reduced only
slightly, so that for the regionalized model
between-stand variances are smaller than
within-stand variances. Thus about half of
the variation between stands is associated
with the climatic regions.
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The between-stand variance makes up a
much greater part of the total variance for
large angles than for small ones. It is also
dominating in the crown height. This might
be explained by the light competition which
makes the heights and crown heights within
a given stand more equal than the other di-
mensions. The stand effects are more corre-
lated than the tree effects: the stand stem
curves are more stable than the tree stem
curves. This is quite natural, because the
stand effects are just theoretical averages of
the tree effects.

A better idea of a covariance structure is
attained through the principal components
(see, e.g., Morrison 1976). Thus the charac-
teristic roots (= eigenvalues = latent roots)
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Fig. 7. Variation of stem forms in the directions of the first three characteristic vectors of the between-stand and
within-stand covariance matrices. The overall model is used; s=2.7 and the relative size is zero. Each principal
component is + two times its standard deviation. In the subfigures for the first principal components, the

expected stem curve is also shown (broken line).

and characteristic vectors (= eigenvectors =
latent vectors) were computed from the es-
timated matrices for the between-stand and
within-stand covariances. Note that princi-
pal components are merely used to illustrate
the results of the analysis of the stem form
variation; they are not ’the’ analysis. Because
we are interested in the variation of the stem
form, the characteristic roots and vectors
were computed from the covariances of pure
stem dimensions, i.e., crown height was ex-
cluded. The first six characteristic vectors,

latent roots (= variances of the principal
components), percentages, and cumulative
percentages of the total variance absorbed
by each principal component are presented
in Table 3 (total variance is the sum of the
diagonal elements in a covariance matrix).
The first three principal components of the
covariance matrices of the overall model are
illustrated in Fig. 7. Table 4 presents corre-
lations of the principal components with the
random effects (the crown height is in-

cluded).
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Table 4. Correlations of the principal components with the random effects for angles u=1,...,14 (u=14 is the crown
height). The between-stand principal components are correlated with the random stand effects v(u), and the with-
in-stand principal components are correlated with the random tree effects e(u).

Overall model
Components
u 1 2 3 4 5 6

Regionalized model
Components
1 2 3 4 5 6

Between-stand

1 953 169 —.222 —.107 .040 —.010
2 .960 258 —.082 025 —.053 .020
3 972 193 .093 .077 —.052 .004
4 979 .080 179 .058 .013 .001
5 980 —.051 174 .001 .068 —.033
6 966 —.197 151 —.034 .064 .005
7 .869 —.480 016 —.111 —.031 .013
8 393 —.868 —.180 —.105 —.205 .094
9 —.894 —.334 —.246 123 — 111 —.025
10 —.978 —.069 —.164 .092 .024 —.046
11 —.996 027 —.048 .044 .047 .015
12 —.998 .051 .030 —.012 .025 .025
13 —.992 .076 .079 —.052 —.033 —.016
14 —.700 044 —.049 .018 —.002 —.003
Within-stand
1 .704 619 —.293 —.163 —.073 .037
2 .851 433 .042 .160 147 —.114
3 .876 116 .288 310 .103 .004
4 863 —.175 .307 .056 —.187 .208
5 .803 —.337 295 —.151 —.207 .068
6 684 —.490 163 —.310 —.095 —.363
7 447 —.663 —.173 —.268 .365 .063
8 .023 —.698 —.482 —.035 .264 162
9 —.636 —.414 —.495 233 —.057 .037
10 —.877 —.145 —.279 237 —.165 —.068
11 —.968 .067 —.019 .077 —.087 —.051
12 —.967 .170 125 —.040 .025 .008
13 —.944 213 184 —.106 .064 .033
14 —.226 .009 —.013 .011 —.007 —.004

Between-stand

924 293 —.215 —.091 .074 —.008
958 .270 —.040 .013 —.071 .015
978 123 135 .059 —.080 .006
976 —.003 .205 .076 —.010 .006
969 —.107 195 .031 .083 —.044

959 —.232 144 —.014 .070 .009

865 —.465 —.095 —.169 .016 .013
370 —.765 —.427 —.259 —.158 122
—.860 —.303 —.379 971 —.129 —.028
—.971 —.035 —.202 112 .006 —.055
—.995 .039 —.039 .074 .035 .022

—.996 .052 .061 —.001 .028 .028

—.989 .057 108 —.072 —.026 —.021

—.389 022 —.021 .011 —.004 —.001
Within-stand

.693 631 —.292 —.163 —.075 —.037

.844 443 .052 159 154 114

.871 115 .301 .309 .104  —.006
860 —.177 .307 .050 —.194 —.208
802 —.346 282 —.153 —.207 —.069
682 —.494 152 —311 —.093 .366
450 —.660 —.188 —.260 366 —.062
027 —.691 —.491 —.024 261 —.168
—.634 —.402 —.495 245 —.059 —.039
—.875 —.138 —.276 247 —.170 .074
—.967 .069 —.018 .076 —.087 .054
—.967 167 125 —.043 .026 —.009
—.945 .202 184 —.109 .064 —.035
—.169 .007 —.011 .009 —.005 .003

The first 4—5 characteristic vectors are
quite similar for both the between-stand and
within-stand covariance matrices. The vari-
ation of the between-stand effects is more
concentrated in the directions of the first
few principal components. This can be seen
already from the higher correlations in the
between-stand covariance matrix. The first
component is a ’thickness’ component.
When comparing Figs. 6 and 7, we see that
the effect of relative size is very similar to
the effect of the first principal component.
The second component is associated with
the variation in the middle of the stem.

Fries and Matérn (1966) also used princi-
pal components to analyze the stem form of
birch. Their analysis is based on measure-
ments made in arithmetic units. This ex-
plains their surprising result that the vari-
ation of butt swelling is the most important
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part in the variation of stem form. The
principal components of Fries and Matérn
and also of Liu and Keister (1978) were
computed using the sample covariance mat-
rix. The first component in their studies is
the size component, hence almost all of the
apparent variation is obviously in this direc-
tion. From this fact Liu and Keister in-
correctly concluded that the other directi-
ons of the variation are not important.
Vector (33.1) used to define the size is
one of the characteristic vectors of both the
between-stand and within-stand covariance
matrices up to the accuracy of three signifi-
cant digits. For both matrices there is prac-
tically no variation (less than 4 - 10—6 % of
the total variance) in the direction of the size
vector. This observation can be used to jus-
tify the approach to treat size as a fixed va-
riable (a more detailed discussion will be gi-



ven in section 44).

Covariance matrices are always positive
definite or at least positive semidegnite; a
special case is the positiveness of variances.
However, the obtained estimate of the bet-
ween-stand covariance matrix B is positive
definite neither for the overall nor for the
regionalized model: the last three charac-
teristic roots are negative, the absolute value
of the smallest one being 0.03 % of the total
variance. There is nothing intrinsic in the
estimation method used to prevent the esti-
mated matrix from being indefinite. These
problems are widely discussed in the context
of variance component estimation (see, e.g.,
Snedecor and Cochran 1980); Amemiya
(1985) presents the problem in a form rele-
vant to this case. See also Marquardt (1970)
for a good discussion of the dimensionality
problem in the context of usual regression
analysis.

In the present case the negative charac-
teristic roots are so small in absolute value
that the problem of definiteness is more
theoretical than practical. The between-stand
covariance matrix is needed when the model
parameters are estimated and, in a slightly
different way, in the applications. In this
study the definiteness problem is handled in
three different ways:

1) When the fixed parameters are estimated separately
for each angle only variances are needed and, therefore,
the estimated indefinite matrix can be used as such.

it) For small regions, fixed parameters are estimated
simultaneously for all angles. Hence the covariance
matrix must be inverted. In this case a small constant is
added to the diagonal elements to obtain a positive de-
finite matrix. This is essentially the ’ridge regression’
solution to the singularity problem in the regression
analysis (see, e.g., Marquardt 1970).

ii1) In applications the problem is reformulated using
the first few principal components, ie., it is assumed
that the variances of the other principal components
are zero. This is analogous to repracing the negative va-
riance estimates by zeros in the variance component
estimation. The method of Amemiya (1985) for esti-
mating covariance components is based on the same
idea, but he defines the characteristic vectors and roots
in the metric defined by the within-group mean square
matrix. After this modification, or after adding a con-
stant to the diagonal elements, the covariance matrix
used is no longer an unbiased estimate of the true co-
variance matrix.

Let us briefly consider the distributions
of the stand and tree effects; variances of the
estimates of fixed parameters are ignored in
the following discussion. When the fixed
parameters are estimated, estimates of the
random stand effects will also be obtained

0 +——r—+F+——7—+—+7
-20 -10 0 10 20
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Fig. 8. Frequency histograms of the estimates of v(4) (a)
and e(4) (b) and the corresponding normal density
functions; the overall model.

(see Appendix A.2). Using the estimated
parameters and stand effects, the tree effects
can also be estimated (predicted) by the ob-
served residuals. If the random stand and
tree effects are normally distributed, their
estimates are also normally distributed but
do not have the same variances as the ran-
dom effects themselves. Furthermore, the
variances of the estimates vary from stand to
stand depending on the number of trees in
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the stand. The estimated random effects
should, however, have a symmetric distri-
bution. But their distributions are not exact-
ly symmetric (Fig. 8): there are more very
thick stands (stems) than very thin stands
(stems). Therefore, neither the random
stand effects nor the tree effects can follow
recisely multinormal distributions, alt-
ll':ough deviations from normality are proba-
bly quite modest.

44. Consistency of the model

Let us return to the consistency of the
model with respect to the definition of size.
According to (41.3):

dii(u) = ag(u) + ay(u)sy; + ap(u)sg; +
a5, +vi(w) + ), u=l,...13.

Multiply for each u=1,...,13 both sides
of the equation by w(u) given in (33.2). If we
add all these equations, the left side will be
by definition (33.2) equal to si;. Thus we
have:

—
w

Ski

c
11t

) =

—
w0
—
w

w(u)ay(u)sy; +

Ting

! w(u)ag(u) +

c
it

(44.1)

1M

13
w(u)ay(u)sg; + §1 w(u)as(u)sy, +
uZ

u=1

—
w

13
w(u)vi(u) + ugl w(uegi(u).

[[L\s]

u=1

The system is theoretically consistent if
the above equation is always true, i.e., iden-
tically true with respect to the fixed vari-
ables (s2, s, 5 and the constant term), and
true with probability one with respect to
random variables (v and e).

In section 43 vector w = [w(1),...w(13)]
was found to be among the characteristic
vectors (up to a multiplicative constant) of
both between-stand and within-stand ef-
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fects, and the associated characteristic root
indicated practically no variation in this di-
rection. Thus the following consistency re-
quirements seem to be fulfilled rather close-

ly:

13

> w(u)vi(u) =0, and (44.2)
u=1

13

> w(u)ey;(u) =0. (44.3)
u=1

Equation (44.1) is identically true with
respect to the fixed variables, if the fixed
parameters satisfy the constraints:

13

Z w(wag(w) =0, (44.4)

13

2 w(ua(u) =1, (44.5)
u=1

13

> w(u)ay(u) =0, and (44.6)
u=1

13

2 w(u)az(u) =0. (44.7)
u=1

These sums were computed using the esti-
mated parameter values for the overall mo-
del and for different regions in the region-
alized model; the results were given in Table
1. These sums are sufficiently close to the
required values to justify this approach. The
constraints should be formally tested using
the multivariate model. For computational
reasons, however, the multivariate model
can be used only for some regions in the re-
gionalized model, for which the constraints
are so closely satisfied that they need no test-
ing. For the overall model or for large re-
gions in the regionalized model, comparison
with the standard deviations of the param-
eter estimates indicates strongly that the vali-
dity of the constraints would also pass a
formal test. It was not considered to be ne-
cessary to re-estimate the parameters subject
to the constraints (44.4)—(44.7).



5. APPLICATION TECHNIQUES

51. Reversing the role of variables and
parameters

After the analysis stage, we can assume
that we know the variances and covariances
of the stand effects (v) and the tree effects
(e), as well as the values of the fixed par-
ameters (ag, a1, 4, a3) at the knot angles. It
is assumed further that we can interpolate
the fixed parameters and covariances for all
other angles by one- or two-dimensional cu-
bic splines. In applications of the model,
stem curves are to be predicted if any di-
mensions are measured from trees in a given
stand. This chapter describes how standard
linear methods can be used to predict stem
curves and stem volumes.

Using the second formulation (41.4) of
the model, a measured diameter d(u;)) of tree
i and measurement angle uj; can be express-
ed:

d(u;) = ag(uy) + aj(uy)s; + ay(uy)s?
(51.1)
— a3(uy) (s;—s) + v(u) + e(uy).

Stand index k is dropped because we are
considering a given stand. The unknowns
are s; (for each tree 1), s (for the stand) and

v(ujj) (for each measurement angle in the

stand). During the analysis stage, s; and s
were known and the a-parameters were esti-
mated. In applications we assume that the
a-parameters are known, and s; and s are
being estimated. Thus the role of par-
ameters and variables is changed. The
measured dimensions enter into the model
as dependent variables and not as explana-
tory variables, as in the standard regression
approach.

The equation is linear with respect to the
unknowns s s; and 5. However, there exists
a nonlmear constraint for the unknowns s?
and s;, i.e., s?= s;s;. But the a,(u)- _coefficients
are so small that the function ay(u)s?2 +
ay(u)s is almost linear and can be approxima-
ted very accurately by the first order Taylor
series. The approximation is the better the
closer s; is to the point of expansion, denote

it §;. A rather good estimate of s; is obtained
by taking the random effects (v and e) and
the relative size to be zero in (51.1) and by
solving the resulting quadratic equation for
s;- If several dimensions have been measured
for tree i, then the preliminary estimate §; is
computed from the lowest measured diame-
ter (the average could also be used).

The fnrst order Taylor series estimate for
ay(uj))s?is then:

ay(uy))s? = —ay(u;)s2+ 2ay(uy)ss;. (51.2)

The preliminary estimates §; are also used
to estimate average size () and relative sizes
(si—s). When these approximations are ma-
de, the model (51.1) can be written in the
form:

d(u;) — ag(uy) + ay(u)s?+ a3(uy)(8—s ) =
. (51.3)
[2a5(uy)s; + aj(uy)]s; + v(uy) + e(uy).

Denote the left side by y(u;;) and the coef-
ficient of s; by a(u;;), i.e.,

y(u;) = d(uy) — ag(uy) + (51.4)
ay(uy)s?+ a(uy) (5—$), and
a(uy) = 2ay(uy)s; + aj(uy). (51.5)

Then (51.3) can be expressed as an ordina-
ry mixed linear model

y(uy) = a(uy)s; + v(uy) + e(u;). (51.6)

The model contains ordinary random
stand effects v(u). A better way to take the
random stand effects into account will be
discussed in the next section.

52. Describing random stand effects
using principal components
Let us then consider the estimation of the
random v-parameters. If diameters have

been measured at the same angles in differ-
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ent stems, we could just use the standard es-
timation method described in Appendix
A.2. But in practice only the height and
crown height will be measured at fixed’ an-
gles. Other diameters are usually measured
at absolute heights, which correspond to dif-
ferent angles in the polar coordinate system.
Although it would be technically possible to
estimate a separate v-term for each measure-
ment angle, this would not be reasonable

mputationally or for the construction of
the inal stem curves.

As noted, the dimensionality of the stand
effects is low. Already 3 (5) first principal
components absorbed over 99 % (99.9 %) of
the total between-stand variance both in the
overall and regionalized models (Table 3).
Thus v-effects can be expressed virtually
without error in terms olP 3—5 first (un-
known) principal components.

Let us first consider the determination of
the v-effects at the knot angles. Let v/ =
gv(l),..., v(13)] be the vector of the v-ef-
ects, let qi be the kth characteristic vector
with elements qi(u), u=1,...,13, and let Q
be the matrix having the “characteristic vec-
tors as its rows. Denote the vector of the
principal components by ¢ where ¢ = qy’v.
Then

c=Qv. (52.1)
Since Q is orthogonal,
v=Q%. (52.2)

If only the first p characteristic roots are
nonzero, then var(cy) =Ofork =p + 1,...,
13, and hence ¢y =0,k =p + 1,...,13 with
probability 1. Thus foru=1,...,13

v =2 ae (523)
k=1

When using the estimated characteristic
vectors, the above expression is only appro-
ximative.

The same expression (52.3) is obtained
when v(u) is regressed on the first p princi-
pal components. This can be seen by noting
that the principal components are uncorrela-
ted, var(cy) = t) (t) being the kth character-
istic root), and cov([v(u),ck] = tkqx(u). Thus,
when regressing v(u) on cj the regression
coefficient is cov[v(u),c ]/var(ck) = qj(u).

We should, however, express a v-effect at
any angle in terms of principal components.
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The v-effects change smoothly with the an-
gle u, so we may assume that the coefficients
qk(u) can be interpolated by cubic splines.
The first 5 vectors seem to be smooth
enough for interpolation. Denote by qk(uU)
the (interpolated) coefficient of the kth prin-
cipal component at angle u;;. Then:

v(u;) :kgl qi(u;))cy- (52.4)

The model can now be stated for the jth
measurement of tree i:

P
y(u;;) = auy)s; +k§1 Qi (ug)ey t+ e(uy). (52.5)

Finally the model is in a form where stan-
dard estimation procedure for mixed linear
models can be applied. The parameters to be
estimated are the size s; for each tree i and
the values of the first p principal compo-
nents, i.e., ¢k, k=1,...,p. Because the cj-pa-
rameters are random, cj- and s;-parameters
can also be estimated in case there are fewer
measurements than parameters. The special
matrix structures needed in the parameter
estimation are presented in Appendix C.1,
including the case where the sizes of stems
are assumed to be random parameters. If the
size is considered to be random, the model
does not contain any fixed parameters.

At an earlier stage of tﬂe study, v(uj)’s
were expressed in terms of v(1),..., v(13),
i.e., the v-effects at the knot angles were the
random effects to be estimated as in the ana-
lysis stage. Results were virtually the same.
The approach based on the principal com-
ponents was chosen for computational re-
asons: smaller linear systems need to be sol-
ved.

We will next consider prediction of diam-
eters at the knot angles. When deriving pre-
diction formulas, the size is assumed to be a
fixed parameter. The formulas can easily be
extended to the case of random size. The
characterization of size as a random par-
ameter is discussed later in section 71.

53. Stem curve and volume of an
individual tree

At this point we assume that we have esti-
mated the size s; of stem i and the first p
principal components of the stand effects,
ck, k=1,...,p. The problem is then to pre-
dict the stem curve of stem i at knot angles



u=1,...,13. The principal task is to predict
the y-variable defined in (51.4) for the knot
angles. The predictor and its error variance
are derived in detail in Appendix C.2. The
predictor of the y-variable for stem i at angle
u is found to be:

$i(w) = a(u)s; + z(u)'e + wyR(y,—82,—Z;2),

where z(u)’ = [qi(u),..., gp(u)] tells how
the random stand effect v(u) is obtained
from the principal components; ¢ =
(¢1,...,&p) 1s the vector of estimated princi-
pal components of the stand effects; w;” =
[W(u,ujp), ..., W(u,u; )] contains the covari-
ances between e;(u) and the e-terms of the
measured dimensions; R;=var[e(u;),...,
e(uj ;) ] is the variance matrix of the e-terms
of the measured dimensions, and (y;—3;a;—
Zt) is the vector of residuals for stem 1,
when the measured dimensions are predicted
by the stand stem curve, i.e., using the esti-
mated random stand effects (and size). The
predicted log-diameter is obtained from
¥i(u) using de%inition (51.4):

di(w) = fiw) + ag(v) — 3, — a3()(5—5)  (53.1)

Omitting the complications caused by the
s- and s*terms in the model, the prediction
of diameters at the knot angles 1s easy to
understand. We calculate the deviations of
the measurements from the predicted values
obtained using the estimated size of the
stem and the estimated random stand ef-
fects. Deviations at the knot angles are then
predicted for a given stem using the ob-
served deviations as explanatory variables;
the regression coefficients are obtained from
the within-stand covariance matrix. Thus
the observed residuals are used to predict
the ’unobserved residuals’ in the same way
as known e-terms at the measurement angles
would be used to predict other e-terms.

If size is a fixed parameter, then the pre-
dictors of the logarithmic diameters are un-
biased for the given (unknown) size. If, in
addition to stand and tree effects, also size is
normally distributed with a known mean
and variance, then the predictors are condi-
tionally unbiased for the measurements. It is
not possible to have a predictor that is con-
ditionally unbiased both for the given un-
known size and the measurements.

Determination of unbiased predictors in
the arithmetic scale is based on the assump-
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tions of normality. Let y be a normally dis-
tributed random variable with mean p and
variance 02, then z=ey is a lognormally dis-
tributed variable having tth moment (e.g.,
Flewelling and Pienaar 1981):

E(z') = exp(tu + % t202). (53.2)

From this formula we get the mean of z
(t=1):

E(z) = exp(u + %02). (53.3)

If size s is fixed, we will get unbiased pre-
dictors of diameters in the logarithmic scale
for the given unknown size. In this case u is
the fixed part of the model (41.3). To sim-
plify the following expressions, angle u is
not explicitly written in D(u), d(u), y(u),
v(u), or e(u). Now,

E(d) =Ed) = u,
E(D) = E[exp(d)] = exp[p + %var(d)], and
Efexp(d)] = explu + 5 var(d)]

Note that var(d) = var(v) + var(e) = B(u) +
W (u) and var(d) = var(§). As var(d) is not
generally equal to var(d), exp(d) is biased for
D. An unbiased predictor for D is obtained

by:

D =expi{d + %[var(d) —var(d)]}. (53.4)

For the normally distributed random size
we can get predictors of diameters in the
arithmetic scale that are conditionally unbi-
ased for the fixed measurements. In this case
d is the conditional mean and var(d—d) the
conditional variance. Thus a conditionally
unbiased predictor in the arithmetic scale is
obtained by:

D =exp[d + %var(é—d) ] (53.5)

Using formula (53.4) (or 53.5, if applica-
ble) we get unbiased predictions for the di-
ameter at a given angle. We may also be in-
terested in getting an unbiased predictor for
the diameter at a given height. If we convert
the predictor D(u) directly from the polar
coordinates to the corresponding predictor
Dyi(H) expressed as a function of height,
then Dyy(H) is biased for a given height un-
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less the stem curve is linear. Computational
experiments with the predicted stem curves
indicated, however, that this bias is negligi-
ble.

One of the main applications of the stem
curve model is to predict the volume of the
whole stem or different stem segments. The
first problem in determining volumes is
terminological: Should we ’predict’ or ’esti-
mate’ volumes? We ’predict’ diameters at
different angles, and the volume is deter-
mined by integrating squared diameters, i.e.,
’predicted’ cross-sections. Thus we are also
’predicting’ volumes. But the stem volume is
very closely associated with the size of the
stem, and size is (for most of the time)
treated as a fixed parameter. Hence we
could also ’estimate’ the volume. In the fol-
lowing, volume is ’predicted’, if the integra-
tion of the ’predicted’ cross-sections is em-
phasized. Otherwise volume is ’estimated’.

Let us then consider how to obtain an
unbiased volume predictor from the predict-
ed logarithmic diameters. The volume is
predicted by integrating the cross-sectional
areas. In case the stem size is assumed to be
fixed, the volume predictor is unbiased if:

E(D) = E(D?).

From (53.2) we get
E(D?) = exp(2u + 202).

Using arguments similar to those above
for the unbiased predictor of D, an unbiased
predictor for D2 is found to be:

6)7) = exp {2d + 2[var(d) — var(é)]}.

Thus the corresponding ’volume unbi-
ased’ predictor of D is:

D = exp[d + var(d) — var(d)]. (53.6)

Similarly, for random size the ’volume
unbiased’ predictor is:

D= exp[& + var(cj—d)]. (53.7)

As the polar coordinate system was de-
fined by expressing height in meters and di-
ameter in centimeters, the volume cannot be
obtained by integrating the stem curve di-
rectly over the angle. Any function defined
in polar coordinates can, however, be con-
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verted to the corresponding function, where
height is the argument variable. Then the
integration can be done in the usual height-
diameter coordinate system. Integration
over height can also be applied when pre-
dicting volumes of different stem segments
and is easy to compute. With splines the
conversion from polar coordinates to height
coordinates is simple. First the predictor
(u) is computed for the knot angles. Then
oints (D(u)tan(u), D(u)) are used as the
Enot points when defining the stem curve
splines in height coordinates.

When the predicted stem curve of a thick
stem is converted from polar coordinates to
height coordinates, the heights correspond-
ing to adjacent angles can be very near to
each other. If cubic splines are then defined
expressing the knot points in height coordi-
nates, these splines can have wild oscilla-
tions. To prevent this oscillation, points we-
re merged whenever they were closer than
half a percent of the total height of the tree.
The arithmetic mean of the height and di-
ameter coordinates seemed to work as well
as the more sophisticated methods tested.

The estimation procedure can be applied
if any combination of dimensions is mea-
sured for different trees in the stand. How-
ever, the computations can be simplified if
only one dimension is measured for some
trees and size is treated as fixed. According
to forestry practice, trees with one measured
dimension are called tally trees. A single
measured dimension is needed to estimate
the size; it does not contain any information
about the stem form. The estimation can
thus be made in two different stages. First,
we ignore trees with one measured dimen-
sion and estimate the stand effects, sizes and
stem forms as described earlier. In the se-
cond stage we estimate the sizes and stem
forms of trees with one measured dimension
using the estimated stand stem curve (esti-
mated random stand effects). This intuitive-
ly sound procedure is presented more
formally in Appendix C.3.

In many stem curve problems error vari-
ances are also needed. For the predicted
stem curve, variance of the relative errors is
given by var(d—d). The exact derivation of
the volume estimation errors would be rath-
er difficult, because the volume is predicted
by integrating the stem curve in arithmetic
units. An approximative description is based
on the close relation between the size pa-



rameter and the volume of the stem.

The total variance and the variance com-
ponents of § are easily obtained. The total
variance of §; is just the ith diagonal element
of the inverse of] the coefficient matrix H of
the linear system formed to estimate the size
parameters and the stand effects (see Ap-
pendix A.2 and C.1). As discussed in general
terms in Appendix A.2, any §; is a linear
combination of the observed y’s, and hence
also of the within-stand random effects e of
all trees and measurements in the stand.
Then, the within-stand variance of §; is de-
fined as the variance of §; with respect to the
within-stand random effects e(uj) of the
same tree i: the within-stand variance is the
conditional variance of § given the random
stand effects and the random within-stand
effects of other trees. The between-stand
variance is then obtained by subtracting the
within-stand variance from the total var-
iance.

More precisely, §; is of the form

§; = t/’¢; + additional terms,
where t; is some vector and

& = [e(ujy), ..., e(ujm)]-

Thus the variance of §; with respect to e;,
varg(s;), is

varw(ﬁi) S ti’Riti’ (538)
where R; = var(e;).

The derivation of an explicit expression
for t; in terms of the quantities of Appendix
C.1 1s straightforward but less informative
and is omitted here. For the tally trees (i.e.,
trees with one measured dimension) the vari-
ance components can be derived more di-
rectly. If only one dimension has been mea-
sured for tree i, i.e., the diameter at angle
u;1, then according to (C.3.10) §; is:

§; = e(u;)/a(u;;) + other terms,

where a(u;;) is defined according to (51.5).
Thus in this case the within-stand variance
is

varg(§) = W(u;y)/a(uyy)? (53.9)

where W(u;;) = var[e(uj;)]. The total var-

iance of §; for this special case is given in
(C.3.12).

After computing the within-stand var-
lance varg($;) and the total variance var(s)),
the between-stand variance vary(8;) is simply:

vary($;) = var,(3;) — var(§)). (53.10)

Because the within-stand errors are un-
correlated for different trees, we have:

covy(8;,,8;,) = 0, and (53.11)

cov,(§;,8,) = cov(8;,,5;,) for iy # 1,

(53.12)

If the measurements are made at absolute
heights, we get different estimates for be-
tween-stand and within-stand variances for
different trees. Thus the error of §; is of the
form

ski—Ski = bii 1 exi-

The theoretical estimates of variance
components are later compared with empiri-
cal estimates. In the empirical descriptive
model we have a single between-stand error
for all trees in the same stand. The theoreti-
cal between-stand variance is more compar-
able with the empirical one if we write first:

Ski—Ski = by + (b—by_ + ey). (53.13)

Thereafter, the between-stand variance
can be interpreted as:

vary(s—$y;) = var(b, ) =

53.14
[ S cov(by, by /. 0
I I

In this way the between-stand variance
will be the same for all trees in the stand.

The variance components of the loga-
rithmic volume errors (or relative errors of
volume estimates) can be obtained from the
respective variance components of the size
parameters using the relation In(V)=3.042s
+ constant (Eq. 33.4):

var[In(V) — In(V)] = var[(V—V)/E(V)] = 3.0422var(3).
(53.15)
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54. Measurement errors

In practice, all measurements contain er-
rors. If the true diameter is defined to be
the diameter of the circle having correct
cross-sectional area, then the noncircular
form brings about errors that are compar-
able to ’pure’ measurement errors (see
Matérn 1956). Let dmgu) be the measured
diameter in logarithms for the angle u, then:

d(u) = d(u) + e, (v), (54.1)

where em(lc? is the measurement error in the
polar coordinates. A later discussion will in-
dicate how ep,(u) relates to the correspond-
ing measurement error in the height-diam-
eter coordinates.

Let us assume that

E[e,,(u)] =0, and (54.2)
var[ey,(u)] = o2 (u). (54.3)

Furthermore, measurement errors are as-
sumed to be mutually uncorrelated and also
uncorrelated with the random stand or tree
effects. The variance of the measurement er-
rors may be a function of d(u). For practical
purposes, the variance may be equally well
determined as a function of dp(u). For in-
stance, if the error variance is a constant ¢ in
the arithmetic scale for a diamater measure-
ment Dp,, then, using the first order Taylor
series approximation, the logarithmic error
variance 1s

02m = C/Drzn. (54.4)

If measurements are unbiased in the
arithmetic scale, they have a bias in the loga-
rithmic scale; this bias is, however, negligible
for realistic measurement errors (see section
53 for the connection between the expecta-
tions in the arithmetic and logarithmic
scales).

When the stem sizes and random stand
effects are estimated, the random tree effect
e(u) and the measurement error ey(u) to-
gether form a combined random tree effect,
denoted by e, (u):

e,(u) = e(u) + ey (u). (54.5)

This new tree effect behaves exactly like
the previous e(u). The only difference is that
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the variance of the measurement errors will
increase the variance:

varfe (u)] = var[e(u)] + var[e,,(u)] =W(u) + arzn(u).
(54.6)

The covariances remain unchanged:

covle,(uy), e,(ug)] = covle(uy), e(up)] = W(uy,uy). (54.7)

Thus the new within-stand covariance
function has a jump on the line uy=u;. In
short, the stem sizes and the random stand
effects are estimated as described in Appen-
dix C, the only difference being that we add
the variances of the measurement errors to
the diagonal elements of R, the covariance
matrix of the within-stand effects.

The stem curves are then predicted as
previously using the formula (C.2.8). The
diagonal elements of R; are only augmented
by the variances of the measurement errors,
as in the estimation of the stem sizes and
stand effects. Because the measurement er-

stem curve

D(H.) \E, E» D
m W u

m

D(u)

D

Fig. 9. Measurement errors in the polar coordinates dif-
fer from those in the height-diameter coordinates.
H,, is the height of the measurement, D,, is the
diameter at H, according to the erroneous measu-
rement, D(H m) is the true diameter at H,, u is the
angle of the measurement in the polar coordmates,
and D(u) is the true diameter at angle u. The
measurement errors are E;+E, and E, in the height-
diameter coordinates and in the polar coordinates,
respectively.



rors do not change the within-stand covar-
iances, the vector w; is the same as when no
measurement errors occur.

In practice, variances of the measurement
errors are evaluated in the height-diameter
coordinates. The measurement errors for
height are the same in both coordinate sys-
tems. Measurement errors of diameters in
the height-diameter coordinates can be
transformed to the polar coordinate system
using the following approximative proce-
dure. Assume that the stem curve is linear
around the height of the measured diameter.
Denote according to Fig. 9: w is the angle
between the stem curve and the horizontal
axis, u is the angle of the measured point in
the polar coordinates, E=E;+E, is the
measurement error in the height-diameter
coordinates, and E, is the measurement er-
ror in the polar coordinates for angle u.

Then:
E tan(w) = E,tan(u), or

E; = E,tan(u)/tan(w).

Hence
E =E;+E, = [1+tan(u)/tan(w)]E,, or
E, = {E, where (54.8)

f = [1+tan(u)/tan(w)]—1 (54.9)

u, deg.

Fig. 10. Coefficient f defined in (54.9) as a function of
u.

Thus the standard deviation of the mea-
surement errors in the polar coordinates is
the usual standard deviation multiplied by f
defined in (54.9), where tan(w) can be com-
puted from the average stem curve. Fig. 10
shows f as a function of u.

In the presence of measurement errors,
the predicted stem curves do not go through
the measured points (Fig. 11): the measure-
ment errors can be corrected to some ex-
tent. In addition, the stem form model can
be used to analyze the effect of measure-
ment errors when different measurement
devices and strategies are compared.
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Fig. 11. When measurements contain errors, the predicted stem curve is shifted towards the average stem curve.
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Assume that D 5 is measured without error. In Fig. 11a the predicted stem curves are for measurements: (1):
D, 5=20 cm; (2): Dy 3=20 cm, H=19 m, and H is measured without error; (3): D; ;=20 cm, H=19 m, and the
standard error of measuring H is 10 %. In Fig. 11b the predicted stem curves are: (1): D; 3=20 cm; (2): D; ;=20
cm, H=19 m, D,=13 cm, and the measurements contain no error; (3): measurements are as in (2), but the
standard errors of measuring H or Dy are both 10 %.



6. TEST RESULTS

61. Test criteria

The usefulness of a stem curve model is
evaluated by its performance in practical ap-
plications. This chapter describes results of
tests where the stem form model is used to
predict stem curves and volumes, the stand-
wise calibration of the stem curve (section
65) having a special emphasis. The stem
form model is used in its basic form, i.e., the
sizes are taken to be fixed parameters, and
the measurements contain no errors. Ran-
dom size parameter, measurement errors,
and also application of estimated variances
in timber assortment problems and in the
optimization of measurements are consi-
dered in the next chapter. Let us first dis-
cuss how the performance of a stem curve
model can be evaluated.

The measurement scale causes problems
when a stem curve model is applied. The
prediction of the stem curve should work
properly in the arithmetic scale, e.g., the
predictors should be unbiased in the arith-
metic scale (see section 53). The prediction
variance in the arithmetic scale is, however,
closely associated with the size of the trees.

Error variances and observed biases give a
better idea of the overall performance, if
they are computed in the logarithmic scale.
If, however, the predictions are in fact com-
puted in the arithmetic scale and the errors
are compared in the logarithmic scale with-
out the bias correction for the arithmetic
scale, there will result a slight gap between
the predictor and the evaluation criterion.
One possibility to overcome the problem is
to use relative errors:

e, = (y—9)/E(y), (61.1)

where y is the true value, § is the predicted
value, and E(y) is the expected value of y.
The relative error e, is the first order Tay-
lor approximation of the logarithmic error
In(y)—In(§) when the Taylor series is ex-
panded around E(y). If § 1s unbiased for y,
then the expected value of e, is zero. The
errors in stem curve models are generally so

small that variances of the relative errors are
very close to logarithmic error variances. If
the size is considered to be fixed, then the
expected value of the diameter D(u) is:

E[D(u)] = exp{u + %var[d(u)]}, (61.2)

where u is the fixed part of the model (41.3)
and var{d(u)] = B(u) + W(u). The expected
value of the volume, E(V), for a given size s
is obtained from the regression equation
(33.3). Owing to the close association be-
tween size and volume, the relative error
(V=YX/)/E(V) is near to (V—V)/V.

If the size is a normally distributed ran-
dom parameter and the random stand and
tree effects are normally distributed, then
the conditional expectations of diameter
D(u) and volume V are D(u) and V, respec-
tively, which are used in the denominator of
e, in (61.1). Also in the standard regression
approach, where measured variables are as-
sumed to be fixed, E[D(u)] = D(u), and
E(V) =Y.

The comparison of different approaches
using relative errors is problematic because
the denominators are different in each case.
For instance, the expected value of (y—9)/y
is not exactly zero, if s in the stem form
model is assumed to be fixed. If two or
more dimensions of a tree are measured, the
different relative errors are very close to
each other.

According to the stem form model, the
random variation of the stem form can be
partitioned into variation between stands
and within stands. Thus the prediction er-
rors arise from these two sources of vari-
ation. Because the model works in the logar-
ithmic scale, the partitioning of errors is
most straightforward for the logarithmic or
relative errors.

Relative errors for tree i in stand k are
described by the following empirical model:

(Yki—¥ii)/E(yi) = m + by + ey, (61.3)

where m is the overall bias, by is a random
error for stand k and ey; is a random error
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for tree 1 within stand k. Analysis of vari-
ance estimates (p. 474 in Searle 1971) are
used to estimate var(by) and var(ey;); the es-
timates are denoted by sp2 and sy2, respec-
tively.

The prediction errors can be partitioned
into components by using our theoretical
model for the stem form variation. For sim-
plicity, the simple descriptive model pres-
ented 1s. used to describe the prediction of
stem curves. It can also be used for analyz-
ing errors in the reference models. Theoreti-
ca% total variances will, however, be com-
pared with the empirical total variances in
section 73. For the estimation of volume,
theoretical variance components (described
in section 53) will be compared with empiri-
cal results.

In typical applications the partitioning of
the errors into components is important.
Usually stem curve and volume equations
are applied for several trees in a given stand,
and the main interest lies in the mean (total)
characteristics of the trees. According to the
model (61.3), the mean of n relative errors in
a stand has a mean square error (MSE)

m? + var(by) + var(ey;)/n. (61.4)

Thus the within-stand errors cancel each
other as the number of trees increases, but
the between-stand error and bias remain un-
changed. Hence the main objective for a
model is to produce small bias and between-
stand error variance. If the between-stand
error component is ignored in the error
analysis (as is usually done in standard regres-
sion analysis), then the mean square error
for a stand mean is underestimated. Note
that MSE of the stand mean is not directly
related to MSE of the mean of relative er-
rors, if the size of trees in a stand varies
greatly.

In the following applications the mean,
standard deviation and root mean square er-
ror (RMSE) are also computed for the
arithmetic errors. The mean square error of
the arithmetic errors is computed as the sum
of the squared mean and the variance of the
errors. Sample variance of the arithmetic er-
rors does not, however, correspond to or
estimate (even approximately) any quantity
in the stem form model.
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62. Basic comparisons

Parameters of the model were estimated us-
ing Laasasenaho’s data. Thus a good starting
point for testing the model is to apply it in
situations where the stem form and volume
equations given by Laasasenaho (1982) can
be used for comparison. In the tests all of
the data was used, i.e., also those stands
with one measured tree, which were not in-
cluded in the analysis stage. Relative size of
those single trees was given a value of 0.25,
which seemed to be in accordance with their
average stem form. The following equations
of Laasasenaho (1982) define the reference
models:

measured stem curve volume
equations equation
D,, (41.1) (61.2)
D,, H (41.1) + (41.2)  (61.3)
D,, H, D, (41.1) + (41.3)  (61.7)

According to Laasasenaho (1982), the to-
tal volume is calculated as the volume of the
stemwood from the stump to the top of the
tree. The stump is defined as being at the
level of the uppermost root collar affecting
cutting, or at least 10 cm. For integration of
the stem volume using the predicted stem
curve, the stump height is predicted using
the regression equation (81.1) of Laasasena-
ho (1982) which has the diameter at breast
height, Dy 3, and the height of the tree, H,
as explanatory variables. If either of these
values is not measured, it is replaced by the
respective predicted value.

First applications of the stem form model
are based on the overall model. The size of a
tree is taken to be fixed; the random stand
effects are estimated using the first four
principal components of the between-stand
covariance matrix B; and the stem curves of
all trees belonging to the same stand are
predicted simultaneously, i.e., the stand
structure is utilized as it appears in the data.
Later, if not indicated otherwise, the stem
form model is also applied in the same way.

First consider the estimation of the stem
volume using Dy 3. The error statistics for
the arithmetic errors were for the stem form
model (sfm) and for Laasasenaho’s model
(Laas.):
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Fig. 12. Mean and mean = standard deviation of\\(__\A/ (dm3) within groups of 80 trees (86 in the last group) with
respect to D 3 and arithmetic size S when V is computed according to the stem form model or according to

Laasasenaho’s model.

model mean sd RMSE RMSEN
dm’ dm’ dm’® %

sfm 3.8 75.9 76.0 24.3

Laas. —7.4 73.9 74.2 23.8

The above error figures are about equal.
The principal difference between the two
modelling approaches can be seen in Fig. 12:
volume estimates based on the stem form
model are virtually unbiased with respect to
size, and Laasasenaho’s estimates are nearly
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unbiased with respect to the measured Dy 3.
The bias in the arithmetic scale has been
corrected using var(d)—var(a) (Eq. 53.6),
which should produce unbiased estimates of
the volume for the given (unknown) size. As
shown in Fig. 13, this bias correction has a
very small effect. The bias correction for the
case where V is unbiased for V given the
measurements (using var(d—d), Eq. 53.7)
would have a significantly greater effect, if
applicable.
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Fig. 13. The effect of the bias correction in volume es-
timation when only D, ; has been measured. The
corrected estimate divided by the uncorrected esti-
mate, as a function of D;;. The bias correction
for d is made by var(d)—var((i), which produces
unbiased volume estimates for the given size, or by
var(d—d), which would produce volume estimates
unbiased for the fixed values of Dy, if d were a
conditionally unbiased estimate of d for given Dy ;.
The effect of the relative size is ignored. '

Error statistics were also computed for
relative errors defined by dividing V—Y by
¥/, V or E(V) (Table 5). Consistent with the
two modelling approaches, the stem form
mode] is better with respect to relative error
(V=Y)/E(V) (or (V—V)/V), and Laasasena-

0’s model is better with respect to error
(V—X)/V. As will be discussed later, Dy3is
a better measurement for estimating the vo-
lume of small trees than bigger ones. Thus
the relative errors for small trees are smaller
than those for big trees: the root mean
square error (RMSE) of relative errors is
smaller than the RMSEN of arithmetic er-
rors.

In the second case we assume that in ad-
dition to Dy 3, the height, H, is also mea-
sured for each tree. Ditferent relative errors
are now very close to each other:

error mean sb Sw RMSE
% % % %

(V=VYE(V) 0.1 39 6.3 7.4
V=YV 0.0 3.8 6.2 7.3
V=) 0.5 3.8 6.2 7.3
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Fig. 14. s, s, and RMSE of (D—D)/D at different rela-

tive heig‘ﬁts for the stem form model (solid line) or
for Laasasenaho’s model (broken line) when D, 5
and H have been measured.

Table 5. Mean, between-stand standard error (sy),
within-stand standard error (s;,) and root mean
square error (RMSE) of relative errors when the
volume is estimated with measured D, ; using either
the stem form model (sfm) or Laasasenaho’s model.
Relative error is defined by dividing V—V by the ex-
pected volume for the given size, E(V), by the true
volume, V, or by the estimated volume, V.

error model mean sb Sw RMSE
% % % %

(V—V)E(V) sfm 05 158 11.8 198

Laas. —5.9 162 137 220

(V=V)v sfm 07 150 11.4 188

Laas. —58 156 13.4 21.4

V—)1¥ sfm 41 146 112 189

Laas. —2.1 13.3 12.0 18.0




Table 6. Error statistics, when D, 3 and H are measured. Diameters at relative heights and volumes are predicted by
the overall model (upper figures) and by Laasasenaho’s model (lower figures). Mean, standard deviation (sd) and
root mean square error (RMSE) are first given when errors are expressed in arithmetic units; RMSE is also given
as a percentage of the overall mean. For relative errors ((y—$)/§, in percentages) are given the mean, sy, s, and

RMSE.
arithmetic errors relative errors
y—¥ _ =9

H mean sd RMSE RMSEX mean sb Sw RMSE

% cm cm cm o % % %
1.0 0.11 1.95 1.96 7.2 0.4 3.6 6.7 7.6
0.04 2.00 2.00 7.4 —.0.5 39 6.8 7.8
2.5 0.04 1.27 1.27 5.3 0.2 3.2 5.2 6.1
—0.06 1.31 1.32 5.4 —0.6 3.1 5.4 6.2
5.0 0.12 0.71 0.72 33 0.6 2.4 3.9 4.7
0.08 0.73 0.74 3.4 0.1 23 4.1 4.7
7.5 0.02 0.49 0.49 2.4 0.2 2.1 3.1 3.8
0.02 0.50 0.50 2.4 0.0 1.9 3.2 3.7
10.0 0.01 0.46 0.46 23 0.1 1.8 2.7 3.2
—0.05 0.48 0.48 2.4 —0.2 1.6 2.8 3.2
15.0 0.04 0.59 0.59 3.1 0.2 1.5 29 33
—0.03 0.62 0.62 3.3 —0.1 1.3 3.1 3.4
20.0 0.02 0.72 0.72 4.0 0.1 1.6 3.3 3.7
—0.01 0.73 0.73 4.0 0.0 1.3 3.5 3.8
30.0 0.06 0.85 0.85 5.0 0.3 2.1 3.9 4.5
—0.03 0.84 0.84 5.0 —0.1 1.8 4.0 4.4
40.0 0.07 0.95 0.95 6.1 0.3 2.7 4.7 5.4
—0.03 0.92 0.92 5.9 —0.2 2.2 4.6 5.1
50.0 0.06 1.03 1.03 7.3 0.4 3.6 5.6 6.7
—0.02 1.01 1.01 7.2 —0.1 33 5.4 6.4
60.0 0.04 1.17 1.17 9.6 0.3 5.0 7.3 8.8
—0.02 1.14 1.14 9.3 —0.2 4.8 7.1 8.6
70.0 0.00 1.28 1.28 12.9 0.2 7.0 9.4 11.8
—0.03 1.22 1.22 12.3 —0.2 6.9 9.2 11.5
80.0 0.05 1.23 1.23 17.3 1.1 9.7 12.1 15.5
0.00 1.14 1.14 16.1 0.2 9.4 12.1 15.3
90.0 0.06 0.93 0.93 249 2.0 12.4 16.9 21.1
—0.01 0.85 0.85 22.7 1.9 12.3 18.3 22.1
Vol. dm?3 dm?3 dm3 % % % % %
0.67 32.50 32.51 10.4 0.5 3.8 6.2 7.3
—0.68 33.89 33.90 10.9 0.0 3.7 6.2 7.3

The prediction errors are so small that
the bias correction for the arithmetic scale is
negligible, as shown in the following set-up

for error (V—V)/E(V):

bias correction mean RMSE
% %

no —0.2 7.4

var(d)—var(d) 0.1 7.4

var(d—d) —0.2 7.5

Error statistics are shown in Table 6 and
in Fig. 14 for the stem form model and for
Laasasenaho’s models using error (y—¥)/3.
The results are practically unbiased for both
models, i.e., the mean of the errors does not
contribute to the RMSE. Both models are
about equally good in prediction of the stem

curve as well as in volume estimation.

In the third application we further assume
that the diameter at 6 m, Dy, is also mea-
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Fig. 15. s, s, and RMSE of (D—D)/D at different rela-
tive heig‘ﬁts for the stem form model (solid line) or
for Laasasenaho’s model (broken line) when Dy 5, H
and Dy have been measured. Only trees taller than 7
m are included.

sured. The stem form model and Laasasen-
aho’s models are also in this case about
equal. Fig. 15 shows sp, s, and RMSE of
(D—ﬁ)/é. In volume estimation, the error
statistics for (V—Y)/Y were as follows:

model mean b Sw RMSE
% % % %

sfm —0.4 1.6 3.2 3.6

Laas. 0.0 1.5 3.2 35

The stem form model does not predict
well the upper parts of the stem curves of
very exceptional trees. This seems to be an
inherent property of the polar coordinate
system: the angle between two points on the
stem curve is not always as good a measure
of the distance as the usua% height differ-
ence. For instance, for a thick tree the dis-
tance between the Dg-point and the top of
the tree can be very long when measured in
angles (and small as a height difference);
therefore the model does not force the di-
ameter down to zero rapidly enough when
moving from the D¢-point upwards.

In conclusion, when Dy 3, H and possibly
Dy are measured, the stem form model gives
about as good results as the special-purpose
equations of Laasasenaho (1982). However,
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Table 7. Mean, between-stand standard deviation (s),
within-stand standard deviation (s,), and root mean
square error (RMSE) of relative errors of volume
estimates, (V—V)/E(V), for different measurement
combinations. If Dy is included, only trees taller than
7 m have been accepted.

measured mean sh sw RMSE
D,, 05 158 118 198
D, H 01 39 63 74
D, 5, H, H, 01 39 63 74
D, H, D, —05 16 33 37
D, H, Dg, H, —05 14 32 36

the stem form model is computationally
more difficult to apply. The volume equa-
tions of Laasasenaho are not compatible (see
Demaerschalk 1972) with his stem form
functions, but as indicated by Table 10 on p.
53 in Laasasenaho (1982), his stem curve
models give almost as good volume esti-
mates as his volume equations do.

The usefulness of the crown height mea-
surements (H¢) is studied by estimating
stem volumes with measurement combina-
tions (D1.3, H, Hcg and (D1_3, H, D6= Hc)-
Relative errors of the volume estimates
§(V—V)/E(V)) are summarized in Table 7
or all measurement combinations used. The
crown height improves volume estimates on-
ly slightly. However, as will be seen later,
the crown height may be a useful measure-
ment in calibration of the stem curve.

63. Differences between climatic regions

Basic comparisons with the equations of
Laasasenaho (1982) were based on the over-
all model; Laasasenaho also estimated the
parameters of his equations for the whole
country. In the following discussion, the re-
giona] differences will be studied using error
(V—V)/E(V).

Table 8 presents the regional means and
summary statistics of the relative errors for
different combinations of measurements
when the overall model or the regionalized
model is used for prediction. Let us first
discuss the case in which only Dy 3 is mea-
sured. The regional means of the relative er-
rors are rather large for the overall model,
but their influence in RMSE is modest. If
the regionalized version of the model is



Table 8. Regional means (€)), grand mean (e ), between-stand standard deviation (s
(sw) and RMSE of the relative volume errors (relative to E(V)) for the overal

model (reg.), and for different measurement combinations.

), within-stand standard deviation
f) model (0.a2.) and the regionalized

measured
D, D3 H Dy3 H, Dy
model
o.a. reg. o.a. reg. 0.a. reg.
n n

€ 112 —9.5 —1.7 4.0 —0.4 105 —1.3 —0.8
€, 234 —0.3 —0.3 3.4 —0.1 206 —1.0 —1.0
e 199 0.2 —1.1 2.5 —0.1 182 —0.6 —0.6
€, 429 2.8 1.1 0.0 0.2 354 —0.4 —0.3
€ 616 5.5 0.7 —1.1 0.0 559 —0.6 —0.6
€ 440 6.3 0.4 —2.5 —0.1 414 —0.2 —0.2
§7 22 —6.3 —3.9 —7.1 0.1 22 —0.4 —0.4
€ 274 —18.4 —1.1 1.5 —0.1 177 —0.2 —0.4
e 0.5 0.1 0.1 0.0 —0.5 —0.5
Sp 2326 15.8 12.7 3.9 3.4 2019 1.6 1.6
Sy 11.8 11.3 6.3 6.2 33 3.2
RMSE 19.8 17.0 7.4 7.1 3.7 3.6

used, the regional means (biases) are insignifi-
cant (compared with Sbf’ except for the
small and strange coastal region 7. As the
regional biases disappear, sp, the standard
deviation of the between-stand errors, is also
decreased. The regionalized model does not
have any significant effect on the standard
deviation of the within-stand errors, sy.

When the height of each tree is also mea-
sured, the same qualitative conclusions can
be made. Now the regionalized model re-
moves the bias of region 7. If, in addition to
H and Dy 3 also Dg 1s measured, the region-
alized model improves the results only
slightly. Since the regional biases are already
quite modest for the overall model, the re-
gionalized model cannot contribute much.

The regional parameters represent our
prior knowledge of the stem form in differ-
ent regions. If only one or two dimensions
of a tree are measured, this regionalized
prior knowledge sxgmflcantly improves the
prediction accuracy. Comparison of Figures
4 and 7 shows that the regional differences
are not solely in the thickness component,
which can already be estimated quite well
with two measurements. If three or more
dimensions are measured, the regionalized
prior knowledge contains little new informa-
tion.

The regionalized model was also tested in
the case where the crown height is mea-
sured. The influence of the crown height
was similar to the results for the overall
model presented in Table 7.

64. Effect of grouping trees into stands

The stem form model is based on an anal-
ysis of variation in stem form of stands and
of the trees within stands. The stand struc-
ture enters into the model through the ran-
dom stand effects and through the average
(relative) size. In this section we examine
how significant these stand effects are in
prediction. Assume first that the same mea-
surements are made for each tree; use of
mixed measurement combinations is re-
ferred to in the next section.

To reveal the effect of grouping trees into
stands, the stem curves and stem volumes
were predicted ignoring the stand structure,
i.e., the prediction was made for each tree
separately The results were then compared
with the earlier results obtained when stem
curves were predicted simultaneously for all
trees belonging to the same stand.

When D; 3 alone was measured, there
were differences between simultaneous and
separate prediction, as shown below for the
error (V—V)/E(V):

estimation mean sb Sw RMSE
% % % %

separately —0.2 151 14.7 21.1

simultaneously 05 15.8 11.8 19.8

All differences between the simultaneous
and separate prediction are due to the rela-
tive size, because with only one measured
dimension the estimates of the random
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stand effects are zero if the prediction is
made separately or simultaneously. The in-
crease in RMSE in the separate prediction is
due to the increase in the variance of within-
stand errors. This may be explained as fol-
lows. In a separate prediction the relative
size of each tree is estimated to be zero;
therefore the sum of relative sizes of all trees
in a stand is also zero. According to the
stem form model, the logarithmic diameter
at a given angle is a linear function of the
relative size. If a diameter is measured at the
same angle for each tree, then the errors
caused by taking all the relative sizes to be
zero cancel each other when added over the
stand. Angles corresponding to the diam-
eters at breast height are usually quite sim-
ilar for trees in the same stand.

When two or more dimensions are mea-
sured, then not only the relative size effect
but also the estimation of random stand ef-
fects is different, depending on whether
trees are grouped into stands or not. Esti-
mates of random stand effects are also ob-
tained when two dimensions of a single tree
are measured. With several trees these esti-
mates merely become more accurate. When
two or more dimensions were measured,
however, the grouping of trees into stands
did not improve the predictions. This calls
for an explanation both with respect to the
relative size and the random stand effects.

The relative size of a tree only provides
information about the thickness component
of the stem form, as discussed previously. If
two or more dimensions are measured from
different parts of the stem, however, the
thickness component of the tree can be de-
termined accurately. Thus the relative size
looses its significance in the prediction of
stem form.

The fact that the more accurate estimates
of stand effects are insignificant may be ex-
plained as follows. When the same, or closely
related, dimensions are measured for several
trees in a stand, we get more accurate in-
formation about the stand average of these
and correlated dimensions. In the next sec-
tion we will see that, if we have not mea-
sured these dimensions for a tree, such in-
formation helps to predict them. On the
contrary, if we have measured any dimension,
then knowledge about the stand average of
the same dimension does not give any new
information. In practice, the above con-
clusions are also valid for diameters at a giv-
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en height even if in the polar coordinate sys-
tem these diameters are not same dimen-
sions for different trees.

65. Standwise calibration of the stem
curve

One promising application of the stem
form model is the standwise calibration of
the stem curve. The stem curve is calibrated
by estimating the random stand effects. As
shown in the previous section, calibration
does not help if the same dimensions are
measured for each tree. In this section we
consider the case in which different mea-
surements are made for different trees. The
stem form model can be applied for any
mixture of measurements, but for simplicity
(and following the usual practice) trees in a
stand are grouped into two sets, calibrating
trees and tally trees, to which the calibrated
stem curve is applied. Different combi-
nations of measurements are used for cali-
brating trees; Dy 3 is assumed to be measured
for tally trees. In forestry, calibrating trees
are called ’sample trees’. Here only volume
estimation will be considered; the calibra-
tion of the height curve is illustrated in Fig.
16.

H, m s
4 4
2
q
30
o
20 4
10
0 T T T T T T T 1
0 10 20 30 40
Dq.g. cm

Fig. 16. Calibration of the height curve in a stand. The
predicted height as a function of the measured D, ;
when there are 0, 1, 2, 4 or 8 calibrating trees with
D, ;=20 cm and H=20 m; the effect of the relative
size is ignored.
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Fig. 17. Mean, between-stand standard deviation (s), within-stand standard deviation (s,,) and RMSE of
the volume estimation errors of tally trees as a function of the number of calibrating trees; calibra-
ting measurements are D, 3 and H; the overall model. Data of Laasasenaho (left) and data of Kilkki

and Varmola (right).

When computing the test results of this
section, calibrating trees were first chosen
randomly, and all other trees in the stand
were used as tally trees. Then the random
stand effects were estimated using the cali-
brating trees. The size parameters and vo-
lumes of tally trees were estimated using the
estimated stand effects. Relative errors in
volume estimation are analyzed with the vari-
ance components model (61.3). Estimates of
the error variance components differ if dif-
ferent calibrating trees are selected. Thus er-
ror variance components were estimated 30
times with different seed values in the ran-
dom number generator used to select the
calibrating trees. The final estimates of vari-
ances are then averages of the 30 preliminary
estimates.

The error variance components s¢ and s2,
can be estimated only if there are stands
with at least two trees. Hence, because there
are at most 5 trees per stand in the data, the
error variance components for the tally trees
can be estimated only if there are at most 3
calibrating trees. In order to have the same
data in each case, only stands with 4 or 5
trees were used all the time. Because the trees
have been sampled with a relascope, the
stands in the tests have a larger basal area
than do stands on the average. Thus the

subdata used deviates systematically from
the whole data. Calibration was also studied
using the data of Kilkki and Varmola. With
their data there can be 8 trees in the calibrat-
ing set, and 28 of the total 29 stands can still
be utilized.

In the first application we assume that
Dy 3 and H are measured for the calibrating
trees. Fig. 17 shows the mean, between-
stand standard deviation (sp), within-stand
standard deviation (sy,) and RMSE of the
relative errors (V—V)/E(V) with respect to
the number of calibrating trees in the data
set of Laasasenaho and of Kilkki and Var-
mola.

The initial bias in the data of Laasasenaho
shows that the subdata used deviate
from the whole data. In the whole data
the model is practically unbiased (see Table
5); note also that initially (without calibrat-
ing trees) sp, is smaller in the subdata than in
the whole data. In both data sets the bias
and s, decrease rapidly.

The within-stand standard error s is prac-
tically constant, as it should be. In the data
of Kilkki and Varmola both s, and sy, are
clearly higher than in the data of Laasasen-
aho. The calibration seems to work well also
for their data.
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Table 9. RMSE,, for different calibrating measurement combinations.

data of Laasasenaho

calibrating overall model regionalized model
measurements T
number of calibrating trees
0 1 2 1 2 3
D, H 138 73 58 53 11 67 54 52
D, H, H, 138 71 58 53 11 65 51 49
D, H, D, 138 72 59 53 11 68 55 52
Dy 3, H, Dg, H, 138 74 59 54 11 65 52 50
data of Kilkki and Varmola
overall model
number of calibrating trees
0 1 2 4 5 6 8
D,;H 19.6 13.1 9.9 8.8 7.8 7.8 6.7 6.3 6.3
D,;, H, H, 19.6 12.9 9.6 8.5 7.6 7.5 6.3 5.9 5.9
D,; H, D6 19.6 13.0 9.8 8.5 7.9 7.8 6.4 6.5 6.2
D, H.D,, H, 196 128 96 83 76 75 62 61 58

The results are similar for the other test-
ed combinations of calibrating measure-
ments. The between-stand RMSE (RMSEy)
combining the bias and between-stand
standard error is presented in Table 9. The
results for different combinations of cali-
brating measurements are very close to each
other. Theoretical analysis shows later that
the differences become clearer as the number
of calibrating trees increases. Combination
(D13, H, Hc) seems to be better than (Dq 3,
H, D), but later we will see that this prob-
ably holds true only for a small number of
calibrating trees.

For the calibrating measurement combi-
nation (Dj 3, H, Dg), the stem form model
can be compared with the calibration system
of Pekkonen (1983). Pekkonen uses a poly-
nomial regression predictor to estimate stem
volume as a function of Dy 3. The coeffi-
cients of the predictor are calibrated by
measuring D; 3, H and Dy for the calibrat-
ing trees. The volumes of the calibrating
trees are first estimated with Laasasenaho’s
model; the estimates are assumed to give the
volume correctly. Then the diameter-vo-
lume data of the calibrating trees are added
to the a priori data using a heuristic weight-
ing procedure. Pekkonen’s system and the
stem form model are compared using
RMSE,,. According to Pekkonen’s system,
only trees with D 3 between 4 and 44 cm
have been used in the comparison. Pekkonen
assumes that the height of the measurement
is determined from the uppermost root col-
lar. In the stem form model, the same di-

40

ameters were used; but the height is mea-
sured from the ground. RMSE}, decreases
much faster initially with the stem form
model than with Pekkonen’s system (Fig.
18). However, when the number of calibrat-
ing trees increases the difference between
these systems becomes smaller.

Further comparisons with Pekkonen’s
system are made using the data of Pekkonen
and Laasasenaho, in which each stand in-
cluded at least 51 pine stems. We can as-
sume that the total (stand) volume of tally
trees is not affected by the tree effects, if the
number of tally trees 1s moderate (e.g. = 20).
Thus the stand errors can be studied direct-
ly using stand totals, without a variance
components model. This way, large trees in-
fluence the results more than in the earlier
comparisons.

The model was estimated using trees
sampled with a relascope, i.e., the sampling
probabilities were proportlonal to the basal
area (or D7 3). If the calibrating trees are se-
lected similarly, their selection is in accor-
dance with the estimation of the model pa-
rameters. The methods are compared using
the mean, standard deviation and B.MSE of
relative stand errors (Vi. — Vi)V (Fig.
19). Errors (Vi — Vi )/Vi are slightly
smaller for both cahbratmn methods, the re-
sult being the same: Pekkonen’s method i is
better if the number of calibrating trees is
greater than 10. There are two possible ex-
planations for this.

First, the dependence of stem form on
size may vary slightly from stand to stand.
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Fig. 18. RMSE, ag a function of the number of calibrating trees both for error (V—V)/E(V) (solid line) and for
error (V—V)/V (broken line); the calibration is done according to the system of Pekkonen (Pekk.) or with the
y

stem
Varmola in Fig. 18b.

This is taken into account by Pekkonen’s
method but not by the stem form model.
Although the stem form model seems to re-
veal most of the variation in the stand stem
curves, it is not flexible enough to describe
each stand in detail.

Second, height (total height or the height
of a diameter) is measured from the upper-
most root collar in Pekkonen’s system and
from the ground in the stem form model. As
the volume is determined from the upper-
most root collar (except for small trees),
Pekkonen’s system has thus an advantage
over the stem form model. If, for the stem
form model, the height from the ground was
computed by adding the estimated height of
the root collar to the measured height from
the root collar, the standard deviation of
relative stand errors became smaller than in
Pekkonen’s method. However, owing to an
increase in the bias, the RMSE increased
slightly. The reason for this additional bias
is probably the irregularity of the uppermost
root collar in the data of Pekkonen and Laa-
sasenaho as compared with the data of Laa-
sasenaho. In any case, the stem form model
can be recommended when only a few cali-
brating measurements are made.

orm model (sfm, the overall model). Data of Laasasenaho are used in Fig. 18a and data of Kilkki and
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Fig. 19. RMSE of relative stand errors (V) —V} )/V} as
a function of the number of calibrating trees using
the stem form model (sfm) or the system of Pekko-
nen; the data of Pekkonen and Laasasenaho.
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Calibrating measurement combinations RMSE,, %
(Dl 3 H) and (D1 3 H, D6) were also com- 104
pared using relative stand errors in the data ]
of Pekkonen and Laasasenaho (Fig. 20). The
?per diameter D¢ was worth of measuring

if the number of calibrating trees was greater 1
than three. ]
s -
| Dy.s» H. Dg
Fig. 20. RMSE of relative stand erros (V, k—Vk )/Vk as 4
a function of the number of calibrating trees for ca-
librating measurements (D, 3, H) and (D, 3, H, Dy); O o e e I e e e s o o o
the data of Pekkonen and Laasasenaho. o s 10 1S 20
n
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7. FURTHER APPLICATIONS

71. Size as a random parameter

In this chapter we study applications
based on the knowledge of different distri-
butions. In the first two sections, the distri-
butions of the size parameter and measure-
ment errors will be é)iscussed. The last three
sections deal with the estimation of the er-
ror variances and their application in timber
assortment problems and optimization of
measurements.

In principle, there are two main ways in
formulating and utilizing the prior knowl-
edge to make the predictions of the stem
form model more accurate. The first me-
thod is exemplified in the regionalized mod-
el: we can divide the domain of interest into
subdomains defined by easily measurable
characteristics, and then estimate different
parameters for different subdomains. The
division into subdomains can even be con-
tinuous: the parameters can be defined as
functions of some continuous external vari-
ables.

The second way to formulate a priori
knowledge is in the form of prior distribu-
tions for some parameters, i.e., we can as-
sume certain parameters to be random. The
stand effect, v(u), has been a random pa-
rameter from the beginning. In addition, the
size of a stem may be assumed to be a ran-
dom parameter. The proper distribution of
size depends on the application at hand.
Thus the size distribution as exemplified in
the present data may not be useful in specif-
ic applications.

In order to apply the standard theory of
linear prediction, the mean and variance of
the random parameters must be known or
assumed. In the data used in this study, the
mean size is 2.59 (corresponding to a volume
of 157 dm3) and the standard deviation 0.48.
The frequency histogram is presented in Fig.
21 with the corresponding normal density
function. The size distribution is not exact-
ly normal: the best linear unbiased predictor
of size is not the best (minimum variance)
unbiased predictor. Note that, in the case of
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Fig. 21. Frequency histogram of size s in the data of
Laasasenaho, and the corresponding normal density
function.

random size, there are no fixed parameters
in the model, hence a predictor is (uncondi-
tionally) unbiased if its expectation is equal
to the population mean.

The effect of defining the size as a ran-
dom parameter was tested for measurement
combinations (H), (D1 3), (H, Dy 3), and (H,

1.3» Dg), using the mean and variance as
observed. The sizes of different trees were
assumed to be uncorrelated. In practice, and
also in the data used, sizes of trees in the
same stand are correlated, although this
correlation was not taken into account. The
bias correction for the volume estimates in
the arithmetic scale was computed according
to (53.7), i.e., using var(d—d).

Let us first consider the case in which
Dy 3 is the only measured dimension. If size
is treated as a random parameter, then its
estimates (and volume) are shifted towards
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the assumed mean. In Fig. V1/3 is present-
ed as a function of Dy 3 where V is estimated
by means of Laasasenaho’s model or using
the stem form model for single trees (ignor-
ing the relative size) with fixed or random
size. When the estimation is done simul-
taneously for all trees in a stand, i.e., the ef-
fect of the relative size is taken into ac-
count, the volume estimates of trees with
large D; 3 would be closer to the estimates
of Laasasenaho than those presented in Fig.
22.

As explained earlier, the stem form model
gives volume estimates that are biased up-
wards for trees with large D; 3, when s is
treated as a fixed parameter. With random s,
the volume estimates change only slightly
and remain biased for trees with large Dy 3.
The reason is that the distributions of stand
effects, tree effects, and size are all skew.
The skewness affects the results in the same
direction in each case: there are more thick
stands and trees than thin ones (Fig. 8), and
there are less big trees than small ones (Fig.
21). Hence, if Dy 3 is measured alone (or to-
gether with H and Dg), no difference ap-
pears in the RMSE of volume estimates.

When height is the only dimension mea-
sured, then in principle the situation is the
same as with measured Dy 3. The variances
of the random effects of height are, how-
ever, larger (Table 2), and so the prior dis-
tribution of size has more weight in the es-
timation. Thus the RMSE of the arithmetic
errors decreased with random size from 211
dm3 to 171 dm?, and RMSE of (V—V)/V
changed from 81 % to 65 %. Consistently,
RMSE of (V—Y)/E(V) increased from 51 %
to 62 %. These error figures are much larger
than those observed when Dy 3 is measured
alone. Thus the height is not usually mea-
sured alone, and this case has only theoreti-
cal interest.

The randomness of the size parameter
was then studied further using a more heu-
ristic approach. As noted, the proper size
distribution is different for different applica-
tions. We can, however, have general infor-
mation about how big Scots pines can grow
in Finland. The relative frequencies o% big
trees are much greater in the data than in
the forests generally. Thus the deep right
tail of the size distribution (Fig. 21) shows
that trees with s greater than 3.5 are excep-
tionally rare in Finland.

If the overall mean and variance of any
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Fig. 22. V13 as a function of D, ;. V is computed with
Laasasenaho’s model (L), or using the stem form
model with fixed size parameter (F), or with ran-
dom size parameter (R, mean of s is 2.59 and stan-
dard deviation 0.48). In the stem form model the
effect of the relative size is ignored. The maximum
of D 3is 50.9 cm in the data of Laasasenaho.

general tree set are used to determine the
prior mean and variance of the random size,
then the standard linear models do not
shrink the size estimates for big trees
enough towards the mean. Moreover, the
size estimates for the small trees are in-
creased without any theoretical justification.

The one-sided prior information about
the size distribution was incorporated into
the model using the following heuristic me-
thod. First the preliminary estimate of size
(s) was computed as usual. If s was smaller
than a given value ug, then the size was
treated as a fixed parameter. If § was greater
than ug, then s was treated as a random pa-
rameter with mean ug and standard devia-
tion o,. With this method, V, estimated us-
ing Dj3, can be made unbiased for large
values of Dy 3. For instance, with u, = 3 and
o, = 0.2, the mean of arithmetic errors for
trees with D;3>35 cm (N=133) was re-
duced from -84 m3 to —9 dm3 and RMSE
from 184 dm3 to 174 dm3. The resulting
predictor approaches Laasasenaho’s model
(see Fig. 22). Owing to the small number of
big trees, the error statistics for the whole
set of data did not improve noticeably.



In conclusion, some gain may be attained
by defining the size as a random parameter,
even if specification of the proper distribu-
tion is problematic. If the model is used to
estimate volumes of big trees, and only one
measured dimension is used, the heuristic
approach presented may prevent the results
from being biased with respect to the mea-
sured dimension.

If the size of a tree is partitioned into a
random stand effect and a random tree ef-
fect, then the results will probably improve
slightly. In this case, however, we should be
able to specify two size distributions instead
of one. The randomness of size may require
a more sophisticated (Bayesian) anal};sis than
was attainable in this study.

72. Simulations with measurement errors

The effect of the measurement errors can
be studied by generating artificial random
errors for the measurements. Section 54 des-
cribed how the existence of the measure-
ment errors can be taken into account in the
estimation by adding the measurement error
variances to the within-stand variances and
how variances of the measurement errors
should be transformed for the polar coordi-
nate system.

As noted previously, errors in the diame-
ter measurements have two different com-
ponents: error due to the noncircular form
of the stem and the pure measurement error.
Errors due to the uncertain determination
of the ground level are classified here as pure
measurement errors. The first component
can, in principle, be described by general
models. In contrast, pure measurement er-
rors are dependent on measuring devices,
measuring conditions, and on human fac-
tors. Thus pure measurement errors are al-
ways dependent on the particular situation.
Note that the height measurements contain
only pure measurement errors.

For this study, the variances of the mea-
surement errors were taken from the study
of Hypponen and Roiko-Jokela (1978). To
sxmphgl the treatment, observed biases were
combined with the error variances, i.e., the
observed mean square error was used to esti-
mate the error variance, and the measure-
ments are assumed to be unbiased. In the
data of Hypponen and Roiko-]Jokela the
sample standard deviations (including the

biases) are in arithmetic units and in propor-
tion to the mean values:

measurement sd sd/x

Dys 0.3 cm 1.4 %

D¢ 0.8 cm 5.3 %

H 0.9m 6.3 %
Hypponen  and Roiko-Jokela (1978)

found no clear connection between the error
variance of height measurements and the
height. They did not consider the depend-
ence between the error variance of the di-
ameter measurement and the true diameter.
In the simulations both arithmetic errors
(fixed error variance) and relative measure-
ment errors (variance proportional to the
square of the measured dimension) were
used. Arithmetic errors were generated ac-
cording to the normal distribution and rela-
tive errors according to the lognormal dis-
tribution. As the relative errors are used to
evaluate the volume estimates, arithmetic
measurement errors have greater effect in
small trees than in large ones. The effect of
the measurement errors was computed both
by taking the measurement error variances
properly into account in the estimation
rocedure and by ignoring them. For the
First case, the measurement errors are said to
be ’corrected’. The error statistics are ob-
tained as averages of 30 runs with different
seed values for the random number genera-
tor. Error statistics are presented in Table
10 for measurement combinations (D 3),
(D1 3, H) and (D1 3, Dg, H).
only Dy 3 is measured and s is consi-
dered to be fixed, then the measurement er-
rors do not alter the way the stem curve is
predicted in logarithmic units. When pre-
dicted diameters are transformed from the
logarithmic scale to the arithmetic scale, the
increase in predictor variance changes the
predicted stem curves slightly. This change
has no practical effect: the volume estimates
cannot be improved by taking the measure-
ment errors into account. The estimates of
the error variances will, however, improve.
The within-stand errors of the volume esti-
mates increase due to the measurement er-
rors. If only one dimension (e.g. Dj3) is
measured for each tree, the between-stand
standard error of the volume estimates does
not change.
For other measurement combinations,
measurement errors also increase sy,. If the
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measurement errors are taken into account
in the estimation, then the effect of the
measurement errors on sy, can be decreased
to some extent. In general, measurement
errors increase s, slightly.

The effect of measurement errors in the
calibration of the stem curve was also stu-
died. For the calibration we are interested
in how errors in the calibrating measure-
ments affect between-stand variance of the
volume estimates for the tally trees. D3
and H were assumed to be measured for the
calibrating trees. Although measurement er-
rors make the calibration slower, it is still
quite effective (Fig. 23). If measurement er-
rors are taken into account in the estima-
tion, their impact can, to some extent, be
compensated. Bigger errors are easier to cor-
rect. Thus the correction procedure is more
efficient for arithmetic errors of measure-
ment, which are large (in relative units) for
small trees.

The effect of measurement errors on the
calibration was also studied using measure-
ment combination (Dq3, H, D¢). The re-
sults were nearly the same as those in Fig.
23.

RMSEy, %
1S
J a.
10
S no error
B ) l 1
s} q 2 3
n

Table 10. Volume estimation when measurements are
disturbed by simulated measurement errors. The
variance of the measurement errors is first propor-
tional to the square of the measured dimension, in
which case the relative measurement error is 1.4 %
for Dy 3, 5.3 % for Dy and 6.3 % for H. In the
second case (‘arithmetic measurement error’) the
variance of the measurement errors is constant, the
standard deviation being 0.3 cm for D; 3, 0.8 cm for
D, and 0.9 m for H. The measurement errors are
either taken into account ('corrected’) in the esti-
mation or ignored.

error type no error rel. rel.  arith.  arith.

corrected — no yes no yes

measured

D3 mean 05 04 04 03 0.3
Sp 15.8 159 159 159 159

Se 118 123 123 13.2 13.2
RMSE 19.8 201 201 206 206

D;3H  mean 0.1 —03 00 —0.2 —0.6
sh 39 37 42 44 45
Se 6.3 94 86 10.7 10.0
RMSE 7.4 101 95 11.6 11.0

D,;H,Dgmean —05 —1.0 —04 —1.0 —1.0
S 16 21 21 20 21
Se 32 77 67 75 69
RMSE 3.7 8.1 70 78 73
S —
1 b.
10 4
4
5 - no error
0 T T ]
o i 2 3

n

Fig. 23. Effect of errors in calibrating measurements. RMSE,, of errors (V—V)/E(V) as a function of the number of
calibrating trees when there are no errors in the calibrating measurements (lowest line), are corrected measure-
ment errors (middle line), or are uncorrected measurement errors (upper line). In Fig. 23a measurement errors
have fixed variance in the logarithmic scale and in Fig. 23b in the arithmetic scale.
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73. Estimation of error variances

In the stem form model we get estimates
of the error variances for diameters at knot
angles and for stem volume. Error variances
in the polar coordinates can be transformed
to error variances of diameters at a given
height using the correspondence derived in
section 54 for measurement errors. Esti-
mates of error variances are useful in several
applications, e.g., for estimating proportions
of different timber assortments or for op-
timizing measurement strategies. In this sec-
tion theoretical variances are compared
briefly with the empirical (sample) error vari-
ances.

Error variances of the predicted stem
curves in the polar coordinates are first
compared in the logarithmic scale when
either Dy 3 or Dy 3 and H are measured. Er-
ror variances vary from tree to tree, but for
each stand k and tree i the expected value of

dig(u)—dii(u) 2 is equal to var[dii(u)—
d(u;)]. Thus the average of the squared re-
siduals (sample mean square error) should be
approximately equal to the average of the
theoretically computed variances. This
equality should also hold for square roots,

0 T T T T T ' T T ]' T T I T T l T T I
0 1S 30 4S5 60 as 90

angle u, deg.

which can be interpreted as relative standard
errors. As can be seen from Fig. 24, theoret-
ical estimates of variance agree quite well
with the empirical results.

Error variance for diameter predicted at a
specified height can be estimated as follows.
First, the error variances for the knot angles
are expressed in terms of the height using
the predicted stem curve. The variance for
the given height is then interpolated with a
cubic spline. This interpolated variance is
divided by f2, where f is the (interpolated)
coefficient (54.9) that transforms an error in
the height-diameter coordinates to polar
coordinates as described in section 54. Fig.
25 shows the correspondence between the
theoretical and empirical RMSE for differ-
ent relative heights, when Dy 3 and H have
been measured. Theoretical and empirical
results agree quite well.

Variance components of volume estimates
were derived in section 53. Empirical esti-
mates of these variances are computed using
the descriptive model (61.3) for relative er-
rors (V—V)/E(V). Observed biases are again
combined with estimated between-stand var-
i1ances. As can be seen from Table 11, the
theoretical standard errors reflect well the

RMSE, %
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angle u, deg.

Fig. 24. Sample RMSE of predicted logarithmic diameter (solid line) compared with the theoretical counterpart
(broken line) for different angles; D, 5 is measured in Fig. 24a; D, 3 and H are measured in Fig. 24b. Data of

Laasasenaho, overall model.
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Fig. 25. Sample RMSE of relative errors (D—D)/D (so-
lid line) compared with the theoretical counterpart
(broken line) for different relative heights, when
D, ; and H have been measured. Data of Laasasena-
ho, overall model.
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Fig. 26. Empirically estimated between-stand RMSE
(RMSEy) of the volume estimates compared with
the theoretically derived between-stand standard er-
ror (op) as a function of the number of calibrating
trees. Data of Laasasenaho, overall model; only
stands having at least three trees have been used.
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Table 11. Theoretically derived between-stand, with-
in-stand and total standard deviations (oy, oy, and o)
compared with empirically estimated between-stand
RMSE (RMSEy), within-stand and total standard
deviations (s,, and s,) for different combinations of
measurements.

measured model RMSE, o sy Oy s a,
D;s overall 15.8 16.2 11.8 12.1 19.8 20.3
region. 12.7 12,6 11.3 11.7 17.0 17.2
D,5;, H overall 39 40 63 51 74 65
region. 34 37 62 50 7.1 6.2
D, 3, H, D¢ overall 1.7 28 33 38 37 4.7
region. 1.7 27 32 38 36 46

differences between measurement combina-
tions and between the overall and regional-
ized models.

Empirical and theoretical between-stand
standard errors of the volume estimates for
the tally trees are compared in Fig. 26 using
the data of Laasasenaho. Theoretical stand-
ard error describes well the rate of calibra-
tion. As noted in section 65, the subdata
used to test the calibration deviate from the
whole data. Hence the empirical between-
stand RMSE is on a lower level than the
theoretical between-stand standard error.

74. Timber assortment problems

In timber assortment problems the inter-
esting quantities (e.g., the saw-log volume)
are discontinuous functions of the stem di-
mensions. The estimates of assortment vo-
lumes can be heavily biased, if we just use
the predicted stem curves to estimate vo-
lumes without taking the prediction errors
into account. Timber assortment problems
are worth a separate study; in this section
the applicability of the stem form model is
only demonstrated.

A key question in timber assortment
problems is whether the stem dimensions
meet certain minimum requirements. From
a statistical point of view, we should be able
to compute joint and conditional probabili-
ties that diameters at given heights fall with-
in a specified range. Assuming that the ran-
dom effects are normally distributed, the
probabilities can be estimated using the vari-
ances and covariances of the prediction er-
rors.
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Fig. 27. Observed relative frequency of trees with
D¢>17 as a function of the computed probability.
Mean values within 5 %-intervals of the computed
probability.

In the first example, it is assumed that
D; 3 is known and we seek the probability
that Dg>17 cm. This probability was com-
puted for each tree as follows. The loga-
rithmic stem curve was first predicted ?
the knot angles, and the variances of the
prediction errors were computed. The near-
est knot points (in the arithmetic scale) to
the height of 6 m were next determined.
Then the percentage points of the predicted
diameters (defined in the logarithmic scale)
of these angles were changed stepwise until
the interpolated diameter (in the arithmetic
scale) at 6 m was 17 cm. For simplicity, line-
ar interpolation was used. The observed
relative frequency is shown in Fig. 27 as
function of the computed probability.
Owing to the effect OF the relative size,
the computed probability is not a func-
tion of Dy 3 only. The correspondence is
quite satisfactory; the slight underestima-
tion results, at least partly, from the linear
interpolation used.

If we are interested in two or more di-
mensions simultaneously, then joint (and
conditional) probabilities are required. In
the stem form model these could be ob-
tained using covariances of the prediction
errors. Because these covariances are not
used elsewhere in this study, they were not

4
. 100+ Va
o /
v] 4 Ve
[&
-

— /
[u] S /
>
.-j - ',
O
- B0+ Ve
o
L -
'8 /
- 2

Z 40 ~
g ) /
0 ad
(e}

20 /

/
Z
0 — 77—
(o] 20 40 60 80 100

computed probabtlity, %

Fig. 28. Observed relative frequency of trees with
H>15 and D,>17 as a function of the computed
probability. Mean values within 5 %-intervals of the
computed probability.

computed, even though theoretically their
derivation is similar to that for variances.
However, joint probabilities can be also
computed indirectly, as indicated in the fol-
lowing.

In the second example, D; 3 was again as-
sumed to be measured, and the joint proba-
bility for H>15 m and Dg>17 cm was es-
timated. First, the logarithmic stem curve
was predicted, and the variances of the pre-
diction errors were computed. Then the (lo-
garithmic) height was changed stepwise
along different percentage points. Each
height greater than 15 m was used as a mea-
surement together with the measured Dy 3,
and the stem curve was predicted. Then the
probability for Dg>>17 cm was computed as
in the first example. The joint probability of
this elementary case is the probability of the
corresponding height multiplied by the
probability that Dg>17 cm. The total prob-
ability is then the sum of the elementary
probabilities. The correspondence between
the computed probability and observed rela-
tive frequency was good (Fig. 28).
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75. Optimization of measurements

The stem form model can be applied to
problems of stem form when any measure-
ments of the stem are available. The stem
form model was tested previously in differ-
ent situations where standard measurements
are used. In this section the stem form mod-
el is used to analyze different measurement
strategies theoretically. The purpose of this
section is to demonstrate how the stem
form model can be easily applied to prelimi-
nary theoretical calculations.

Assume that we are measuring a diameter
of a tree in a given stand. What is the op-
timal relative height for the measurement?
According to the stem form model estima-
tion errors depend mainly on the measure-
ment angle. Using the average stem curve
the angles can be expressed in approximative
relative heights, which are better for de-
scriptive purposes.

The significance of the relative measure-
ment height of a single measured diameter
was studied as follows. First Dy 3=20 cm
was used as the only measurement for a tree.
Then the logarithmically unbiased stem
curve was predicted, and the points at the
knot angles were used as possible measure-
ments for the same tree. RMSE of the esti-
mated volume was then calculated from the
RMSE of the size parameter as described in
section 53. There seems to be an optimum
at approximately 40 % of the total height
(Fig. 29). The reason for this optimum
height can be seen from Fig. 7, which shows
the effects of the principal components. The
diameter at approximately 40 % of the
height is nearly independent of the most
important thickness component of the vari-
ation in stem form, thus it provndes the
most precise estimate of the stem size. Note
that Laasasenaho (1982) found the 50 %-
height to be slightly better. When the mea-
surement costs are taken into account, the
40 %-height may be too high in most practi-
cal measurement situations. When both the
measurement cost and the accuracy of the
volume estimates are considered, however, a
height greater than 1.3 m mlght be reason-
able as the principal measurement height (as
suggested, e.g., by Cajanus 1911).

Next we determine the optimal point for
measuring diameter if the height is mea-
sured. The calculations were made in the
same way as for a single measurement. The
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Fig. 29. RMSE of the volume estimate as a function of
the relative height of the measured diameter. The
relative height has been computed using an average
tree. The upper curve is for the overall model and
the lower curve for region 5 in the regionalized mo-

del.
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Fig. 30. RMSE of volume estimate as a function of the
relative height of the measured diameter measured
in addition to the height. The upper curve is for the
overall model and the lower curve for region 5 in
the regionalized model.
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Fig. 31. o}, as a function of the number of calibrating trees for different calibrating measurements (a) and the
difference between oy, of the overall model and o}, of the regionalized model (b).

‘measured’ height was taken from the ex-
pected stem curve for D;3=20 cm: H is
14.1 m for the overall model and 15.2 m for
region 5 in the regionalized model. Now the
optimal relative height for the diameter
measurement is approximately 10 % (Fig.
30). RMSE changes so slowly that any
height between 5 % and 40 % serves almost
as well. Laasasenaho (1982) found the 30 %-
height to be optimal. If the height of the
tree and one diameter are measured, then a
measurement height of 1.3 m is reasonable
in most practical measurement situations.
Calibration of the stem curve can also be
studied theoretically. We can generate as
many calibrating trees as we want and then
survey the estimated between-stand stand-
ard error of the volume estimate of a tally
tree. If the measurements are made at fixed
absolute heights, then the theoretical results
depend on the properties (mainly size) of
the trees used in the analysis. For simplicity,
the computations were made using D; 3=20
cm for all trees and, in addition, H=14 m,
Dg=15 cm and H.=6 m for the calibrating
trees. These measurements correspond
roughly to the average stem form. The mea-
surement combinations for the calibrating
trees were (D1.3’ H)’ (D1.3! H, Hc)’ (Dl.3a
H, Dg) and (Dy 3, H, D¢, H,). The theoreti-
cal standard deviation of the between-stand

error, oy, is presented in Fig. 31a as a func-
tion of the number of calibrating trees; the
difference between the overall and regional-
ized models is shown in Fig. 31b.

As expected, oy, is greatest for combi-
nation (Dj 3, H) and smallest for combina-
ton (Dy3, H, D¢, Ho). With a small
number of calibrating trees (n<2 in the
overall model and n=<5 in the regionalized
model) o}, of combination (D3, H, H) is
smaller than o}, of combination (D3, H,
Dg). Because the within-stand variation of
H_ is small compared to the between-stand
variation ﬁsee Table 2), measurements of H,
will rapidly provide information about the
stand-effects of the taper form. Dg contains
more information about the stand stem
form than H_ does, but because of the rela-
tively large within-stand variation, we need
more measurements to obtain this informa-
tion.

The difference between the overall and
the regionalized model is significant for cali-
brating measurement combinations (Dj 3,
H) and (Dq 3, H, H,) even if the number of
calibrating trees is large. This agrees with
the results of section 63. Only the measure-
ment combination (Dq 3, H, D¢, H.) seems
to reveal practically all the regional differ-
ences.
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If the calibrating measurement combina-
tions are to be selected optimally, the mea-
surement costs must also be taken into ac-
count. Let us use the same relative mea-
surement costs as Kilkki (1983), i.e., the rela-
tive costs are:

combination cost
D,, H 1.0
D, H, H, 1 1
D; 3, H, D¢ 1.28
D, , H. D, H, 1.38

In Fig. 32 g}, is presented as a function of
the measurement cost. For small mea-
surement costs the combination (Dj3, H,
H.) is optimal, and for higher costs the
combination (D3, H, D¢, H) is optimal.
Thus the combination (Dq 3, H, Dg), which
is commonly used in Finland, is not optimal
for any cost level. These results agree with
those of Kilkki (1983), which were derived
using a different approach. If fixed overhead
costs are taken into account, it is not as ad-
vantageous to measure additional dimen-
sions (e.g., D) as indicated in Fig. 32.

If, in the optimization of the measure-
ment height or the calibrating measurement
combination, trees are assumed to have dif-
ferent dimensions than above, the estimated
error variances will also change. The above
conclusions seemed, however, to be qualita-
tively valid for different stem types tested.
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Note that the results attained in the polar
coordinate system can be interpreted only
approximately in the height-diameter coor-
dinates. Definite recommendations can be
made only after empirical tests designed for
specific practical applications.



8. DISCUSSION

81. Generalization of the results

The model parameters were estimated us-
ing the comprehensive data of Laasasenaho
(1982). Because those data were collected
with a different modelling approach in mind,
generalization of the results to the target
population presents certain problems.

First, the measured trees were selected
using a relascope, 1.e., the sampling probabili-
ties were proportional to the basal area of
the trees. In the analysis, tree size is treated
as a fixed variable and the random effects are
assumed to be independent of the size of the
tree. This would be the case, if the probabil-
ity of sampling were a function of size or
were independent of any tree characteristics.
But as the sampling probabilities are pro-
portional to the basal arrea, it appears that,
e.g., the thicker one of two nearby trees of
equal size has had a greater sampling proba-
bility than the thinner one. Thus, according
to the estimated model, the expected stem
forms are too thick. Because basal area and
size are highly correlated, however,
the bias is probably quite small. Only
thicker trees in a given stand have
had too great a probability of selection;
thicker stands have not had greater
selection probabilities than the thinner
stands. Thus only the within-stand random
effects intervene in the selection of sample
trees. Recall that ’thickness’ means relative
thickness after adjusting for size. When the
model is applied for trees selected by rela-
scope, the results should again be unbiased.

Secondly, our interpretation of ’stand’ is
not in accordance with the common view.
Each sample plot in the data was assumed to
represent a stand. A stand is generally un-
derstood to mean a larger area in which the
average correlations between trees are not as
large as in the ’stands’ of this study. With
larger stands the variances of the within-
stand effects would be greater than estimat-
ed in this study; the correlations would
change much less. In applications where the
correlation structures are more important

than the variances of between-stand and
within-stand effects, this deficiency is not
very serious. Test results with the independ-
ent test data of Kilkki and Varmola and of
Pekkonen and Laasasenaho support this
view.

The small number of trees per stand in
the data also causes another problem in the
estimation of the model parameters. The av-
erage size of the trees in the stand, 3, is
needed in the model to determine the ex-
pected value of the random stand effects.
The relative size of a tree, s;—s, also ex-
plains how the competitive status of a tree
affects the stem form. In the model 5 is
treated as a fixed variable. Because of the
small number of trees per stand, however, 3
measures quite roughly the true average size
in the measured stands. On the other hand,
it may also be reasonable to determine the
competitive status of a tree using only the
nearby trees.

In applications § is computed as the mean
of the preliminary size estimates. The esti-
mated s is in accordance with 5 used in the
analysis, if it is computed as a weighted
average of the sizes, the weights being pro-
portional to the basal area. I? the trees have
been selected with a relascope, the average
can again be estimated by the ordinary
arithmetic mean.

82. Development of the model

There are several possible ways to extend
and refine the model. During the course of
the study many slight modifications were
already tested. For instance, the following
alternatives did not work better than the
methods described in this study:

(1) Parameters were interpolated by natural splines or
by quasi-Hermite piecewise polynomials.

(11) Average size s was estimated in the applications as a
separate parameter.
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(i11) Preliminary estimates of size were used to estimate
only s and not s;—s.

Preliminary calculations with the data of
Kilkki and Varmola and the comparisons
with Pekkonen’s calibration system in the
data of Pekkonen and Laasasenaho indicated
that the dependence of stem form on size
may vary slightly from stand to stand. Thus
it might be reasonable to include a term
by (u)sy; into the explanatory variables of the
logarithmic diameter d(u), where by would
be a random parameter that changes from
stand to stand. In the analysis this refine-
ment could be handled by standard me-
thods. In the applications, however, this
new term would be a product of two un-
known parameters, which could not be esti-
mated simultaneously by standard methods.
An iterative estimation procedure might still
work. In the first round the term by(u)sy;
could be neglected or sy; could be replaced
by the preliminary estimate already used in
the estimation. In the second round sj;
could be replaced by the estimate obtained
in the first round. Owing to the identifica-
tion problems involved, any work along such
lines should be very careful.

According to the model presented, the
covariance matrix of the within-stand effects
is the same for all stands. This is not exactly
true, because stands are not equally homo-
genous. For instance, stem forms in a stand
are probably more alike after a selective
thinning than before. Estimation of a differ-
ent within-stand covariance matrix for each
stand would be possible only using a covari-
ance function with a few parameters. The
simplest possibility is to multiply a constant
covariance matrix by a variable scale factor.
In this case only the weighting of between-
stand and within-stand covariance matrices
would change from stand to stand. Separate
covariance matrices for some subdomains
(e.g., for climatic regions) could easily be
estimated using any sufficiently representa-
tive data.

The model was derived for fixed angles in
the polar coordinate system. In applications
the measurements can be at any angles, and
the needed parameters are interpolated by
cubic splines. One-dimensional splines are
used to interpolate fixed parameters, charac-
teristic vectors and covariances between
measurement angles and the knot angles;
two-dimensional splines are used to interpo-
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late covariances between measurement an-
gles. It may be possible to replace the splines
with ordinary functions, but mathematically
these functions are probably as unsophisti-
cated as the splines used.

The analysis of stem form variation was
based on variables measured from the trees
themselves. Crown height was the only exo-
genous variable used in the analysis (in addi-
tion to the ’measurement’ of climatic region
and stand index). All other variables, except
stem dimensions, are here called ’exogen-
ous’. In future development of the model it
should be possible to incorporate other exo-
genous stand variables or tree variables into
the model. There are several ways to do this.

Exogenous tree variables could be treated
in the same way as the crown height. For in-
stance, crown depth (height — crown
height) might be a reasonable variable to in-
clude. In logarithms, the crown depth can-
not be expressed as a linear combination of
height and crown height, thus it can bring
to a linear model information not present in
height and crown height alone. Variables
added in this way do not change the pre-
vious part of the model.

Any explanatory stand variables or tree
variables could also be added to the
equations describing logarithmic diameters
at different angles. For instance, adding
the basal area of the stand would clearly
improve the model. But then the esti-
mation of the model parameters should
be repeated. In different applications dif-
ferent sets of exogenous variables are
known, and there should then be different
models for different situations. This would,
however, contradict the goal of finding a
single unlfymg model applicable in many dif-
ferent situations. Perhaps the principal
components of the random stand and tree
effects can provide a flexible way of formu-
lating and utilizing the information about
new variables. For instance, it may be possi-
ble to formulate simple regression equations
for ¢y, the first principal component of the
stand effects. Then the estimation pro-
cedure can easily be modified accordingly.

We have seen that, using a single height
measurement, the stem curve can already be
calibrated quite accurately for a given stand.
Hence the usefulness of exogenous stand in-
formation is questionable, if we are taking
any measurements in the stand. The situ-
ation is different if the estimation is based



on general information available, i.e., with-
out field measurements.

Growth modelling may become an appeal-
ing area in which this approach can be ap-
plied. With the stem form model the change
in size can be separated from the change in
stem form. The simplest way to predict the
path of development of a stem curve is to
assume that the random stand and tree ef-
fects remain constant, and that only the size
is increasing. In that case the development
of a stem curve can be predicted by predict-
ing the growth in size. More complex statis-
tical analysis is needed if development of the
random stand and tree effects over time is
also described. In the growth modelling it
should be taken into account the fact that in
this study the model was developed for
cross-sectional data, i.e., for trees at a given
point in time. Because the natural deaths or
cuttings of trees are correlated with the
stem forms of trees, the average stem form
development of individual trees may not fol-
low the expected stem curves of this study.

The similarity of trees in the same stand
is formulated in this study using random
stand effects. This similarity can also be de-
scribed without stand effects by assuming
that within a stand the tree effects are corre-

lated. Growth modelling may be easier with
correlated tree effects than with random
stand effects. Stem forms could also be de-
scribed in an intuitively appealing way with
principal components, if each tree could be
described using a single set of principal
components.

The polar coordinate system was used
orlgmally by Sloboda (1977a) to provide
good projections of growth. He also studied
curvilinear coordinate systems in order to
express the change in stem form as size in-
creases. With the approach used in the pres-
ent study the dependence of stem form on
size can be expressed more simply.

Extension of the model to other tree s
cies would probably be quite stralght or-
ward. The approach presented may also be
applicable in studies of the shapes of
other organisms. For instance, in the stem
form model the independence of shape and
size, a topic widely discussed in the litera-
ture, is just a special case. When the dimen-
sions are linked to each other through the
size, an artificial variable, and through a
simple covariance structure, we need not
make a complicated nonlinear system for the
interdependence of different dimensions.
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9. SUMMARY

In this study a general model for variation
in the stem form of Scots pine is presented.
The model gives a compact description of
how stem form varies as a multidimensional
object. The dimensions are determined in
polar coordinates.

Most of the apparent variation in stem
dimensions can be attributed to differences in
size. The size is first defined as a weighted
mean of logarithmic dimensions. Thereafter
the logarithmic dimensions are described by
a simple linear model in which size is treated
as an ordinary fixed variable. The model
contains a fixed part, which describes how
the expected (average) stem form depends
on the size and relative size of the tree.

Using random stand and tree effects, the
random variation of the stem dimensions is
partitioned into variation between stands
and variation within stands. The variances
and covariances of the random effects and
the fixed parameters of the model were esti-
mated using standard techniques for mixed
linear models. The principal components of
the between-stand and within-stand covari-
ance matrices were used to give a more econ-
omical description of the main directions of
the random variation of the stem form.

In applications, the roles of parameters
and variables are changed. After some ap-
proximative derivations, the model can
again be presented in the standard form.
The sizes of the trees and the random stand
effects are the parameters to be estimated.
Random stand effects are estimated using the
first few principal components of the be-
tween-stand covariance matrix. The model
can be applied when any stem dimensions
are measured.
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With usual measurements the model is as
good as the regression equations of Laasasen-
aho (1982). The model can be used to cali-
brate the stem curve for a given stand; the
calibrated stem curve can then be applied for
tally trees, i.e. trees with one measured di-
mension. The stem curve is calibrated by
estimating the random stand effects. By
measuring the height and diameter at breast
height OF a single tree, the between-stand
variance of the volume estimates of tally
trees can already be reduced by 70 %. With
a small number of calibrating measurements,
the model gives better results than the cali-
bration system of Pekkonen (1982).

The model also estimates the error vari-
ances of the predicted stem curves and vo-
lumes. It is demonstrated how error vari-
ances can be applied in timber assortment
problems. Measurement errors can be cor-
rected to some extent by incorporating the
variances of the measurement errors into the
model.

The model can be used to study different
measurement strategies. If only one stem
dimension is measured, the optimal mea-
surement height seems to be above the
commonly used 1.3 m. Theoretical analysis
indicates that the calibrating measurements
currently used in Finland are not optimal.

The stem form model is based on the
standard theory of mixed linear models.
Apparently, the most compact prediction
formulas for a mixed linear multivariate
model are not available elsewhere, and are
therefore derived in this study.
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SELOSTE

Minnyn runkomuodon vaihtelun analysointi ja ennustaminen
lineaaristen sekamallien avulla

Analyysi

Tutkimuksessa esitetiin yleinen minnyn runkomuo-
don vaihtelun malli. Mallissa runkomuoto kuvataan
lipimittojen moniulotteisena vektorina. Lipimitat
ilmaistaan napakoordinaatistossa. Puun koko mairi-
telliin logaritmisten lipimittojen painotettuna kes-
kiarvona. Logaritmiset lipimitat kuvataan yksinker-
taisella lineaarisella mallilla, missi puun koko ja
naisten metsikkd- ja puutekijoiden avulla runko-
muodon satunnaisvaihtelu jaetaan metsikdiden vili-
seen ja metsikon sisiiseen vaihteluun. Kiinteit pa-
rametrit seki satunnaisvaikutusten varianssit ja ko-
varianssit estimoitiin kiyttden yleisid lineaaristen
sekamallien menetelmii seki Laasasenahon keriimii
aineistoa.

Minnyn keskimiiriinen runkomuoto on keskikokoi-
silla_puilla solakampi kuin pienilld tai isoilla puilla.
Puut ovat siti tukevampia miti suurempia ne ovat
verrattuna metsikdn muihin  puihin. Metsikoiden
vilisen ja metsikon sisiisen vaihtelun kovarianssi-
matriiseja  analysoitiin  pizkomponenttien  avulla.
Suurin osa seki metsikoiden ettd yksittdisten pui-
den runkomuotojen satunnaisvaihtelusta on puun
solakkuuden vaihtelua.

Noin puolet metsikdiden runkomuodon vaihtelusta
liittyy ilmastovyohykkeisiin. Mallin parametrit estimoi-
tiin seki koko aineiston avulla ettd kullekin ilmasto-
vyohykkeelle erikseen. Puut ovat keskimairiistd tuke-
vampia Lapissa, Lounais-Suomen rannikolla ja kitu- ja
joutomailla. Lapissa puun suhteellinen koko ei vaikuta
runkomuotoon samalla tavalla kuin muualla Suomessa.

Mallin soveltaminen

Mallia sovellettaessa puun koko tulkitaan satunnai-
seksi tai kiintedksi parametriksi, ja analyysivaiheen pa-
rametrit ovat muuttujia. Malli kalibroidaan metsikko-
kohtaisesti estimoimalla satunnaiset metsikkotekijat
paikomponenttien avulla. Mallia voidaan soveltaa olipa
metsikon puista mitattu miti tahansa dimensioita (F’-
pimitat, pituus, latvusraja). Splinien avulla analyysivai-
heen parametrit interpoloidaan kiytetyille mittauskor-

keuksille.
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Mittausten avulla ennustetaan logaritmiset lipimitat
analyysivaiheessa kiytetyille peruskulmille. Kun loga-
ritmiset lipimitat muunnetaan aritmeettiseen mittaus-
asteikkoon, kiytetiin lipimitan ja sen ennustimen vari-
ansseista riippuvaa korjauskerrointa harhattoman en-
nustimen saamiseksi. Timin korjauskertoimen merki-
tys on kuitenkin pieni, jos puun koko tulkitaan kiinte-
iksi parametriksi. Koko runkokiyri kuvataan splinilld,
joka miiritelldin peruskulmissa ennustettujen lipimit-
tojen avulla.

Ennustettu runkokiyri kulkee mitattujen pisteiden
kautta, jos mittausten tiedetiin olevan virheettomia.
Jos mittausvirheiden varianssi tunnetaan, mittausvirhei-
td voidaan mallin avulla korjata. Mallin avulla saadaan
myos estimaatit ennustettujen lipimittojen virhevari-
ansseille. Rungon tai sen osan tilavuus estimoidaan in-
tegroimalla ennustettua runkokiyrii. Tilavuutta esti-
moitaessa kiytetiin eri harhattomuuskorjausta kuin la-
pimittoja ennustettaessa. Tilavuusestimaatin metsikoi-
den vilinen ja metsikon sisiinen virhevarianssi voidaan
estimoida kiyttien kokoparametrin vastaavia virhevari-
ansseja.

Yleisilli mittauskombinaatioilla malli antaa yhtd hy-
vii tuloksia kuin normaalit regressiomallit. Lukupuiden
tilavuusestimaattien metsikkovirhe pienenee jo 70 pro-
sentilla, kun yhdestd koepuusta on mitattu pituus ja
rinnankorkeuslipimitta. Ennustettujen lapimittojen
virhevarianssien avulla voidaan estimoida harhattomasti
eri puutavaralajien mairii.

Mallin avulla voidaan tutkia teoreettisesti mittaus-
strategioita. Noin 40 %:n korkeudelta mitattu lipimitta
antaa tarkimman tilavuusestimaatin, jos puusta mita-
taan vain yksi dimensio. Runkokiyrin metsikkokoh-
taista kalibrointia varten kannattaisi koepuista mitata
vain pituus ja rinnankorkeuslipimitta, jos koepuumit-
tauksia tehdiin vihin. Jos koepuumittauksia tehdain
paljon kannattaisi pituuden, rinnankorkeuslipimitan ja
ylilipimitan lisiksi mitata my6s latvusraja. Mittausvir-
heiden merkitysti voidaan analysoida mallin avulla.

Tutkimuksessa sovelletaan yleisti lineaaristen seka-
mallien teoriaa. Yleinen lineaarinen ennustin ja sen vir-
hevarianssi johdetaan sekamalleissa helpommin soveltu-
vaan muotoon.

LAPPI, J. 1986. Mixed linear models for analyzing and predicting stem
form variation of Scots pine. Seloste: Minnyn runkomuodon analysointi ja

ennustaminen lineaaristen sekamallien avulla. Commun. Inst. For. Fenn.
134: 1—69.




APPENDIX

A. MIXED LINEAR MODELS

A.1. Model

Results for the mixed linear models that
are used in the study are presented here.
The main references are Searle (1971) and
Harville (1977). Prediction formulas derived
in section A.4 were not available elsewhere;
therefore, their detailed derivation is present-
ed.

Most linear statistical models are special
cases of the following general model:
y=Xa+Zb+te, (A.1.1)
where y is an NX1 vector of random vari-
ables; X and Z are matrices of regressors
with dimensions NXq and NXp, respective-
ly; a is a @X1 vector of fixed effects (para-
meters); b is a pX1 vector of unobservable
random effects (parameters); and e is an
NX1 vector of random errors. It is assumed
that E(b) = 0, E(e) = 0, and cov(b,e’) = 0.
Let D=var(b), R=var(e), and V=var(y)
= R + ZDZ'. To avoid unnecessary com-

lications, we assume that X and Z are of
ull column rank; later all models are also
defined in such a way that we can work with
inverses of matrices instead of generalized
inverses.

All usual regression and analysis of vari-
ance models are special cases of this model,
as well as multivariate, time-series and factor
analysis models. Usually D and R have a
special structure (e.g. diagonal) so that there
are fewer unknown parameters than ele-
ments in D and R.

In the statistical literature, determination
of b from the data is termed either ’estima-
tion’ or ’prediction’. Here also the random
parameter vector b is ’estimated’; the un-
known y’s are "predicted’. Note that usually,
but not in our case, the estimation of b and
the prediction of y’s coincide.

The diagonal elements of D and R are call-
ed variance components; the nondiagonal
elements are covariance components. There
are several methods of estimating D and R.

If D and R are known, the estimation of a
and b is straightforward. Let us consider
this case first.

A.2. Estimation of fixed and random
parameters

Theoretically, the estimation of the fixed
parameter vector a in (A.1.1) is simple. The
generalized least squares (GLS) estimator is
the best (minimum variance) linear unbiased
estimator. As var(y)=V, the GLS estimate
of ais:
5= (X'V-IX)—1X'V-ly (A.2.1)
As the matrix V is of order N, and V is not
generally diagonal, even if D and R are, the
direct inversion of V is, in most cases, im-
possible. However, the best linear estimates
of 4 and b can be obtained simultaneously

from:
X'R—1X X'R—1Z il [xr-1y
|:Z'R1X Z’R—1Z + D_l] [B} - I:Z,R_ly] . (A22)

—1 R—1
R-1X XR-'Z ] .

"= [Z'R—lx ZR-Z + D!

Then H—1 is also the covariance matrix
of the estimation errors, i.e., its submatrices

are var(3), cov(a,i) —b’) and var(t)—b) IfD
is singular, 4 and b can be solved from equa-
tions given by Harville (1977). Assuming
normality, b 1s the best unbiased and not
only the best linear estimator.

If both a and b are fixed, they should be
estimated using (A.2.2) after D—! is drop-
ped from the left side. D—! brings into the
model the prior information about the dis-
tribution of the b-effects.

Vectors 4 and b can be solved directly
from (A.2.2). Another possibility is to apply
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the following representation for V—1:
V-1 =R—! — R—IZ(Z'R—'Z+D—)—1Z'R-1. (A.2.4)

Thereafter 4 can be computed using
(A.2.1) and b can be computed as:
b = (ZR—1Z + D-1)—1Z’R—1(y—Xa4). (A.2.5)

Conversely, we can first compute b and
thereafter a:

b = (2'SZ + D—1)—1Z'Sy, where (A.2.6)

S =R — R—IX(X'R—!X)—!X'R—!, and then(A.2.7)

4= (X'R—IX)~IX'R—1(y—Zb). (A.2.8)

Assuming normality, the presented esti-
mates of a and b are also Bayes estimates. In
the Bayesian approach the parameter vector
a is also considered to be random but with
very large variance.

Variances of the elements of 4 can also be
partitioned by utilizing the fact that any
element 3; of A is linear combination of the
observed y’s, i.e., 4 = ¢’y for some vector c.
Hence

3 =cy=c'(Xa+Zb+e),and

var() = ¢’ZDZ’c + ¢'Re. (A.2.9)

If R is block diafgonal, the decomposition
can be developed turther. Let ¢ be partiti-
oned into subvectors ¢; corresponding to the

blocks R; of R. Then
var()) = ¢’ZDZ’c + 2,' ¢/Ric;. (A.2.10)

This decomposition is used later on,
when estimation errors are partitioned into
between-stand and within-stand errors. Simi-
larly, the variances of b or b—b can be de-
composed into components.

A.3. Estimation of variance and
covariance components

Estimation of the variance and covariance
components from unbalanced data has at-
tracted considerable attention in recent
years. Nowadays there are several different
methods available, e.g., the three methods of
Henderson, maximum likelihood (ML), re-
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stricted ML (REML), minimum variance
quadratic unbiased estimator (MIVQUE),
and minimum norm quadratic unbiased es-
timator (MINQUE). For ML and REML
the reader is refered to Harville (1977) or
Dempster et al. (1981), and for MIVQUE
and MINQUIE to Searle (1979).

In this study the variance and covariance
components were estimated using the fitting
constants method (Henderson’s method 3;
see Searle 1971). This technique can be used
in mixed models and was easy to implement
in the present case. During the course of the
study the maximum likelihood method was
also used; the EM-algorithm as presented in
Dempster et al. (1981) was generalized to
the multivariate situation. However, using
this more complicated method, no real gains
were obtained.

In order to describe the fitting constants
method, we start from the model
y=Xa+Zb+te, (A.3.1)
where a can now contain both fixed and
random parameters, b contains only random
effects, and e is the random error, uncorre-
lated with other random effects, and E(e) =
0 and var(e) = o2I.

First, we fit the following reduced model
by ordinary least squares:
y=Xa+te. (A3.2)

Let the resulting residual sum of squares
be SSE(a). The next step is to fit the full
model (A.3.1); let the resulting residual sum
of squares be SSE(a,b). An unbiased esti-
mate of o2 is

02 = SSE(a,b)/[N-rank(X )], where (A33)
X, =[XZ]. (A.3.4)

~ The expected value of SSE(a)—SSE(a,b)
is
E[SSE(a)—SSE(a,b)] =

(A.3.5)
tr{Z/[I—X(X'X)~'X"]Z E(bb")}

+ o[rank(X,)—rank(X)].
Let k be the number of unknown vari-

ances (02 and k—1 variances of random ef-
fects). Using (A.3.3) for the full model and



(A.3.5) for different partitioned models, we
can form and solve a linear system of k
equations and k unknowns. The resulting
estimates are quadratic forms in the obser-
vations. Generally the fitting constants
method is not uniquely determined: it is
possible to form more equations than there
are unknowns. In our special case the fitting
constants method is, however, uniquely de-
termined.

Because the stem form model is a multi-
variate model, the assumption var(e)=o02l
does not hold. As indicated by Searle and
Rounsaville (1974), the estimates of the co-
variance components can, however, be ob-
tained simply by the f1ttmg constants or by
any similar method. As noted, the fitting
constants method gives estimates of variance
components which are quadratic forms in
the observations. The corresponding esti-
mates of covariance components are bilinear
forms in the observations with the same co-
efficient matrix. It can be shown that the
following well-known identities are also true
for the covariance component estimates (and
not only for the covariances):

var(x+y) = var(x) + var(y) + 2cov(x,y), or
cov(x,y) = L [var(x+y) var(x)—var(y)]. (A.3.6)

Therefore, the fitting constants estimates
for covariance components can be obtained
by estimating the variance components for
all pairwise sums of variates.

A.4. Prediction of new observations

When applying the stem form model, we
predict those dimensions which have not
been measured. Here the prediction pro-
blem is discussed in general terms. The pre-
dictor formula of Goldberger (1962) is devel-
oped further for mixed linear models. More-
over, variances of the predictor and the pre-
diction error will be derived. Let us assume
tlEe following model for the observed values
ofy:

y=Xa+tu, (A4.1)
E(u) =0, (A.4.2)
var(y) = var(u) =V, (A4.3)

where y is an NX1 vector, X is a fixed NXq
matrix, a is a @X1 parameter vector, and u is

an NX1 vector of random errors. Note that
the general mixed model (A.1.1) is a special
case where u = Zb + e. Let 4 denote the
GLS estimate of a:

4= (X'V-1X)—1X'V-ly, (A.4.4)

The problem is to predict a single value
of regressand yq given the vector of regres-
sors xg. We can write

Yo = X2 + u, (A.4.5)
where uj is the random error for which E(ug)=0.
Denote that

¢ = cov(u,up) = [cov(uy,ug), ..., cov(uy,ug) | . (A.4.6)

Then according to Goldberger (1962), the
best linear unbiased predictor of yg, §g 1s

Yo = x4 + <'V—1(y—Xa). (A.4.7)

Assuming normality, if 4=a, then y—
Xa=u and the predictor §5 would be the
conditional expectation of yq given y.

For a mixed model y=Xa+Zb+e the
formula (A.4.7) can be developed further by
substituting the expression (A.2.4) for V™":

Yo = xg’d + ¢'V—1(y—X3)

= x¢'4 + ¢[R—I—R—1Z(Z'R-1Z+D—1)—1Z’R—1](y—
X4)

= xyA + ¢R—1(y—X4—Zb). (A.4.8)
Equation (A.2.5) was used above to get b

into the formula.
This formula can be developed further by

writing the random error ug in terms of the
random effects b:

up = zy'b + e, (A.4.9)
where cov(b,eg) = 0. Denote
w = cov(e,ep). (A.4.10)

Thus ¢ = cov(u,ug) = cov(Zb + e, zo'b +
ep) = ZDzg + w. Then c is substituted into
Eq. (A.4.8):
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$o = XA + (ZDzo + wyYR—1(y—X4—Zb)

=xy/4 + 2/ D(Z’R—ly—Z'R—1XA—Z'R—Zb) +

wR—1(y—Xa—Zb). (A.4.11)
From (A.2.2) we get:
Z’R-ly — ZR—1X4 — ZR-1Zb=D-1b. (A.4.12)
Thus (A.4.11) simplifies
$o = xy4 + zgb + wR—(y—Xa—Zb). (A.4.13)

Thus the prediction formula is exactly
the same as if b were fixed; the only differ-
ence 1s in the way b is computed

Let us then derive var(§) and var(§o—yo).
Generally var(§g) is not of interest but is ne-
cessary here when deriving an unbiased pre-
dictor in the arithmetic scale.

Define that

— —Xo
x, = zo:l, (A.4.14)
X, =[XZ],and (A.4.15)
.= A4
s _b . (A.4.16)

Recall that var(a,—a,) = H—1, where H is
given in (A.2.3). Consider the following par-
tition of H—1:

H-1— var(d) cov(a, b—b)| _ [G1 Gy,
cov(b b,a’) var(b—b) Gy G,
(A.4.17)

Let us first state some preliminary results.
According to Henderson (1975):

cov(a, )y =0, (A.4.18)
var(b) = D — G,,, and (A.4.19)
cov(b, b') = var(b) = D — G,,. (A.4.20)

From (A.4.19) and (A.4.20) it follows that
cov(b,b'—b") = 0. (A.4.21)
From (A.2.2) and (A.2.3) we see that

a_=H~!X 'R—!e + terms independent of e. Thus
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cov(d_,e’) = cov(d —a ') = H7'X ’, and (A.4.22)

cov(d_,eq) = cov(d —a ,2) = H-IX 'R—1w.  (A.4.23)

Now:
var(§o) = var{xy'a + zo’i) + W’R—‘(y—Xﬁ—Zi))]
= var {xy'4 + z5'b + wR—1[—X(4—a)—Z(b—b)+¢]}.

Using Eqgs. (A.4.17)—(A.4.22) and si F
but tedious matrix algebra, this simpli
to:

XG1i% + 20'(D—Gp)zo

var(§o) = (A.4.24)

— wR—IX H-IX 'R—Iw + wR—lw +
22y'Gy X'R—1w + 22)/G,Z'R—1w.

The derivation of var(§o—yg) is simpler.
Werite first:
Yo—Yo = x»’(ﬁﬁ—aﬁ) —eot w’R—l[—Xﬁ(ﬁ#—a )+ e]

=(x/—wR-1X )3, —a) — ey + wR—le.
From (A.4.22) and (A.4.23) it follows:

var(YO_YO) (X —wR-1X )H“l(x —X ’R—lw) +

var(eg) —w'R—1w. (A.4.25)

The first term of (A.4.25) represents the
error variance due to the parameter esti-
mation, and the difference var(eg)—w’R—1w
is the error variance when eg is regressed on
e. When comparing (A.4.25) with the vari-
ance formula of Goldberger (1962), we see
that the only effect of the randomness of b
is that X '"R—1X_ is replaced by H.

Computatlons can be simplified for spe-
cial matrix structures, if the variance formu-
las are expressed in terms of submatrices of
x,, X, and H—1. Equation (A.4.25) can be
writtei:

var(§o—yo) = Xg'Gy1Xo + 20'Gpzg +
2%g'Gyyzo + wR—IX H-IX 'R—1w
— 2xy'G; X'R—1w — 22y’G X'R—!w (A.4.26)

— 2xg'G,Z’R—'w — 22y/G,Z’R— 1w +

var(eg) — w'R—lw



In (A.4.24) and (A.4.26) we can write furth-
er:

wR—IX H-!X 'R—!w = w'R—1XG; X'R—w +
w'R—1ZG,Z'R—1w + 2w'R—1XG,Z’R—lw. (A.4.27)

The predictors are also linear combinati-
ons of the observed y’s. Thus the variance of

the prediction error can also be partitioned
into components in the same way as the vari-
ances of the parameter estimates. We do not
utilize this decomposition in this study, how-
ever, but use instead an empirical descriptive
model for the same purpose.

B. COMPUTATION OF MODEL
PARAMETERS

B.1. Covariance components

Let us first consider the estimation of vari-
ance components, 1.e., var[v(u)] and var[e(u)]
for different angles u using the overall mo-
del. From the two equivalent formulations
of the model we use the first one, namely
(41.3). The estimation is achieved by means
of the fitting constants method; consequent-
ly one needs to evaluate the terms of Eq.
(A.3.5).

Let K denote the number of stands, ny
the number of trees in stand k, and N the
total number of trees. Now the terms in
(A.3.5) are as follows:

1 s, SfJ 5y
x=|. . : 1, (B.L1)
1 Sk Skong 5, | Nxa
rank(X) = 4,
a’ = [ag(u), a;(u), ay(u), a3(u)], (B.1.2)
;
1
z=| . , (B.1.3)
1
1| NxK
rank(Z) = K, and
b’ = [v,(u),..., vi(u)] (B.1.4)

The first and last column of X are linear
combinations of the columns of Z. So
rank(X,) = rank(X) + rank(Z) —2 = K+2
and rank (X,)—rank(X) = K—2. Matrix bb’

is now
vivi(u) . vi(u)vg(w)
bb" = 3 :
vg(u)vg(u
As E[vi(u)vio(u)] = var[v(u)] if k1 = k2

vg(u)vy(u) ...
and zero otherwise, E(bb’) = var[v(u)]L

Thus

(B.1.5)

w{Z/[I—X(X’X)~1X']Z E(bb")} = Bie
tr{Z [I—X(X'X)~1X"]Z} var[v(u)] (B-1.6)

Denote by C the coefficient of var[v(u)].
From the standard regression theory we
know that y[I—X(X’X)—1X']y is the sum
of the squared residuals when y is regressed
on X. Thus the sum of the squared residuals
1s computed when each column of Z is re-
gressed on X. Then C is the total sum of
these squared residuals.

The within-stand variance var[e(u)] is es-
timated by

var{e(u)] = SSE(a,b)/[N-rank(X )], (B.1.7)

where SSE(a,b) is the sum of the squared re-
siduals for the full model. Because the full
model has a separate intercept for each
stand, SSE(a,b) can be computed easily by
regressing dj;(u)—d (u) on s—3, and
sg;—Sf - Recall that gSE(a) is computed by
regressmg d(u) on X. Thus var[v(u)] is esti-
mated by:
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var[v(u)] = {SSE(a)—SSE(a,b)
— vérfe(u)] [rank(X )—rank(X)]}/C. (B.1.8)

As described in Appendix A.3, cov[v(uy),
v(uz)] and covle(uy), e(uz)] can be estimated
through the variance components of d(uy),
d(uy) and d(uy) + d(uy).

en the variance components are esti-

mated for the regionalized model, the mat-
rix X is block diagonal where the blocks are
similar to X in the overall model. Hence
SSE(a,b), SSE(a) and C can be computed
for each region in the way described above.
Then these regional quantities are added to-
gether. Let L be the number of regions.
Then the matrix ranks for the regionalized
model are:

rank(X) = 4L,
rank(Z) = K, and
rank(X ) = K + 2L.

B.2. Parameters

Parameters of the model can be estimated
when estimates of variance-covariance com-
ponents are available. In fact, only the fixed
parameters are of interest, although esti-
mates of the random parameters will also be
obtained. Note that the parameters can be
estimated separately for each angle since the
model (41.3) (or 41.4) has a separate set of
parameters for each specific angle. Because
the random stand and tree effects of dif-
ferent angles are correlated, the parameters
can be estimated more efficiently by estima-
ting them simultaneously for all angles
(using ’seemingly unrelated regressions’). If
the stand effects were treated as fixed para-
meters, then the simultaneous estimation
would produce the same estimates as the se-
parate estimation (see Johnston 1972, pp.
238—240).

In both separate and simultaneous esti-
mation of parameters we are solving the sys-
tem (A.2.2). For computational reasons, the
parameters of the overall model and also the
parameters of the regionalized model for re-
gions with large number of stands in the da-
ta have been estimated separately for each
angle. Note that the fixed parameters of the
regionalized model can in any case be esti-
mated separately for each region. In the se-
parate estimation matrices X and Z and vec-
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tors a and b in equation (A.2.2) are as defi-
ned in B.1. Furthermore,

R = W(u)Iy;, and
D = Bu)ly,

(B.2.1)
(B.2.2)

where W(u)=var[e(u)], and B(u)=var[v(u)].

When the parameters are estimated sepa-
rately for each knot angle, only estimates of
the variance components are used. Thus the
definiteness of the estimated covariance
matrices causes no problem, and we can use
directly the variance component estimates
obtained by means of the fitting constants
method when solving the system (A.2.2).

For the regionalized model, the simulta-
neous estimation is computatlonally feasible
for regions with small number of stands and
trees. The quantities in the equation (A.2.2)
are as follows:

I sl st 51
x=[: : : (B.2.3)
Iosgad  sgo 0 sgl| 14NX56

where I is the identity matrix of order 14,
" = [ag(1),--

a(14),2,(1),...,a5(1),...,a3(1),...,a5(14)]

(B.2.4)
I
Z= . . (B.2.5)
!
i 14NX14K
b’ = [vi(1),..., vi(14), vy(1),..., v (14)], (B.2.6)
R = diag(W, ..., W) onrons (B.2.7)
D = diag(B, ..., B) sk 14 (B.2.8)

As described in section 43, the matrix B
in (B.2.8) is obtained from the fitting con-
stants estimate by adding a small constant
to the diagonal. Some attention should, how-
ever, also be paid to the rank of R. It was
claimed in section 44 that a 13X13 submat-
rix of W is, in theory, singular; thus W and
R are also in theory singular. Consequently,
the dimensionality of W should be de-
creased, e.g., by expressing one diameter as a



linear combination of the other diameters
before applying Eq. (A.2.2), where R (and
thus also W) is to be inverted. Because the
fitting constants estimate of W was slightly

(but clearly) positive definite, the estimation

was accomplished using the actual estimate
of W.

C. COMPUTATIONS IN THE
APPLICATIONS

C.1. Parameter estimates

In applications, according to (52.5) the
model is:

1%
y(u;) = a(u;)s; +k§1 Q(uyy)ei + e(u).

The model is in a form where the stan-
dard procedure of estimation for mixed line-
ar models can be applied. Let n and m; be
the number of trees in the stand and the
number of measurements for tree 1, respect-
ively. The terms of the general model
y=Xa+Zb+e are interpreted as follows:

Y1

y= |: , where (C.1.1)
Yn

Vi’ = )5y (U )]s (C.1.2)
4

X= . , where (C.1.3)

“a

3 [a(ull)" ’ a(ux m,)] (C14)

2’ =5 = (Spyees Sp)s (C.1.5)
—Zl

Z= where (C.1.6)
Zn
[q0) . qp(ui1)

z=|: : , (C.1.7)
_ql(ui,m,) qp(ui,m;)

b’ = ¢ = (cy, ...y ¢p), and (C.1.8)

e = [e(uyy), ..., e(up m )] (C.1.9)

In the estimation the covariance matrices
D = var(b) and R=var(e) are also needed. In
this case:

D = diag(t}, ..., tp)s (C.1.10)
where ty, k=1,...,p, is the kth characteristic
root of B, the covariance matrix of the stand
effects v(u). The matrix R is now of the
form:

R = diag(Ry, ..., (C.1.11)

R,), where

R; = var[e(uy), ..., e(u; )] (C.1.12)

Matrix R is thus block-diagonal having as
many blocks as there are measured trees, and
the dimension of each block is equal to the
number of measurements made for the re-
spective tree. The elements of R are compu-
ted from the within-stand covariance matrix
W using two-dimensional splines.

When the principal components of the
between stand effects were computed, the
crown height was excluded. Hence v(14)
cannot be expressed in terms of cy,
k=1,...,p, without error. If the crown height
is measured for some trees, then we must
add a new random effect c,1=v(14) to the
vector of random effects. In addition, the Z-
matrix must be modified accordingly. The
row of the Z-matrix corresponding to the
measurement j on tree 1, z(u;;)’, becomes:
()" = [qy(uy), s Gp(W;), 0] (C.1.13)
if the measurement is not the crown height,
and

Z(uij)’ =, ..,0, 1) (C114)

for the crown height. D-matrix becomes
4 cov[cy,v(14)]
D= ' t, covlc,,v(14)]| .

v
cov[v(14),c;]...cov[v(14),c;] var[v(Pl4)]
(C.1.15)
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Covariance cov(ck,v(14)) is obtained by
recalling that (see 52.1)

13
= gl qk(u)v(u), thus
13
cov[cy,v(14)] = Zl qi(u)B(u,14). (C.1.16)
u:

Computations can be simplified conside-
rably using the sparsity of X- and R-matri-
ces. First X’"R—1 is computed:

a;Ry!
X'R-1= ’ (C.1.17)
" a/Ri!

Matrix X’R—1X is diagonal, the ith di-
agonal element being
(X'R“‘X)ii = ai'Ri—lai. (C118)
X'R—1Z and X'R—1y can also be compu-
ted treewise:

[a/Ri-1Z; |

X'R-1Z = : ,and (C.1.19)
a/R;! an
[a/Rity,

X'R-ly = : (C.1.20)
Lan/R;l Yn_

The block diagonal form of R simplifies
naturally the computation of Z’R—1Z and
Z'R—1y. Because X’'R—1X (left upper cor-
ner of H in (A.2.3) is diagonal, matrix H
can easily be inverted using Cholesky de-
composition (see, e.g., Kennedy and Gentle
1980) also when the number of trees is large.

Let us now consider briefly the estima-
tion when sizes of trees, s;’s, are assumed to
be independent random parameters with
mean 3_ and variance var(s). The estimation
procedure for random parameters assumes
that the expectations are zero. Equation
(52.5) can be rewritten as follows:

y(u)—a(uy)s = (C.1.21)

a(u;)(si—s.) +k§1 qi(uye t e(uy).

Then y(u;)—a(uj)3 _ is the dependent vari-
able and (s;—s5 ) is the random size par-
ameter to be estimated. For fixed size,
X’R—1X was found to be diagonal with di-
agonal elements a;/R;~1a; (C.1.18). If the s;’s
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are now treated as independent random para-
meters, var(s)—! must be added to a;/Ri—a;.
Otherwise the estimation proceeds as for fix-
ed s.

The standard estimation theory can also
be applied when s is assumed to have a ran-
dom or fixed stand effect and a random with-
in-stand effect. In this case we should re-
evaluate the treatment of 5 in the estima-
tion process. '

C.2. Predicting the logarithmic stem cur-
ve

We have now estimated the size of tree i,
s;, and the first p principal components (cy,
k=1,...,p) of the random stand effects. The
problem is then to predict the stem curve of
tree 1 at knot angles u=1,...,13. The main
task is to predict the y-variable defined in
(51.4) at knot angles. The predictor of y for
tree 1 at the knot angles is computed using
prediction formula (A.4.13) derived in the
Appendix A.4:

Yo = xo'A + 2o'b + wR—1(y—Xa—Zb).
y, X, a, Z, b and R are given for this special

case in Appendix C.1. Other variables have
the following interpretations:

Yo = ¥i(u), (C.2.1)
xo' = [0,..., 0, a(u), 0, ..., 0], (C.2.2)
2y’ = z(u)’ =[qy(u), ..., qp(w) ], (C.2.3)
w =0, ..., 0, w;"(u), 0, ..., 0], where (C.2.4)
w)' = [W(uuy), - W) (C.2.5)

Computations can be simplified by noting
that:

Xo'a = a(u)§; (C.2.6)
and

wR-1=10, ..., 0, wyR: 1 0,..., 0]. (C.2.7)
The prediction formula can be written as:

$i(u) = a(u)s; + z(u)'¢ +
w/ R (y,—8;2,—Z2). (C.2.8)
Because u in W(u,u;) = cov[g(u), e(uj)] is
a knot angle, W(u,uj;) can be compute
from the within-stand covariance matrix W
using one-dimensional splines. If the crown
height has been measured for some trees, a
random stand effect for the crown height



(cp+1) 1s used in the last term but can be
omitted from z(u) ¢, because its coefficient
is zero (see Appendix C.1). The predlcted
log-diameter (i) is obtained from ¥;(u)
using (53.1).

When var[§;(u)] and var[§;(u)—y;i(u)] are
computed by means of Eqgs. (A.4.24),
(A.4.26) and (A.4.27), all terms containing w
or xg can be simplified by making the follo-
wing substitutions:

Xy — a(u) (C.2.9)
Gy = var(d) — var(y) (C.2.10)
wR—1lw — w/Rilw, (C.2.11)
G, = cov(b—b,d) — cov(é—c}3) (C.2.12)
X'R—lw — a/Rylw; (C.2.13)
ZR-'w — Z/Rilw, (C.2.14)

Note that (C.2.11) and (C.2.14) are, in
fact, true identities. Note also that zg'Dzg
and zy’Gpyzp in (A.4.24) and (A.4.26) need
to be computed only once for a given stand.

At the application stage all the needed va-
riances and covariances are assumed to be
known. This means that the prediction vari-
ance is also known.

C.3. Formulas for trees with one
measured dimension

Suppose the model has been formulated
for n trees as described above. Then, add to
the data a tree with a single measurement.
Denote this as observation number zero, the
corresponding measurement angle being ug;.
Then the quantities in the corresponding
model y=Xa+Zb+e are as follows:

—Y(Um)
y= N (C3.1)
-y:-
[ (up1)
X = , (C.3.2)
Xt'
B
a= , (C.3.3)
SA’-
(up1)
7= , (C.3.4)
%

(C.3.5)

(C.3.6)

where y,, X,, s, €, and R, are the corre-
spondmg quantities “without the new obser-
vation; b=c and D=var(c) are as before.
Then ¢ can be computed using (A.2.6). For
that, S defined in (A.2.7) needs to be com-
puted first. In this case direct matrix multi-
plication gives:

0
S= , (C.3.7)
Sﬁ.‘

where S, is the S matrix of (A.2.7) without
the new observatlon When (A.2.6) is used
to compute ¢, we find that ¢ is the same
with and without the new observation.
Thereafter, the size vector s can be compu-
ted using (A.2.8). Note that the new observa-
tion does not affect the estimation of the
sizes of the previous trees (s,) and sq is esti-
mated by
8o = a(ugy) ~![y(ugy)—2z(upy)€]. (C.3.8)
That is, sg is solved from the estimated
stand stem curve:

¥(ug1) = a(ugy)sg + z(ugy)'e.

When other dimensions yg(u) of the new
tree are predicted, in the general prediction
formula (A.4.13)

§=xya+ zo’i) + w'R—l(y—Xﬁ—ZB)

the only nonzero component of w is the
first one; on the other hand, the first com-
ponent of y—XA—Zb is zero. Thus the last
term can be ignored, and the stand stem
curve should be used to predict the other
dimension yq(u):

Yo(u) = a(u)3g + z(u)'e. (C.3.9)
It is easier to derive var[yo(u f)] and

var[§o(u)—yo(u)] directly instead of using
the general matrix formulas of Appendix

67



A.4. Let us derive first some preliminary re-
sults; according to (C.3.8) § can be written:

8o = a(ugy) ~[y(ugr)—2(ugy)'¢]

= a(ug;)~[a(ugy)sy — z(ugy)’(€—c) + e(ug;)]- (C.3.10)
Note that
cov[é—c, e(ug;)] = 0. (C.3.11)
According to (A.4.17), denote:

G,, = var(¢—c).

Then we get from (C.3.10) and (C.3.11):

var(8g) = a(ugy) ~[2(uor) Gpz(u) T W(ugy)],  (C.3.12)
cov(35,¢’—¢’) = —a(ug;)~1z(ug;)'Gs, (C.3.13)
cov[Sg,e0(u)] = a(ugy)—1W(ugy,u). (C.3.14)

According to (A.4.18) and (A.4.19)

cov($8o,¢) = 0, and (C.3.15)

var(€) = D — var(¢—c) = D — G,,. (C.3.16)
Let

a = a(u)/a(ug;). (C.3.17)

From (C.3.12), (C.3.15) and (C.3.16) we
get

var{§o(u)] = var[a(u)3y + z(u)'¢]

= a(u)2var(3g) + z(u)'var(¢)z(u)

= a¥{z(ugy)'Gypz(ugy) + W(ugy)] +
2(u) (D—G)z(u). (C.3.18)

The variance of the prediction error is
obtained from (C.3.11)—(C.3.14):

var[§o(u)—yo(u)] =
var[a(u)3ytz(u)e—a(u)sg—z(u) c—eq(u)]
= var[a(u)3ytz(u)’ (€—c)—ep(u)]
= W(u) + a2W(ug;) — 2¢W (ugy,u) +
[ez(ugy) —2(u)' ]Gyl ez (ugy)—2(u)]. (C.3.19)
If we have measured only one dimension
for each tree in the stand, we must use the
population stem curve to estimate the stem
curves of the trees. The above formulas can
also be applied in this case by taking ¢=0
and Gj; = var(¢—c) = var(c).
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If tree sizes were assumed to be random
parameters, then trees with one measured
dimension contain information on the stem
form and cannot be estimated separately.
For instance, if we know that trees cannot
be very big, then we know that a tree with a
very large diameter at breast height is pro-
bably relatively thick. The distinction bet-
ween fixed and random size may become
clearer if we derive the estimators for the size
and stand effects when only one tree with
one measured dimension is measured in a
stand. Suppose that tree sizes are random
with mean 5 _and variance var(s). Then

y(ug1) = a(ugy)so + z(ugy)’c + e(ugy), (C.3.20)

cov[sg, y(ugy)] = a(ug;)var(s), and (C.3.21)
var{y(ug;)] = a(ug;)?var(s) + z(ug;) Dz(ug;) + W(ug).
(C3.22)

The standard regression estimator (pre-
dictor) for sq is then obtained from:

A —
Sp—S —

y(ugy)/a(ugy) — s

(C.3.23)
14{z(ugy) Dz(ug;)+W (ugy))/[a(ugyvar(s)]

If the size is fixed, then sg is estimated by
y(up1)/a(ugy). Thus the effect of the ran-
domness of size is that the estimate is shif-
ted towards the mean size, the amount of
shift being dependent on

[2(ugy) Dz(ug;)+W(ug;))/[a(ugy)var(s)].

As var(s) tends to infinity, the estimator
of fixed size is the limiting estimator of ran-
dom size. The standard regression predictor
for the random stand effects is:

¢= COV[C;Y(UO1)][Y(Uo1)—3(uo1)5“]/"“[}’(“01)]’ (C.3.24)

where var[y(up1)] is given in (C.3.22), and
cov[c,y(uo1)] = Dz(ugy).

hus in the case of random size, already
with one measurement in the stand, we ge-
nerally get nonzero estimates for the stand
effects.
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32(0),33(U)
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D. LIST OF SYMBOLS

a vector of fixed parameters

parameters of the stem form model, in
the applications they are treated as vari-
ables.

parameter (variable) for angle u, used in
the applications and obtained using a;(u),
a,(u) and a preliminary estimate of the
size of the tree (s).

covariance matrix of the random stand
effects at the knot angles.

covariance between the stand effects at
angles u; and u,, obtained from B by
interpolation.

a vector of random parameters.

= vector of the first p principal components

of the random stand effects; in appli-
cations this is the vector of random
parameters to be estimated.

covariance matrix of the random par-
ameters (between-class effects) in a linear
model.

diameter (cm) at the angle u in the polar
coordinate system.

In[D(u)].

diameter over bark at the height of 1.3 m
above ground level, 1.e., diameter at
breast height.

diameter at the height of 6 m.

random tree effect of the log-diameter
at angle u for tree i in stand k.

random measurement error at angle u.
coefficient matrix in a mixed linear
system.

tree height (m).

crown height (m).

identity matrix.

index for trees.

index for measurements.

index for stands.

number of measurements for a given tree.
number of observations (measurements).
number of trees in a stand.

the (assumed) rank or the between-stand
covariance matrix or the number of
principal components of the random
stand effects used in the estimation.

kth characteristic vector of the between-
stand covariance matrix B.

(9 - Q1) . o

NXN covariance matrix of within-class
effects.

SpySw
Ohy Oy

T

u::

\Y%
v(u)
W

W(uy,u,)

Il

ray to the stem curve at angle u in the
polar coordinate system.

In[R(u)].

size of a tree in the arithmetic scale, es.
size of a tree defined as a weighted mean
of logarithmic diameters; an artificial
fixed variable in the analysis stage, and a
fixed or random parameter in the
applications.

preliminary estimate of s, used in the
applications.

average size of trees belonging to same
stand.

empirically estimated between-stand and
within-stand standard errors of estimates.
theoretically derived between-stand and
within-stand standard errors of estimates.
kth characteristic root (eigenvalue) of the
between-stand covariance matrix B.
angle in the polar coordinate system,
integer values u=1,...,13 are used for the
knot angles; u=14 is for the crown
height.

angle in the j*h measurement for tree i.
covariance matrix of random effects (in-
cluding both within-class and between-
class effects) of a linear model.

volume of a tree stem (dm3).

random stand effect at angle u.
covariance matrix of the tree effects at
the knot angles.

covariance between the tree effects at
angles u; and u,, obtained from W by
interpolation.

vector of the covariances between the
random tree effects of observed dimen-
sions and a dimension to be predicted.
model ("design’) matrix for tEe fixed
effects.

dependent variable, in the applications
y(u) is closely related to the log-diam-
eter at angle u.

model ("design’) matrix of the random
effects in a linear model.

vector of regressors having random
coefficients, in applications the kth
element of z(u) is obtained from the

kth characteristic vector q, by inter-
polation.
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FACTS ABOUT FINLAND

Total land area:

Mean temperature, °C:
January
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Thermal winter
(mean temp. < 0°C):
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304 642 km? of which 60—70 per cent is forest land.

Helsinki
-6,8
17,1

44

20.11.—4.4.

Joensuu Rovaniemi
-10,2 -11,0
17,1 15,3

2,9 0,8
5.11.—10.4. 18.10.—21.4.

Most common tree species: Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens
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