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The  model  presented provides  a compact  general 

description of  how the stem form of Scots pine varies 
as a multidimensional  object.  Stem dimensions  are de  
termined in  polar  coordinates, and tree size  is defined 
as a weighted mean of  logarithmic dimensions.  Logar  
ithmic dimensions are  analyzed by  a linear model in 
which  the size  and  relative size  of a tree are fixed ex  

planatory  variables. The random variation  in  stem di  
mensions  is partitioned into  variation  between stands 
and  variation  within stands.  The principal  components  
of the between-stand and within-stand covariance  mat  
rices  are used to give a more economical description of 
the random  variation. 

In applications,  tree sizes  are  the parameters  to be 

estimated,  and parameters  of  the stem form  model are 
known  variables. After some approximative  derivations, 
the  model can be  presented in  the standard form. The 
stem curve can be  calibrated for  a given stand  by  esti  
mating the random stand effects  by  means of the  first 
few principal  components  of  the between-stand covari  
ance matrix.  The model can be  applied if any  stem di  
mensions  are measured. With the usual measurements  
the  model  is  as  good as normal  regression  equations. If 
the height and diameter at breast  height  are measured 
for  a  single  tree  in  a  stand, the  between-stand  error  vari  
ance is  already reduced  by  70 % when  the  volumes  of 
tally  trees (i.e.,  trees  for which only  diameter at  breast 

height has been measured) are estimated.  Error  vari  
ances for diameters and for stem volumes are  also  ob  

tained. Hence  the model can be  used to study  theoreti  

cally  different measurement strategies,  e.g., optimal 

heights  for diameter  measurements and  optimal measu  
rement combinations  for sample  trees. The  model  can 
also  be applied in timber assortment problems.  Measure  
ment errors  can be  corrected to some extent  by  incor  

porating variances  of  the measurement errors into  the 
model. 

The stem form model is based on the  standard  the  

ory of  mixed linear models. Because  the  most compact  
prediction  formulas for a  mixed  linear multivariate  mo  
del apparently are not available elsewhere,  they are de  
rived  in  this  study.  

Tutkimuksessa  esitetään  yleinen  männyn runkomuo  
don vaihtelun  malli.  Mallissa  runkomuoto kuvataan lä  

pimittojen moniulotteisena vektorina. Läpimitat  ilmais  
taan napakoordinaatistossa. Puun  koko  määritellään lo  

garitmisten läpimittojen  painotettuna keskiarvona. Lo  
garitmiset läpimitat  kuvataan  yksinkertaisella  lineaari  
sella mallilla,  missä  puun koko  ja suhteellinen koko  ovat  
kiinteitä selittäjiä.  Satunnaisten  metsikkö- ja puuteki  

jöiden avulla  runkomuodon satunnaisvaihtelu jaetaan 
metsiköiden väliseen  ja metsikön  sisäiseen vaihteluun. 
Metsiköiden välisen ja metsikön sisäisen vaihtelun ko  

varianssimatriiseja analysoidaan  pääkomponenttien  
avulla. 

Mallia sovellettaessa puun  koko tulkitaan satunnai  
seksi tai  kiinteäksi  parametriksi,  ja analyysivaiheen  pa  
rametrit  ovat  muuttujia. Malli kalibroidaan metsikkö  
kohtaisesti estimoimalla satunnaiset  metsikkötekijät  

pääkomponenttien avulla. Mallia voidaan soveltaa  olipa 
metsikön puista  mitattu  mitä  tahansa  dimensioita. Ylei  
sillä mittauskombinaatioilla malli antaa yhtä  hyviä tu  
loksia kuin  normaalit regressiomallit.  Lukupuiden  tila  
vuusestimaattien metsikkövirhe pienenee jo 70  prosen  
tilla, kun  yhdestä  koepuusta on mitattu pituus  ja rin  

nankorkeusläpimitta. Läpimittojen ja tilavuuksien vir  
hevariansseille saadaan estimaatit. Näiden avulla  voi  

daan  tutkia teoreettisesti  mittausstrategioita,  esim. et  
sittäessä optimaalista läpimitan mittauskorkeutta tai  

optimaalista koepuiden mittauskombinaatiota.  Virhe  
variansseja käytetään myös puutavaralajiongelmissa. 
Mittausvirheiden varianssit  voidaan ottaa estimoinnissa  

huomioon. 
Tutkimuksessa  sovelletaan  yleistä  lineaaristen  seka  

mallien  teoriaa. Yleinen  lineaarinen  ennustin  ja sen vir  
hevarianssi johdetaan sekamalleissa helpommin soveltu  
vaan muotoon. 
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1. INTRODUCTION 

11.  Background  

In forestry,  modelling  of stem  form  is of  
prime importance  for  both practical  and 
theoretical reasons.  For forest  mensuration,  
stem form is  of  interest in the determination 

of the volume and value of the whole stem 

or  a part  of  it. In this  study,  a  general statis  
tical  model  will  be presented,  which is  used 
for  analyzing  variation in stem form and for 
estimation problems.  Biological  theories are 
of  less  interest  here,  as  are  empirical studies 
that relate some specific  variables  to each 
other or  use  geometrical  solids  to describe 
different parts  of  the stem. Only a small  
fraction of  the vast  literature on stem form 

(reviewed  by  Sterba 1980) is  directly  related 
to this work. 

Fries  and Matern (1966)  and later  Liu  and 
Keister  (1978)  used multivariate statistical  
methods (principal  component analysis)  to 
describe stem form and its  variation. In this 

study  stem form  is  also  described  as  a  multi  
dimensional variable rather  than a relation 

between diameter  and height.  According to 
Sloboda (1977  a),  stem dimensions are  ex  
pressed  in polar  coordinates. 
x i. 

Sloboda (1977  b)  and Lahtinen and Laasa  
senaho (1979),  for example,  have used spli  

nes  to interpolate  the stem curve  between 
measured points.  Here splines  are  used to 

interpolate  stem curves  and various parame  
ters.  Covariances  are  interpolated  with two  
dimensional splines.  

In biology,  problems  of shape  and size  
have a long  research  tradition. Here a new  

approach  is  sought  for  these allometric  pro  
blems.  The papers of Mosimann (1970)  and  

Sprent (1972)  provided  the key  insights  into 
the definition of  size.  

This  study  is based on  the data Laasasen  
aho (1982) used to formulate  his  taper cur  

ve and volume  functions  for pine.  His  re  
sults will  be  the main reference  when models  

derived from the general  model for  stem 
form are  compared  with  special  functions.  

The starting  points  for  this study  were  
the  papers of Kilkki  et ai.  (1978),  and Kilkki  
& Varmola (1981), in which a multi-equa  

tion  model introduced the idea of  a single  

general  model that can  be used when any  
combination of measurements is  available. 

Kilkki's  study  of sample tree selection  
(Kilkki  1983) has  also brought  about the  de  
composition  of  total variation into variation 
between forest stands and variation  within 

stands.  In this  respect,  the study  of  Pekko  
nen (1983)  also  guided  the  formulation  of  
the problem. 

12. Purpose  of  the study  

The goal  of  this  study is  to provide  a  uni  
fying  framework for  stem curve  problems  
where the essential  features of stem form  va  

riation can  be analyzed  and the analysis  is  
then directly applicable  for  various pur  

poses.  

In this analysis,  the size  of  a  tree  is  first  
defined  as  a fixed artificial  variable. Simple  
linear models are then used to describe ex  

pected  (average)  stem dimensions as  func  
tions of  size.  Together  these functions  de  
scribe  the dependence  of  the stem form on 
the size.  Deviations  from  the  expected  stem 

curve  are  partitioned  into two  random com  

ponents: stand effects  and  tree  effects.  Esti  
mation and interpretation  of  both variances 
and covariances  of  the stand effects,  as  well  
as  the tree  effects,  are  the main tasks in  ana  

lysis of  the random variation of  the stem 
form. 

In applications,  the model should satisfy  
the following  requirements:  

a)  A  stem curve can be predicted  if any  dimensions of 
the tree are measured. 

b) Predicted stem curves pass  through the measured 

points,  if there are no measurement errors. 
c)  Estimates  of  the error  variances  are  obtained. 
d) The results are unbiased for  the main  population 
without any  stand information. 
e)  The general  model can be  efficiently calibrated for a 
stand if any  dimension combinations of  different trees 
are  measured.  

f) Knowledge of possible  measurement errors is  taken 
into  account in  the prediction.  

Several  existing  ideas can be synthesized  
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in a new way,  so that the variation in stem 
form  is  analyzed  in a theoretically  compact  
and informative  model satisfying  the  above 

requirements.  The model is  kept  as  simple  
as  possible;  it  is  aimed to be  a  starting  point  
for  more  sophisticated  models. 

The purpose of this  report  is  to describe 
the ideas and  derivation of the model and to 

demonstrate its  applicability.  The study  is  
based on the standard theory  of  linear mo  
dels. However,  to  be more applicable  in the 
multivariate case  with both random and fi  

xed parameters, the available prediction  
formulas need to be developed further. 
Mathematical derivations and details are  

presented in  appendices;  readers  interested 

only  in the general  ideas of  the model may 
omit these details. Appendix A is re  
commended for readers not  familiar with the 

basic  concepts of  mixed linear models. Pre  

liminary  ideas  of this  study  were  presented  
in Lappi  (1983);  more recent results  were  
summarized in Lappi  (1985).  

13. Computational  aspects  

All calculations  are based on  standard 

matrix  algebra and  on spline  interpolation.  

Programs  were  written in Fortran-77 and 
run  in  the VAX-1 1/780 computer of the 
Finnish  Forest Research Institute. IMSL  

subroutines  (IMSL  ...  1982)  were  used  when  
ever  possible  and applicable.  In order to 

guarantee sufficient numerical accuracy, 

computing  was  done in double precision  and 
some  attention  was  also  paid to the scaling  
of  variables. 

Interpolations  were  done by  cubic  splines,  
i.e.,  by  cubic  polynomials  joined  so  that  the 
first and second  derivatives are continuous. 

The stem curves  were interpolated  using  

spline-subroutines  based on the study of  
Lahtinen and Laasasenaho (1979).  The par  
ameters  were  interpolated  by  an IMSL-rou  
tine,  which uses  the "not-a-knot"  condition 

requiring  that the third derivative be conti  
nuous  at  the second and penultimate  knots.  

Direct  application  of  matrix operations  
would in some cases  lead to inefficient  com  

putations,  and therefore some attention is  

paid to the usage of  special  matrix  struc  
tures.  Explicit  presentation  of  special  matrix  

structures may also  help  to understand the  
link  between general  theory  and the special  
case. 

14. Terminology  and  notation 

In this  study,  nonelementary  statistics  is  

applied  in a specific  problem of forestry.  
This report is intended both for  foresters  
with limited  background  in  statistics  and for 
statisticians  without any  knowledge  of fo  

restry. Readers may thus have  conflicting  
wishes for  the level  and details of  the pre  
sentation. To  make the  following  text  easier  
to understand,  some terminology  is first  ex  
plained.  

Forest  stands  and pine  trees  within stands 
are  considered here. A stand is  a forest  area  

that is relatively  homogenous  both with  re  

spect  to the site  and structure  of  the forest.  
In statistics  these kinds  of  groups are  normal  

ly  called  classes.  Thus in  this  study  random 
(between-)class  effects  (or  just  'random ef  

fects')  are  called  random (between-)stand  ef  
fects.  In the context  of  the  general  linear 
model,  random effects  and random parame  
ters  are  used as  synonyms.  In standard sta  
tistical  writing,  random tree  effects  (within  
stand effects)  correspond  to random errors  

(=  residual  erros  = within-class  effects).  
If  x  is  said to be  an unbiased estimator  of  

x,  this  can  have three different meanings  de  
pending  on  the statistical  characters of  x and 
x. If  x is  a fixed parameter and x is com  
puted  from the observed values of  random 
variables,  then E(x)=x.  If  x is  a  random  vari  
able  and x is  fixed, then E(x)=x. Estimator  
x  can  be fixed either  because it is  computed  
from observed values of fixed variables or 

from conditionally  fixed  random variables 

(expectation  is  taken with respect to the 
conditional distribution).  If  both x and  x 
are random,  then x is unbiased for  x if 

E(x)=E(x).  If x is random,  x is  usually  called 
a predictor  instead of  an estimator.  

In this  report formulas are numbered ac  

cording to sections. Vectors and matrices  
are printed  in boldface;  lower case  letters  are  
used for  vectors  and capital  letters  for  matri  
ces.  Vectors  are  column vectors  by  default. 

Many  symbols  have only  a  local meaning  de  
fined  as  they  are  used,  sometimes the same 
letters  may be needed for  different purposes 
in different parts  of  the text.  The symbols  
are defined as  they  appear, but  general  sym  
bols  are  collected to Appendix  D for easy  
reference. 
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2. DATA  

Three sets  of  data were used in  this  study:  a data set 
collected by  Laasasenaho (the primary  data), a second 
set collected by Kilkki  and Varmola  and a third one 
collected  by  Pekkonen  and  Laasasenaho.  Detailed de  
scriptions  of  these respective  sets are given by  Laasasen  
aho  (1982), Kilkki  and  Varmola  (1981), and  Pekkonen  
and Laasasenaho (1985). 

Trees in  the data of  Laasasenaho were collected from 

sample  plots selected from the tracts of  the  National  
Forest  Inventory and covering the whole of Finland 
(Fig.  1).  Sample  trees within each  sample  plot  were se  
lected using relascope with  factor 2 (i.e.,  sampling pro  
babilities are proportional  to the square of  the diameter 
at  1.3 m).  However,  at  most 5  trees  per plot  have been 
accepted.  Each sample  plot  is supposed to represent  a 
stand. Data  set  consists of  956 sample plots  with  2326  
trees. Sample plots  with  one sampled tree do  not con  
tain any  information about  the  within-stand variation  
and the  effect  of  the relative size  of  the trees,  which are 
both  constituents  of the model. Therefore all sample  
plots  with one sampled tree  (340 plots)  were  excluded  
from the  data  in  the analysis stage.  The data  thus re  
duced consisted of  616  plots  and 1986  trees. 

On the  sample trees of Laasasenaho, the diameter 
was  measured  at  relative heights  of  1,  2.5,  5,  7.5,  10, 15, 
20, 30, 40, 50,  60,  70,  80 and 90  percent,  and at  heights  
of  1.3 and 6  meters.  The crown height  (i.e.,  the  height  
at which  the  live crown begins)  and the  height  of  the 
uppermost  root  collar were also  measured. The data of 
Laasasenaho were used to estimate  the model param  
eters  and also  to test the  performance  of  the model in  
different applications.  

Standwise calibration of the stem curve  was also  test  

ed  with the data of Kilkki  and Varmola and with that 

of  Pekkonen and  Laasasenaho. The data  of Kilkki  and 

Varmola  consist  of  492  trees in  29  subjectively  chosen 
stands in southern and central Finland. From each 

stand, 5—20  trees  were  measured. Measured trees were 
selected systematically  so that there would be about 
equal numbers of  trees in  different breast-height  diam  
eter  and height classes  in  the whole data  set.  The abo  
ve-mentioned measurements are  also  available in  the da  

ta  of  Kilkki  and Varmola,  except  for the  height of the  
uppermost  root  collar. 

From the data  of Pekkonen  and Laasasenaho, 2418  
Scots pines  from 26  pine-dominated stands were used. 
In their data the diameters were measured  at 1.3 and  6  

meters  and at one-meter intervals.  

It is assumed for all  three data sets  that  cubic splines 
going through  the measurements  give the stem curves 
precisely.  Thus volumes  are also  assumed to  be  'measur  
ed'. 

Fig.  1. Number of trees in  the data  of  Laasasenaho ac  

cording to climatic regions; trees growing on waste  
lands (N=274) are not included. 
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3.  SHAPE, SIZE AND DIMENSIONS  OF A TREE 

31.  Dimensions 

When studying  the shape  and size  of  an 
organism quantitatively,  one must  first de  
cide  how its  dimensions are  to be defined 
and measured. Generally,  dimensions  are  de  
fined as  distances  between  biologically  ana  
logous  points.  With  trees,  however,  defini  
tions of dimensions  are  not  as  evident as  in  

most allometric  studies.  Height,  H,  (i.e., the 
distance  between ground  level  and the  top  
of  the tree)  is in any  case  a  basic  dimension  
of  a  tree  stem. Ignoring  the noncircularity  of 
tree  stems, other dimensions  of  a  stem can 
be defined  in terms of  diameters.  The only  
problem is  to  determine  which diameters of  
different trees  represent the same dimen  
sions.  

In this study  a polar  coordinate system  
(Fig.  2)  is  used to define the dimensions of a  
tree  stem (as  did Sloboda 1977  a).  Relative  

height  diameters,  which have been more  po  
pular  (see,  e.g., Cajanus  1911), could not  be  
used  in  this  study,  because  the estimation  is  
set  to work  when any  dimensions  are  measur  
ed,  e.g.,  even if height  is  not  measured. 

In a polar  coordinate system  the dimen  
sions  can  be either rays  or  diameters corre  

sponding  to different angles.  There is  a  sim  
ple  one-to-one  relationship  between the rays  
and diameters.  Let  R(u)  be  the  ray  and  D(u)  
the diameter at  angle  u.  Then 

When u = 90°, R(u)  cannot be  expressed  
in terms of  D(u).  If  rays  at  different angles  

are  used  as  basic  variables,  then the height  is  
just  one ray  among others. 

Geometric  properties  of  plane  figures  are  
independent  of  the  scaling  of  the coordi  

nates.  Thus scaling  can  be chosen on  practi  
cal  grounds  and has no  real effect  on the 
properties  of the  model. In order to get  
roughly  circular  forms  with  understandable  
angles,  diameters are  expressed  in centim  
eters and heights  in meters.  This scaling  is  

Fig.  2. The polar  coordinate system where the  stem di  
mension  for angle  u is either ray  R(u)  or diameter 
D(u). 

also  reasonable for  the numerical  accuracy  of  
the computations.  

As noted,  height  is  naturally  included 
among the dimensions. For angles  other 
than 90°  one  can  equally  well  use  either  rays  
or  diameters.  Within  this  artificial  scaling,  
the rays  are  not  in  any  physical  measurement 
units, so the results  will  be  expressed  in  
terms of diameters. As height is  not  any  
diameter at  some angle,  there exists  a conti  
nuity  gap between the uppermost diameter 
and the height.  Thus the  interpolations  are,  
in fact,  based on  the rays,  even  though this  
report is  written  in terms  of diameters. 

D(u) =  cos(u)R(u), or (31.1) 

R(u)  = D(u)/cos(u). (31.2) 
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2 461380 A  

In the data used here diameters were 

measured at given heights. Diameters  at  
different angles  were  computed with  splines.  
A sufficiently  good presentation  of the 
stems seems to be attainable with 12 diffe  

rent  angles  (plus  90° for  the height)  which 
are  called 'knot angles'.  The knot  angles  we  
re selected with a heuristic 'inverse  spline'  
criterion. 

Let  g be any  function having  an inverse  

g—
!.  Then g~~  

I
[g(x)]  = x for  all  x.  Thus 

when moving  from  x  to g(x),  no  information  
about x is  lost,  if  the inverse of  g exists  and  
is  known.  This idea is  extended  to splines,  
which are functions defined by the knot  
points.  The problem  is  to find  angles  in  the  

polar  coordinate system  so that the informa  
tion contained  in the original  measurements  

prevails.  This  is  the case  if, using  an 'inverse  

spline',  we can  move to the original  points.  
The original  splines  were  first defined for  
each tree  with the available measurements.  

Then the knot points  for  the inverse  splines  
were interpolated  in  accordance  with the po  
lar  coordinate  system.  The selected knot  an  
gles  (Fig.  3),  and the mean and  standard de  
viation of  the corresponding  relative  heights  

(H(u)/H)  were:  

When the inverse splines  were  used for 

computing  the diameters at  relative  heights,  
biases  for  all  relative heights  were  less  than 
0.7  mm in  absolute value and standard devi  

ations less  than 2.7  mm. 

In the  analysis  stage, finite-dimensional 
multivariate models are  formulated  in which  

the knot angles  determine the dimensions. 
The true  models,  however,  are  assumed to 
be continuous  with respect  to the measure  
ment angle. In the applications  the model 
quantities are interpolated  for all angles.  
Thus,  already  in  the analysis  stage  the param  

Fig.  3.  Knot  angles used in  the analysis.  

eters are  written  as  functions of  angle  rather 
than using  indices.  

To  simplify  the notation,  we write u = 

1,..  ,12  for  the knot angles,  u = 13 for the 

height and u = 14 for  the crown height.  
Thus for  a  parameter v, for  example,  v(3)  is  
equivalent  to  v(l.s°),  and v(14)  is  the  param  
eter  for  the crown  height. 

32. Shape  and size  

This study  analyzes  the relationship  be  
tween the shape  and size  of a tree stem. 
Two stems have,  by  definition,  the same 
shape  if  

Suppose  first that all  stems  have the same 

shape.  Then any  weighted  mean of  stem di  
mensions can be defined to be the size  of the 

stem. Thereafter the stem of  any  tree i can  
be  presented  as: 

D
2 (U) =  cDj(u)  for  all  u. (32.1)  

u, deg. H(u)/H, % 
mean sd 

1 

2  

3  

4  

5  

6  

7  

8  

9  

10 

11 

12 

0.25  

0.7 

1.5  

3 

5 

8 

14 

21 

31 

41 

56 

72 

0.87  

2.2  

4.3  

7.9  

12.5 

18.8 

30.3  

41.9  

55.4  

65.9  

78.1  

88.7  

0.22  

0.54  

1.0 

1.9 

2.9  

4.3 

6.2 

7.3  

7.2  

6.3 

4.5 

2.6 
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where S;  is  the size  of  the  stem  and  the func  
tion F describes  the common shape  of 
stems. Every  stem is  determined precisely  
when any  dimension is  known. 

As not  all  stems  have the same shape,  the 
model must  be modified.  First,  the dimensi  
ons  may not increase in proportion  to the 
size  but  to some function  of  it.  Second,  the  
re  exists  random variation,  which,  one  can  

assume,  enters  into the model multiplicati  
vely,  i.e.,  is  roughly  proportional  to size.  
Thus,  any  stem i  can  be  presented  as:  

where G expresses  how the average shape  

depends  on  the size  and E;(u)  is a random 
error  independent  of  size.  Even if not  expli  
citily  indicated,  G may be  a  function of  other 
tree  and  stand variables as  well.  

Taking  logarithms,  we  obtain: 

Let us  then define: 

Then (32.3)  can  be  written as:  

The presented  formulation has no con  
crete  meaning  before the size  is  defined  ope  
rationally.  In addition,  the statistical  nature 
of  the size  needs special  consideration. In 
the  following, S  and s  are  called 'arithmetic  
size'  and 'logarithmic  size',  respectively.  

33.  Operational  definition of size 

There is  no universal  definition of  size  of  

an organism,  although  it  is  generally  under  
stood  as an aggregate quantity  combining  
different variables associated with it.  When 

the whole interest  lies  in  geometric  aspects,  
the relevant  variables  are  distances,  and the 
arithmetic  size  (S) can be  expressed  in the 
same physical  units  as the dimensions. Thus,  

size  S  (or  s)  must  be defined so that if  all  
dimensions are  multiplied  by  a,  so  is  the size  
S; and the logarithmic  size  s is thus in  
creased  by  ln(a).  

Principal  components have  been used to 
define  and study  the variation in shape and  
size  (e.g.,  Fries  and Matern 1966). Here the  
first principal  component is  interpreted  as  
the size  component (see,  e.g., Sprent  1972, 
and Morrison 1976).  If  different individuals 
have approximately  the same shapes  but  dif  
ferent sizes,  then the greatest variation in 
the vectors  of measured dimensions  is  in the  

direction of  size.  Using  logarithms,  the vari  
ation is  measured in  relative  units.  

The sample  covariance matrix  of log  
diameters was  computed  without paying  any  
attention to the stand structure. Then the 

first  characteristic  vector  of the matrix  was:  

The characteristic  vectors  are scaled so  

that the  sum of the squared  elements is  one. 
Because the arithmetic  size  S is  to be multi  

plied by  the  same constant by  which every  
dimension is  multiplied,  coefficients  in  the 
definition of  the logarithmic  size  s must  be 
scaled to add up to one. Thus the elements 
of the vector (33.1)  must be divided by  the 

sum of elements (3.604)  yielding  a vector  
w

' = [ w(l)>—> w(l3)].  The size  is  then de  
fined to be: 

Since the coefficients  are  approximately  

equal,  an alternative  definition of the arith  
metic size  would be:  

leading  to the logarithmic  size  

If  the coefficients  of the first principal  
component of a multinormal  distribution of 

D;(u)  = S;F(u), 

D,(u)  = G(u,S;)E;(u), (32.2) 

ln[D; (u)]  -  ln[G(u,S;)]  + ln[E; (u)]. (32.3) 

d(u) = ln[D(u)]  

s = ln(S)  

g(u,s) = ln[G(u,S)] (32.4)  

6(u)  = ln[E(u)].  

d1(u)  = g(u .si) +e i(u )' ( 32 - 5 ) 

(.286, .280, .279, .279, .279,  .280, .284, 
.284, .281,  .278, .271,  .264, .261)' (33.1) 

13 

s = £ w(u)d(u) 
u—l 

= 0.0793d(1)  + 0.0776d(2)  + 0.0774d(3)  + 
0.0775d(4) + 0.0773d(5) + 0.0778d(6) + (33.2) 
0.0787d(7) + 0.0787d(8) + 0.0780d(9) + 

0.0770d(10) + 0.0753d(ll) +  0.0731d(12) + 
0.0723d(13) 

13 

S= [ II D(u)] 1" 3 ,  
u=l 

13  

s= [ I d(u)]/13. 
u—l 
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logarithmic  dimensions are all  equal,  the  

growth  of  the dimensions is  isometric,  or  
in  constant proportion  to the  increasing  size  

(Mosimann 1970).  As  it  is  not  assumed here 
that  the measured  diameters come from a 

single  multinormal distribution,  the  standard 
statistical  interpretation  and  testing proce  
dures cannot be used. The definition of size 

used here seems  to give  a good operational  
basis  for  the analysis  of  stem form  variation,  
but  it  is  not  necessarily  the 'correct'  one. 

At an earlier stage of this study,  the 
arithmetic  size  of the stem was defined as  

the cubic  root  of  the volume. From a  practi  
cal  point  of view,  the  results  were  as good as  
those  presented  here. This  definition would,  
however,  lead  to  a  slight  logical  inconsisten  

cy.  When moving  from  volume to diameters 
and then back  to volume, we do not  neces  

sarily  get the  same volume we started  with.  
Defining  the size  by  formula  (33.2),  a  logi  
cally  consistent  system  can be achieved.  In 

practice,  these  two possible  definitions of 
size  are  closely  related;  volume (in  liters)  can 
be predicted  by  the  equation:  

The value of  R  2 for  the above regression  
was  0.995. The regression  equation for  the 
logarithms  was:  

The logarithmic  regression  showed  that 
the standard deviation of relative  errors  was  

4 %.  

Size  is  defined as a weighted  mean of  
diameters,  and each diameter is supposed  to  
have a  random component. Thus size, as  the  
sum of random variables, is  also  a random 
variable.  Nevertheless,  it will  be considered 

as fixed,  and this  is  claimed to be logically  
consistent. 

First,  the main task  in  the analysis  stage  is  
to model the variation  in stem form. It  is  

then quite  natural to take the size  as  given,  
i.e., determined outside  the system  that de  
termines the shape  of stem. In the appli  
cation stage, the situation can be different,  
as  will  be discussed later.  Second,  even  if  the  
size  is formally  a  random variable,  it  behaves 
like  a  fixed  variable,  if  the parameters of  the 
model meet  certain constraints.  These con  

straints will  be discussed later  in more detail. 

The primary  reason  for insisting  on  the 
nonrandomness of  the size  is,  of course,  that 
the statistical  treatment becomes simpler  
and more straightforward.  The characteriz  
ation and use  of  size  is  perhaps the clearest  
point  at which our  approach diverges  from  
the traditional allometric studies.  

V  = 0.05962 S3  042. (33.3) 

ln(V)  = 3.042s 9.728. (33.4) 
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4.  STEM  FORM  MODEL  

41. Model specification  

After  defining  the size  of  a stem, let  us 

study  the dependence  of the expected  stem 
form  on size  and the behavior of  the random 

variation. Introduce the stand structure  into 

the model (32.5)  through  the index  k:  

The first  assumption  will  be that 

E[ eki(u)] = 0- Thereafter ordinary  least  
squares  regression  can  be used to search  for  
an  appropriate  model,  even if  alternative 
models cannot be compared  exactly  with F  
values. A good starting  point  in the model 
development  is:  

where f(u)  describes the average stem  form. 
In this model the expected  shape  of  a stem 
is independent  of  the size.  

As  noted in  section  32, g can,  in  addition 
to s and  u,  be a function of  any  stand and 
tree variables.  If  g is  defined in  terms  of size 
variables only,  the following  model seemed 
to describe the stem form  of tree i in stand 

k:  

where d  is logarithmic diameter, 
s  is logarithmic size,  
i
k  is the  average  size  in stand  k,  

v
k
 is  a random  stand effect  with  zero  mean and fixed 

variance,  

e
k;
 is  a random  tree  effect  with zero mean and  fixed 

variance,  and  a
Q

,  av  a,  and  a3  are  fixed  parameters.  

The random effects  v and e are assumed  

to be uncorrected with each  other,  and the  
e's  are also assumed to be uncorrelated for 

different trees.  For  a given  stand the v's  of  
different  angles  are  correlated,  and for  a  gi  
ven  tree  the  e's  of  different angles  are corre  
lated. In the analysis  stage,  the  distributions  
of  v and  e need not be specified.  In appli  
cations some  derivations are  valid only  if v  
and e, for different  angles  u,  follow multi  
normal  distributions. Normality assumpti  

ons  will  be  always stated explicitly.  

The model contains both ordinary  fixed  

parameters (a's)  and  random parameters 

(v's),  thus it  is  a  special  case  of mixed linear  
models (see  Appendix  A). Note that the 
model contains both a fixed stand effect  

a3( u)sk.  and a random stand  effect  vUu).  
The  model (41.3)  can be  written  in  the fol  
lowing  equivalent  form: 

The term su; — represents the  relative  
size  of  a  tree in  comparison  to other  trees  in  
the same stand. The competitive  status  of  a  
tree  is  taken into account through  this  term. 

The model is  a  three-level model. Its  fix  

ed part defines the 'population  stem curve';  
the fixed part  plus  the v-effects  define the  
'stand stem curve',  and  the whole model de  

fines the 'tree stem curve'. Since the v-ef  

fects  are  taken to be random,  we can  study  
the variation of  the stand stem curve  using  
their variances and covariances.  The effect  

of the average size  in (41.3) could also be  
included in the 'stand stem  curve',  similarly  
the effect  of the relative  size  in (41.4)  could 
be  included  in the 'tree stem curve'.  

The fixed  part  of the model was  first  
fitted by  ordinary  least  squares. The expec  
ted values  of the obtained residuals are  zero 

under the assumptions  of the model,  even  if  
the residuals within the same stands are  cor  

related. Then,  in order to study  systematic  
deviations from  the model, the residuals  we  
re  tabulated by  different variables describing  
stand and tree  characteristics.  

The most  important  differences  seemed 
to be between climatic  regions.  These dif  
ferences  may  be  explained,  in  addition to the 

pure climatic  factors,  by  differences in site  
quality  and silvicultural  history of the 
stands. These characteristics  have the same 

systematic  geographic  trends as  the climatic  
factors. Consequently,  the coefficients  of  
the fixed effects  were estimated separately  
for  each climatic  region.  The stands  growing  
on sites  classified  as wastelands  deviated so  

d
k,( u ) = g(u,ski)  + ek; (u). (41.1) 

g(u,s)  = s  +  f(u), (41.2) 

dki(u ) = ao( u>  +  ai(u) s
k,  +  a2(u ) s

ki ( 41J ) 

+ a3 (u)s k + vk(u)  + ek;(u),  

dl>)  "  ao(u)  +a i  ( u)\,  +  a2
(u ) s

k, (41.4)  
a

3
(u)( s

ki  —\.) + v l>) + eki(u)'  

where 

a,(u)  = a,(u)  + a3
(u). (41.5) 
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much from  the others  that they  were  treated 

as  a  separate class.  To simplify  the termin  
ology,  hereafter this  class  is also called a re  

gion.  
The  random part  of  the model was  assu  

med to be the same for  all  climatic  regions,  
so  the model parameters were  estimated si  

multaneously,  i.e.,  technically  as a single  
model. As  the  representativeness  of  the  data 
is not  very  good  with respect  to climatic  re  

gions, a  single  model was  also  estimated for 
the whole country.  The differences between 
the overall  model  and the regionalized  mo  
del illustrate  what happens  when the model 
is made more specific.  

It is  logically  consistent  to assume  that 
both the overall  and regionalized  models are  
correct  simultaneously.  The overall  model  

applies  when a  stand is  taken randomly  from 
the population  formed by  all  the stands in 
the  country  while in  the regionalized  model 
conditional  inferences are made for a given  

region.  
The age of the tree,  the site  class,  and  the 

density  of  the stand had also  a noticeable ef  
fect  on the stem form. In order  to concen  

trate  on the main allometric  relations, these 
variables were  not  included in the model. So 

the model will  be applicable  even if  the 
values of these variables are  not known. 

42. Fixed  parameters  

Intuitively,  it  is  more natural to consider  
the fixed part  of  the model first,  even if  the 
variance-covariance components must be 
estimated before  the fixed parameters.  Es  
timation of  the parameters  of  a  mixed linear  
model is  presented  in  general terms in Ap  

pendix  A. 2.  A more detailed description  of  
the estimation  of  the parameters  in  the pre  
sent  special  case  is given  in  Appendix  8.2. 

Briefly,  there are  two different ways  of  

estimating the  fixed parameters of  the mo  
del. Model (41.3)  or (41.4)  has separate 

parameters for  each  angle  u.  Thus  the param  
eters  can also  be estimated separately  for 
each angle.  The random stand effects  and 
tree  effects  of  different angles  are,  however,  
correlated. Therefore  the parameters  can  be 
estimated more efficiently  by estimating  
them simultaneously  for  all  angles.  This is  
known as  estimation  of  seemingly  unrelated 

regressions  (see,  e.g., Johnston  1972).  With 
the computing  capabilities  available,  the si  

multaneous system  could be solved  only  for  

regions  with a  small  number of stands  in  the  

regionalized  model.  
Table 1 shows  ä0 (u), äj(u),  ä2 (u) and ä,(u)  

(u=l,..  ~14)  with their estimated  standard  
errors  for the  overall  model and  for each re  

gion  in  the regionalized  model. The sums  of  

w(u)a(u)  over  the knot  angles  are  also  given  
for  later discussion;  the w-coefficients  are 
the coefficients  in the definition of the size  

(33.2). The parameters for regions  1,  2, 3 
and 7  were  estimated using  the multivariate  
model ('seemingly  unrelated regressions').  
These parameters  were  also estimated using  
the univariate model. The estimates and 

their standard errors  were very close  for  
both methods of  estimation.  The advantage  
of  using  the multivariate model would be 
even  smaller  for  regions  with more  trees  and 
stands.  

The regional  differences in the average 
stem curves are  illustrated  in Fig.  4. The 

Fig.  4.  Expected stem form for a tree with size  s=2.7 
(about 220  dm3) for each  region (see  Fig.  1) accord  
ing  to the regionalized  model  when the  relative  size  is  
zero.  The most  exceptional regions are indicated; 
region 1 is  northern  Lapland, region 6  is  southern  
Finland, region 7  is  the southwestern coast,  and re  
gion 8 is  the class  of wastelands. 
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Table 1. Estimates  of  a0(u),  a1(u),  a2
(u) and  a3

(u)  (upper figures)  with  their  estimated  standard  errors  (lower figures)  
for the  overall  model (region=0) and  for  each  region in  the  regionalized  model; region 1 is  northern Lapland, 
region 7  southwestern coast and  'region'  8 is  the  class of wastelands.  The  sums  of  w(u)a(u) over the  basic  angles 
(u=1,...,13) are also given, where w(u) is  the coefficient  of  d(u) in  the definition of  size  (33.2). Parameters  for 
regions 1, 2,  3 and  7  have been estimated using the multivariate model. 

1 2 3 4 5 9 10 11 12 13 14 2 w(u)a(u)  
u—1 Region  

a
0 

0 .784 .793 .746 .558 .521 .483 318 .065 —.313 —.644—1.141  —1.798 —.630—2.168  —.00438  

.043 .035 .033 .030 .028 .026 .021 .016 .021 .030 .042 .051 .057 .169  

1 1.320 .972 .620 .371 .547 .317 .079 —.215 —.588 —.741 —1.053—1.502 —.292 .668 .00000  

.271 .226 .212 .188 .178 .160 .135 .111 .134 .191 .263 .315 .354 1.105 

2 .640 .636 .572 .373 .363 .356 .243 .100 —.261  —.491 —.920—1.502 —.260—1.429 .00000 

.096 .082 .077 .070 .066 .059 .048 .038 .048 .071 .099 .118 .133 .416  

3 1.049 1.008 .927 .756 .705 .621 .343 .058 —.436 —.848—1.395—2.033—1.010—2.645  .00000  

.157 .133 .126 .113 .107 .095 .078 .062 .077 .115 .161 .192 .217 .676  

4 .807 .774 .751 .507 .461 .438 .331 .072 —.328 —.640—1.088 —1.758 —.553 —2.489  —.00240  

.084 .070 .066 .059 .056 .050 .042 .033 .041 .060 .082 .098 .110 .345 

5 .948 1.018 1.006 .831 .727 .637 .373 .043 —.422 —.851 —1.449—2.165—1.053—4.248  —.00722 

.091 .076 .072 .064 .061 .055 .046 .035 .044 .065 .089 .107 .120 .375 

6 .592 .621 .543 .461 .431 .406 .331 .093 —.264 —.542—1.002—1.525  —.240—2.743 .00443 

.133 .112 .106 .095 .090 .081 .067 .050 .065. 096. 133 .159 .178 .558 

7 —.369 —.156 —.047 —.413 —.342  —.146 —.127 .358 .549 .479 .353 —.555 .429 2.601 .00000  

.902 .760 .715 .638 .603 .538 .448 .363 .447 .647 .900 1.077 1.210 3.756  

8 .244 .280 .244 .195 .192 .246 .233 .036 —.082 —.245 —.496—1.024 .147 —.089 .00174  

.091 .077 .073 .065 .062 .056 .046 .034 .044 .066 .092 .110 .123 .386  

a
i  

.958 .897 .853 .933 .903 .862 .866 .939 1.054 1.120 1.194 

.038 .031 .029 .025 .024 .022 .019 .015 .018 .026 .035 

1.230 

.042 

1.276 1.396 1.00348 

.047 .143 

.291 .497 .641 .736 .577 .739 .904 1.175 1.442 1.489 1.552 

.209 .172 .160 .141 .134 .120 .104 .088 .103 .144 .195 

1.515 

.234 

1.537 .693 1.00000 

.262 .816 

.868 .846 .818 .929 .915 .881 .896 .919 1.098 1.142 1.223  

.083 .069 .064 .057 .054 .048 .041 .035 .041 .058 .078 

1.246 

.094 

1.263 .905 1.00000 

.105 .326 

.820 .739 .709 .753 .748 .729 .824 .952 1.155 1.286 1.383  

.174 .146 .137 .122 .115 .103 .086 .071 .086 .124 .172 

1.407 

.206 

1.578 1.208 1.00000 

.231 .720 

.928 .889 .832 .960 .930 .886 .859 .942 1.075 1.123 1.168  

.078 .064 .060 .052 .050 .045 .039 .032 .038 .053 .071 

1.224 

.086 

1.248 1.601 1.00205 

.096 .299 

.860 .740 .671 .747 .769 .776 .835 .964 1.130 1.262 1.393  

.081 .067 .063 .056 .053 .048 .041 .032 .040 .057 .077 

1.461 

.092 

1.551 2.566 1.00590 

.103 .323 

.993 .932 .948 .992 .974 .933 .872 .955 1.058 1.079 1.124 

.113 .094 .089 .079 .075 .068 .057 .043 .055 .080 .109 

1.060 

.131 

1.047 1.628 .99629  

.147 .459 

1.859 1.802 1.684 1.848 1.658 1.345 1.177 .655 .249 .115 —.059 

.589 .493 .463 .411 .388 .347 .292 .240 .292 .417 .576 

.166 

.690 

.365—2.033 1.00000 

.774 2.408 

1.337 1.292 1.224 1.154 1.059 .932 .841 .896 .886 .880 .818 

.104 .087 .082 .072 .069 .062 .052 .040 .051 .074 .100 

.779 

.120 

.846 .846 .99810  

.134 .420 
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Table 1 contd. 

stems  are  generally  thicker  in  northern that  
in  southern Finland and are exceptionally  
thick  on  the wastelands;  'thickness'  here and 
also later means the relative thickness after 

adjustment  for  size.  
The coefficient  of the second order term, 

a
2(u),  is  in  general  positive  for  small  angles  

and negative for  large  ones. Both small  and 

large  stems  are  thicker  than stems  of  inter  
mediate size  (see  Fig.  5).  For  regions  7  and  8  
(the  southwestern coast and the wastelands),  
however,  the signs  of a2(u)  are opposite.  
This requires  an explanation,  even if  the  
standard errors  of the estimates  are large  

1 9 10 11 12 13 14 2 w(u)a(u)  
u=l :gion  

a2 

.034 .043 .052 .033 .038 .046 .042 .019 —.018  —.044 —.073 —.093 —.108 —.162—.00077  

.007 .006 .005 .005 .004 .004 .003 .003 .003 .005 .006 .008 .009 .026  

.166 .127 .102 .077 .109 .075 .034 —.030 —.100 —.124 —.148 —.152 —.163 —.007 .00000  

.039 .032 .030 .027 .025 .023 .020 .017 .020 .027 .037 .044 .049 .154  

.052 .051 .056 .030 .032 .037 .031 .020 —.029 —.047 —.072 —.085 —.092 —.016 .00000  

.015 .013 .012 .010 .010 .009 .008 .006 .008 .011 .014 .017 .019 .060  

.082 .084 .087 .071 .070 .073 .052 .016 —.043  —.084 —.122 —.137 —.174 —.191 .00000  

.028 .024 .022 .020 .019 .017 .014 .011 .014 .020 .028 .034 .038 .117 

.040 .047 .060 .030 .032 .041 .046 .022 —.022 —.046 —.071 —.095 —.109 —.216  —.00048  

.014 .012 .011 .010 .009 .008 .007 .006 .007 .010 .013 .016 .018 .055  

.050 .071 .086 .069 .063 .064 .050 .017 —.027 —.068 —.112 —.140 —.166 —.417—.00128  

.015 .012 .012 .010 .010 .009 .008 .006 .007 .010 .014 .017 .019 .059 

.029 .039 .034 .023 .026 .035 .043 .020 —.015  —.033 —.062 —.067 —.073 —.210 .00075  

.021 .017 .016 .014 .014 .012 .010 .008 .010 .015 .020 .024 .027 .084  

—.153 —.129 —.104 —.137 —.103 —.052 —.019 .072 .132 .152 .176 .117 .067 .524 .00000  

.125 .104 .098 .087 .082 .073 .062 .051 .062 .088 .122 .147 .164 .510 

—.052 —.048 —.034 —.016 .003 .031 .049 .027 .016 .009 .013 .014 —.004 —.041 .00045  

.018 .015 .014 .012 .012 .010 .009 .007 .009 .012 .017 .020 .023 .071  

a
3  

O—.118 —.123 —.124 —.111 —.101 —.090 —.057  —.011 .056 .113 .169 .206 .230 .524 .00025 

.010 .009 .008 .007 .007 .006 .005 .004 .005 .008 .011 .013 .015 .042  

1 .010 —.009 .007 .046 .034 .035 .033 .001 —.009 —.014 —.042  —.057 —.042 —.321 .00000  

.046 .040 .038 .035 .033 .030 .023 .017 .023 .035 .050 .060 .068 .213  

2 —.019 —.037 —.036 —.027 —.034  —.029 —.018 .004 .026 .038 .046 .049 .045 .258 .00000  

.025 .022 .021 .019 .018 .016 .013 .009 .012 .019 .028 .033 .037 .116  

3 —.208 —.159 —.143 —.107 —.101  —.079 —.046  —.008 .071 .133 .208 .237 .244 .967 .00000 

.038 .032 .030 .027 .026 .023 .019 .015 .018 .028 .039 .047 .053 .166  

4 —.119 —.122 —.128 —.113 —.092  —.086 —.067 —.022 .053 .117 .172 .208 .237 .590 .00011  

.021 .018 .017 .015 .014 .013 .010 .008 .010 .015 .022 .026 .029 .092  

5 —.134 —.133 —.139 —.132 —.119  —.118 —.075 —.023 .049 .121 .202 .258 .291 .850 .00031  

.020 .017 .016 .014 .013 .012 .010 .008 .010 .014 .020 .024 .027 .085  

6 —.082 —.093 —.102 —.113 —.115  —.112 —.076  —.042 .030 .097 .175 .227 .245 .672—.00001  

.025 .021 .020 .018 .017 .016 .013 .010 .012 .019 .026 .031 .035 .110  

7 —.067 —.193 —.223 —.189 —.145  —.070 —.042 .010 .117 .153 .177 .233 .279 .332 .00000 

.098 .084 .081 .073 .069 .062 .049 .037 .048 .074 .105 .125 .141 .442  

8 .002  —.037 —.033 —.025 —.002 .002 .003 .026 .027 .022 .011 .006 .003 —.126 .00001  

.023 .020 .019 .017 .016 .015 .012 .009 .011 .017 .025 .029 .033 .104  
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Fig.  5. Expected  stem form according to the overall 
model  For  trees with  sizes  s  = 1.5, 2.7 and  3.4; these  
sizes  correspond to stem volumes 5.7 dm 3,  220 dm 3 
and 1850 dm 3 . The relative size  is  taken  to be  zero. 

To make  the comparison of  forms  easier,  dimensi  
ons are divided  by  the  arithmetic  size  (S).  

Fig.  6.  Expected stem form for the size  s=2.7  when the  
relative  size  is  —0.5, 0. or 0.5; the overall model.  
Note  that 0.5 is  approximately twice  the sample  
standard  deviation of the  relative  size  in  the  data. 

compared  with the estimates. The reason  
might  be that in these  regions  the trees  ge  

nerally  grow slowly  and  become thick.  How  

ever,  if  the growing  site  is  good,  trees  grow  

big  and have a  better stem form. Thus the 
controversial  stem form may hold for  the 
trees  at  a  given  time  (i.e., cross-sectionally)  
but  not  for  the  stem form development  of  
individual  trees  over  their life  span (i.e.,  lon  
gitudinally).  

The parameter a3(u)  is  easier  to interpret  
using  equation  (41.4)  than with equation  

(41.3).  In general,  a 3 is  negative  for  small  an  
gles  and positive  for  large  ones:  stems  that 
are  bigger  than  others  in  the same stand  are  
also  thicker  (see  Fig.  6).  For the two nort  
hern regions  (regions  1 and 2),  however,  a, is 

not  significantly  different from zero.  This  
indicates  that the  height  competition  is  not  
so  heavy in  northern Finland as  in southern 
Finland. 

43. Covariance components 

The variances and covariances of  v's  and 

e's  for  different angles,  the covariance  com  

ponents, are estimated using the fitting 
constants method (Henderson's  method 3).  
This  method is  described in general  terms  in 

Appendix  A.3,  and the computational  de  
tails  of  our  special  case  are  given  in Appen  
dix 8.1. 

The estimated between-stand covariance 

matrix  is denoted by  B  and the within-stand 
covariance matrix  by W. The components 
of the matrices are  written as:  

BK.U2) = cov[vk (u,), vk (u
2 )], (43.1) 

B(u) var[v k (u)], (43.2) 

W(u„u2
)  = cov[ekl(u,),  eki (u 2 )],  and (43.3) 

W(u) -  var[eki (u)]. (43.4) 
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3 461380  A 

Table  2. Estimated  between-stand and within-stand standard deviations  and correlations for the  overall  and  region  
alized models. The diagonal  elements are standard deviations multiplied  by  100  (corresponding to relative effects  
in  percentages),  the  off-diagonal  elements are correlations. 

6 7 8 10 11 12 13 14 

Overall model 
Between-stand  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

7.11 .971  

6.22  

.929  

.980  

6.12 

.902  

.945 

.989  

5.71 

.889 

.910 

.954 

.987 

5.57  

.860 

.860 

.909 

.956 

.986 

5.07 

.754  

.708  

.748 

.808  

.876  

.940  

3.56  

.271 —.871 —.916 —.938 —.947 —.946 —.579 

.179 —.917 —.943 —.946 —.948 —.939 —.585 

.200 —.942 —.974 —.967 —.960 —.945 —.658 

.275 —.938 —.988 —.979 —.967 —.955 —.726 

.382 —.907 —.981 —.983 —.974 —.964 —.781 

.516 —.849 —.957 —.973 —.967 —.961 —.813 

.775 —.632 —.831 —.886 —.890 —.891 —.782 

1.84 —.006 —.316 —.419 —.444 —.460 —.481 

3.14 .948 .893 .863 .839 .687 

5.79 .986 .966 .948 .768 

8.88 .995 .983 .748 

10.76 .995 .709 

12.42 .689 

33.05 

Within-stand 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

6.40 .806 

5.18 

.553 

.845 

4.80 

.419 

.636 

.806 

4.16 

.308 

.503 

.678 

.830 

3.93 

.177 —.024 —.284 —.593 —.654 —.641 —.606 —.573 —.280 

.343 .087  —.287 —.714 —.799 —.792 —.749 —.714 —.367 

.491 .216 —.180 —.682 —.811 —.832 —.800 —.774 —.397 

.670 .388 —.031 —.603 —.788 —.840 —.831 —.806 —.421 

.767 .498 .073 —.534 —.742 —.804 —.795 —.772 —.416 

3.55 .596 .234 —.379 —.615 —.707 —.718 —.698 —.352 

3.16 .546 —.028 —.356 —.501 —.545 —.557 —.269 

2.75 .446 .140 —.097 —.190 —.228 —.045 

3.20 .784 .587 .470 .410 .348 

4.27 .864 .769 .714 .458 

5.65 .938 .896 .480 

6.77 .964 .427 

7.53 .404 

23.48 

Regionalized  model 

Between-stand  

1  

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

5.35 .965 

4.90 

.900 

.971 

4.87 

.850 

.925 

.990 

4.55 

.824 

.887 

.954 

.986 

4.36 

.793 

.846 

.923 

.966 

.986 

3.85 

.699  

.703 

.766 

.811  

.864 

.929 

2.68 

.219 —.817 -.873 —.904 —.916 —.915 —.593 

.177 —.883 —.931 —.942 —.944 —.936 —.629 

.206 —.916 —.975 —.972 —.962 —.948 —.715 

.257 —.907 -.981 -.975 —.959 —.949 —.760 

.331 —.881 —.971 —.971 —.957 —.947 —.810 

.467 —.825 —.952 —.967 —.957 —.948 —.842 

.761 —.583 —.823 —.887 —.890 —.881 —.797 

1.44 .080 —.286 —.401 —.437 —.435 —.407 

2.54 .931 .858 .815 .791 .721 

4.61 .980 .951 .930 .809 

6.95 .992 .976 .780 

8.23 .994 .739 

9.38 .713 

29.61  

Within-stand 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

6.29  .800 

5.07  

.538 

.838 

4.70 

.407 

.624 

.801  

4.10 

.294 

.490 

.671 

.827 

3.88 

.164 —.029 —.284 —.584 —.643 —.629 —.596 —.568 —.275 

.332 .082 —.289 —.710 —.792 —.783 —.741 —.709 —.366 

.485 .214 —.179 —.678 —.804 —.826 —.795 —.771 —.398 

.666 .385 —.028 —.600 —.783 —.837 —.828 —.804 —.424 

.765 .501 .083 —.527 —.737 —.803 —.795 —.772 —.424 

3.53 .595 .236 —.379 —.613 —.705 —.716 —.694 —.359 

3.15 .545 —.033 —.361 —.503 —.546 —.556 —.265 

2.72 .437 .130 -.103 —.192 —.227 —.039 

3.10 .778 .583 .469 .414 .365 

4.18 .862 .767 .714 .467 

5.53 .937 .895 .482 

6.65 .964 .423 

7.39 .402 

23.11 
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Table 3. The  first  6 characteristic  vectors,  latent  roots (characteristic  roots), percentages,  and  cumulative  percentages  
of  total  variance  absorbed by  principal  components  for  the overall and regionalized  models. 

This  notation is  used later  in  a  generaliz  
ed  meaning  when variances and covariances  
are  interpolated  for  any  angles.  

Table 2 shows the between-stand and 

within-stand standard deviations and corre  

lations for  both the overall  and the regional  
ized models. For the overall  model the  be  

tween-stand variances are larger  than the 
within-stand variances. When using  the re  
gionalized  model,  the between-stand vari  

ances are reduced to approximately  half. 
The within-stand variances  are  reduced  only  

slightly,  so  that for the regionalized  model 
between-stand variances are smaller than 

within-stand variances. Thus about half of 

the variation  between stands is associated  

with  the climatic  regions.  

The between-stand variance makes up a 
much greater part  of  the total variance for  
large angles  than for  small ones.  It is  also 
dominating  in the crown  height.  This  might  
be  explained  by  the light  competition  which 
makes  the heights  and crown  heights  within 

a given  stand more equal  than the other  di  
mensions.  The stand effects  are  more corre  

lated  than the tree effects:  the stand  stem 

curves  are more stable than the tree stem  

curves.  This is  quite  natural, because the 
stand effects  are  just  theoretical averages  of  
the  tree  effects.  

A better idea of a covariance  structure is 

attained through  the principal  components 

(see,  e.g., Morrison 1976).  Thus the charac  
teristic  roots  (=  eigenvalues  = latent roots)  

2 

Overall model 

Components  
3 4 

Regionalized  model 

Components  

3 4 

Between-stand 

1 .277 .313 —.542 —.516 .251 —.128 

2 .244 .419 —.175 .107  —.295 .235 

3 .244 .309 .195 .320  —.286 .041 

4 .229 .119 .349 .225 .068 .009 

5 .223 —.075 .332 .005 .339 —.336  

6 .200 —.261 .262 —.117 .289 .047 

7 .127 —.447 .020 —.267 —.099 .085 

8 .030 —.417 —.114 —.131  —.336 .320 

9 —.115 —.273 —.265 .262  —.310 —.145 

10 —.232 —.105 —.326 .362 .124 —.492  

11 —.362 .063 —.145 .266 .377 .242 

12 —.439 .143 .111 —.087 .243 .495 

13 —.504 .246 .337 —.435 —.361 —.369 

Between-stand 

.263 .509 —.425 —.358 .402 —.086 

.250 .428 —.073 .046 —.354 .143 

.254 .194 .244 .213 —.395 .057 

.237 —.005 .345 .256 —.046 .049 

.225 —.152 .315 .099 .368 —.375 

.197 —.290 .205 —.040 .275 .064 

.124  —.404 —.094 —.335 .043 .069 

.028 —.357 —.228 —.275 —.230 .344 

—.117 —.250 —.357 .134  —.334 —.142 

—.239 —.052 —.346 .382 .029 —.494 

—.368 .088 —.101 .379 .249 .303 

—.437 .139 .187  —.003 .236 .447 

—.495 .174 .375 —.501 —.244 —.378 

Latent  rootX  100 5.974 .147 .085 .022 .013 .003 

% of total variance  95.67 2.35 1.36 .35 .20 .05 

Cumulative % 95.67 98.02 99.39 99.74 - 99.94  99.98  

3.518 .095 .073 .018 .010 .003 

94.64 2.56 1.96 .49 .26 .07  

94.64 97.20 99.16 99.65 99.92 99.99 

Within-stand  Within-stand 

1 .297 .622 —.450 —.352  —.204 .130 

2 .291 .352 .052 .279 .331 —.320 

3 .277 .087 .331 .500 .215 .011  

4 .237 —.114 .306 .078 —.337 .471  

5 .208 —.207 .278 —.200  —.353 .146 

6 .160 —.273 .138 —.371 —.147 —.703 

7 .093 —.329 —.131 —.286 .499 .109 

8 .004 —.301  —.317 —.033 .315 .242 

9 —.134 —.208 —.379 .251  —.079 .065 

10 —.247 —.097 —.286 .341  —.306 —.157 

11 —.361 .060 —.026 .146 —.213 —.158 

.294 .629  —.447 —.348 —.204 —.127 

.289 .356 .064 .274 .339 .316 

.276 .085 .344 .495 .212 —.015  

.238 —.115 .306 .070  —.346 —.465  

.210 —.213 .267 —.202 —.349 —.145  

.162 —.276 .130 —.373 —.142 .703 

.095 —.329 —.144 —.278 .500 —.107 

.005 —.298 —.325 —.022 .309 —.250 

—.133 —.198 —.374 .259  —.079 —.066  

—.247 —.091 —.280 .352  —.308 .167 

—.361 .061  —.024 .142  —.209 .162 

12 —.432 .181 .203 —.090 .073 .030 —.433 .176 .203 —.098 .075 —.032 

13 —.469 .251  .331 —.268 .208 .135 —.471 .237 .331 —.275  .205 —.140 

Latent root X 100 2.295 .406 .174 .088 .053 .034 2.200 .398  .169 .086 .053 .034 

% of total  variance  72.50  12.82 5.50 2.78 1.68 .107 72.01  13.02 5.54 2.83  1.74 1.10 

Cumulative % 72.50 85.32 92.82  93.60 95.28 96.34 72.01  85.02 92.56 93.39  95.12 96.23 
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Fig.  7.  Variation  of  stem forms in  the directions of  the first  three characteristic vectors  of  the between-stand and  
within-stand covariance  matrices. The overall model  is  used; s=2.7 and  the relative size  is  zero. Each  principal  
component  is  ±  two times its standard deviation.  In the  subfigures  for the first principal  components,  the  
expected  stem curve is  also  shown (broken line).  

and characteristic  vectors  (=  eigenvectors  = 
latent vectors) were  computed  from  the es  
timated matrices  for the between-stand and  

within-stand covariances.  Note that princi  

pal  components are merely  used to illustrate  
the results  of  the analysis  of  the stem form  
variation; they  are not  'the' analysis.  Because  
we are  interested in the variation  of  the stem  

form, the characteristic  roots and vectors  

were  computed  from  the covariances  of pure  
stem dimensions,  i.e.,  crown  height  was  ex  
cluded. The first  six  characteristic  vectors, 

latent roots  (= variances of the principal  
components),  percentages,  and cumulative  
percentages of  the total variance absorbed 
by  each principal  component are presented 
in  Table 3 (total  variance is the sum of the 
diagonal  elements in a  covariance matrix).  
The first  three principal  components of  the 
covariance matrices  of the overall  model are 

illustrated  in Fig.  7.  Table 4  presents corre  
lations  of the principal  components with  the 
random effects  (the  crown height  is  in  

cluded).  
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Table  4. Correlations  of the  principal  components  with the random effects  for angles u=1,...,14 (u=l4 is  the  crown 
height). The between-stand principal  components  are correlated with the  random stand effects v(u),  and the with  
in-stand  principal  components  are  correlated  with  the  random tree  effects  e(u).  

The first  4—5 characteristic  vectors  are  

quite  similar  for  both the between-stand and  
within-stand  covariance matrices.  The vari  

ation of the between-stand effects  is  more  

concentrated in the directions of the first  

few  principal  components. This  can  be seen  
already  from the higher  correlations  in  the 
between-stand covariance matrix.  The first  

component is a 'thickness' component. 
When comparing  Figs.  6  and 7,  we see  that 
the effect  of relative size  is very similar  to 
the effect  of  the first  principal  component. 
The second component is  associated  with 
the variation in  the middle of  the stem. 

Fries  and Matern (1966)  also  used princi  

pal  components to analyze  the stem form of  
birch.  Their analysis  is  based on measure  
ments made in arithmetic  units. This ex  

plains  their surprising  result  that the vari  
ation of  butt  swelling  is  the most  important  

part in the  variation of stem form. The 
principal  components of Fries  and Matern 
and also of Liu and Keister (1978)  were  
computed  using  the sample  covariance  mat  
rix.  The first  component in their studies is  
the size  component, hence almost  all  of the 
apparent variation  is obviously  in this  direc  
tion. From this fact Liu and Keister in  

correctly  concluded that the other directi  
ons of  the variation are not  important.  

Vector (33.1)  used to define the size  is 
one  of  the characteristic  vectors  of  both the 

between-stand and within-stand covariance 

matrices  up to the accuracy  of  three  signifi  
cant digits.  For  both matrices  there is prac  
tically  no  variation (less  than 4 •  10~6  %  of  
the total variance)  in  the direction of  the size  
vector.  This  observation  can be used to jus  
tify  the approach  to treat size  as  a  fixed  va  
riable (a  more  detailed discussion  will  be  gi  

Overall model Legionalized  mod' 

Components  

3 4 

Components  

3 4 

Between-stand  Between-stand 

1  

2  

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

.953 .169 —.222 —.107 .040 —.010 

.960 .258 —.082 .025 —.053 .020 

.972 .193 .093 .077 —.052 .004 

.979 .080 .179 .058 .013 .001 

.980 —.051 .174 .001 .068 —.033 

.966 —.197 .151 —.034 .064 .005 

.869 —.480 .016 —.111 —.031 .013 

.393 —.868 —.180 —.105 —.205 .094 

—.894 —.334  —.246 .123 —.111 —.025 

—.978 —.069  —.164 .092 .024 —.046 

—.996 .027 —.048 .044 .047 .015 

—.998 .051 .030 —.012 .025 .025 

—.992 .076 .079 —.052 —.033 —.016 

—.700 .044 —.049 .018 —.002 —.003 

.924 .293 —.215 —.091 .074 —.008 

.958 .270 —.040 .013 —.071 .015 

.978 .123 .135 .059 —.080 .006 

.976  —.003 .205 .076 —.010 .006 

.969  —.107 .195 .031 .083 —.044 

.959 —.232 .144 —.014 .070 .009 

.865 —.465 —.095 —.169 .016 .013 

.370 —.765 —.427 —.259 —.158 .122 

—.860 —.303 —.379 .971 —.129 —.028 

—.971 —.035 —.202 .112 .006 —.055 

—.995 .039 —.039 .074 .035 .022 

—.996 .052 .061 —.001 .028 .028 

—.989 .057 .108 —.072 —.026 —.021 

—.389 .022 —.021 .011 —.004 —.001 

Within-stand Within-stand 

1 

2 

3 

4  

5 

6  

7 

8 

9  

.0 

.1 

.2 

3 

4 

.704 .619 —.293 —.163 —.073 .037 

.851 .433 .042 .160 .147 —.114 

.876 .116 .288 .310 .103 .004 

.863 —.175 .307 .056 —.187 .208 

.803 —.337 .295 —.151 —.207 .068 

.684 —.490 .163 —.310 —.095 —.363 

.447 —.663 —.173 —.268 .365 .063 

.023 —.698 —.482 —.035 .264 .162 

—.636 —.414 —.495 .233 —.057 .037 

—.877 —.145 —.279 .237 —.165 —.068 

—.968 .067 —.019 .077 —.087 —.051  

—.967 .170 .125 —.040 .025 .008 

—.944 .213 .184 —.106 .064 .033 

—.226 .009 —.013 .011 —.007 —.004 

.693 .631 —.292 —.163 —.075 —.037 

.844 .443 .052 .159 .154 .114 

.871 .115 .301 .309 .104 —.006 

.860 —.177 .307 .050 —.194 —.208 

.802 —.346 .282 —.153 —.207 —.069 

.682 —.494 .152 —.311 —.093 .366 

.450 —.660 —.188 —.260 .366 —.062 

.027 —.691 —.491 —.024 .261 —.168 

—.634 —.402 —.495 .245 —.059 —.039 

—.875 —.138 —.276 .247 —.170 .074 

—.967 .069 —.018 .076 —.087 .054 

—.967 .167 .125 —.043 .026 —.009 

—.945 .202 .184 —.109 .064 —.035 

—.169 .007 —.011 .009 —.005 .003 
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ven in  section 44).  

Covariance matrices  are  always positive  
definite or  at least  positive  semidefinite;  a 
special  case  is  the positiveness  of  variances.  
However,  the obtained estimate  of  the bet  
ween-stand covariance matrix  B is  positive  
definite neither for the overall  nor  for  the  

regionalized  model:  the  last  three charac  
teristic  roots  are  negative,  the absolute value  
of the  smallest  one being  0.03 % of  the total 
variance. There is  nothing  intrinsic  in the  
estimation method used to prevent  the  esti  
mated matrix  from being  indefinite. These 

problems are  widely  discussed  in  the context  
of variance component estimation (see,  e.g.,  
Snedecor and Cochran 1980);  Amemiya  

(1985) presents  the problem  in a form rele  
vant  to this  case.  See also  Marquardt  (1970)  
for a good  discussion of the dimensionality  
problem  in the context  of  usual  regression  
analysis.  

In the present  case  the negative  charac  
teristic roots  are so small in absolute value 

that the problem  of definiteness is  more 
theoretical than  practical.  The between-stand  
covariance matrix  is needed when the model 

parameters are  estimated and,  in a slightly  
different way,  in the applications.  In this  

study  the definiteness  problem  is  handled in 
three  different ways:  

i)  When  the  fixed parameters  are estimated  separately 
for each angle only variances  are needed and, therefore, 
the estimated indefinite matrix can be  used  as such. 

ii) For  small regions,  fixed parameters  are estimated 
simultaneously for all  angles. Hence  the  covariance  
matrix  must  be inverted. In this  case a small constant is 

added  to the  diagonal elements  to obtain a positive  de  
finite matrix.  This is  essentially  the 'ridge  regression' 
solution to the singularity  problem in  the regression 
analysis  (see,  e.g., Marquardt  1970). 

iii) In applications the problem  is  reformulated using 
the first few principal  components,  i.e., it is assumed 
that the  variances  of the  other principal  components  
are zero. This  is analogous  to replacing  the  negative va  
riance  estimates  by zeros in  the  variance  component  
estimation.  The method of Amemiya  (1985) for esti  
mating covariance  components  is based  on the  same 
idea,  but he defines the characteristic vectors and roots 
in  the  metric  defined by  the within-group  mean square  
matrix.  After  this  modification, or after adding a  con  

stant  to the diagonal elements, the covariance  matrix 
used is  no  longer  an unbiased estimate  of the true co  
variance  matrix. 

Let  us briefly  consider  the distributions 
of  the stand and tree effects;  variances  of  the 
estimates  of fixed parameters are  ignored  in 
the following  discussion. When the fixed  
parameters  are  estimated,  estimates  of the 
random stand effects  will  also  be obtained 

Fig.  8. Frequency  histograms of  the estimates  of  v(4)  (a)  
and e(4)  (b)  and the corresponding normal density 
functions; the overall  model.  

(see  Appendix  A.2). Using  the estimated 

parameters  and stand effects,  the tree  effects  
can  also  be estimated (predicted)  by  the ob  
served residuals. If  the random stand and  

tree  effects  are  normally  distributed, their 
estimates  are  also  normally  distributed  but  
do not have the same variances as  the ran  

dom effects  themselves. Furthermore,  the 
variances  of the  estimates vary  from stand to 
stand depending  on  the number of  trees in 
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the stand.  The estimated random effects  

should,  however,  have a symmetric distri  
bution. But their distributions are  not exact  

ly  symmetric  (Fig.  8):  there are  more very 
thick stands (stems)  than very thin stands 
(stems).  Therefore,  neither the random 
stand effects nor the tree  effects  can follow 

precisely  multinormal distributions,  alt  
hough  deviations from normality  are  proba  
bly  quite  modest.  

44. Consistency  of  the model 

Let  us return  to the consistency  of the 
model with  respect  to  the definition of  size.  

According  to (41.3):  

Multiply  for each u=1,...,13 both sides  
of  the equation  by  w(u)  given  in  (33.2).  If  we 
add  all  these equations,  the left  side  will  be 
by  definition (33.2)  equal  to Thus we 
have: 

The system is  theoretically  consistent  if  
the above  equation  is  always  true, i.e.,  iden  
tically  true with respect  to the fixed vari  
ables (s 2

,  s, s and the  constant term),  and 
true with probability  one with respect  to 
random variables  (v  and e).  

In section  43 vector  w = [w(1),
...

 w(l3)]'  
was  found to be among the  characteristic  
vectors  (up to a multiplicative  constant)  of  
both between-stand and within-stand ef  

fects,  and the associated characteristic  root  
indicated practically  no  variation in this  di  
rection.  Thus the following  consistency  re  
quirements  seem to be fulfilled  rather close  
ly:  

Equation  (44.1)  is  identically  true with  

respect to the fixed  variables,  if  the fixed  

parameters  satisfy  the constraints:  

These sums  were  computed using  the esti  
mated parameter values for  the overall  mo  
del and for different regions  in the region  
alized  model; the results  were given in  Table 
1. These sums are  sufficiently  close to the 
required  values to justify  this  approach.  The 
constraints  should be  formally  tested using  
the multivariate  model. For computational  
reasons,  however,  the multivariate model 

can be used only  for  some regions  in the  re  
gionalized  model,  for which the constraints  
are so  closely  satisfied  that they  need no  test  
ing.  For  the  overall  model or  for large  re  
gions in  the regionalized  model,  comparison  
with the standard deviations of  the param  
eter estimates  indicates  strongly  that  the  vali  
dity  of the constraints  would also  pass  a 
formal test. It was  not  considered to be ne  

cessary  to re-estimate  the parameters subject  
to the constraints  (44.4) —(44.7).  

dki( u)  = »o(u) + al(u) ski  + a2(u) sfe  + 

a3(u)Sk.  +  vk( u)  +  ek,( u). u=l,..  ~13. 

13 

Ski= 2 w(")4i(u )  = 
U=l 

2 w(u)ao(u) +  X w(u)a,(u)ski + 
u=l u=l r"- 1 .) 

13 13 

2 w(u)a
2(u)s|,  +  2 w(u)a3(u)s k + 

u=l u=l 

13 13 

2 w(u)vk(u)+ 2 w(u)eki(u).  
u=l u=l 

13 

2 w (u)vk( u )  =O, and (44.2)  
u=l  

13 

2 w(u)eki (u)  =O. (44.3) 
U=l 

13 

2 w(u)ao(u) =O, (44.4)  
u=l 

13 

2 w(u)a,(u)  =l, (44.5)  
u=l 

13 

2 w(u)a
2
(u) =O, and (44.6) 

u=l 

13 

2 w(u)a3(u)  =O. (^4.7) 
u=l 
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5.  APPLICATION TECHNIQUES 

51.  Reversing  the role of variables and 

parameters  

After  the analysis  stage, we can assume  
that we know the variances and covariances  

of the  stand effects  (v)  and the tree  effects  
(e),  as  well as  the values of the fixed  par  
ameters  (ao,  aj,  a  2,  a 3) at  the knot  angles.  It 
is  assumed  further  that  we can interpolate  
the fixed parameters and covariances  for  all  
other angles  by  one-  or  two-dimensional cu  
bic  splines.  In applications  of the model,  
stem curves  are  to be predicted  if  any  di  
mensions are  measured from trees  in  a given  
stand. This chapter  describes how standard 
linear methods can  be used to predict  stem 

curves  and  stem volumes. 

Using  the second formulation (41.4) of 
the model,  a  measured  diameter d(u;j)  of tree  
i  and measurement  angle uj; can  be  express  
ed:  

Stand index k  is  dropped  because we are  

considering  a given  stand. The unknowns 
are  s;  (for  each  tree  i),  s (for  the stand)  and 

v(ujj) (for  each measurement angle  in  the 
stand).  During  the analysis  stage, sj  and s 
were  known and the a-parameters were  esti  
mated. In applications  we assume  that the 

a-parameters are  known,  and s;  and s are  
being  estimated. Thus the role  of par  
ameters and variables is changed.  The 
measured dimensions enter into the model 

as  dependent  variables and not as  explana  

tory variables,  as  in the standard regression  

approach.  
The equation  is linear with  respect  to the 

unknowns s£  s;  and s.  However,  there exists  
a nonlinear constraint for  the unknowns  

and  s;,  i.e.,  sj—  SjS;.  But  the a2(u)-coefficients  
are so small  that the function a2(u)s2 + 

aj(u)s  is  almost linear  and  can  be  approxima  
ted  very  accurately  by  the first  order  Taylor  
series.  The approximation  is  the better  the 
closer  s;  is  to  the point  of  expansion,  denote 

it  s;.  A rather good estimate  of  s;  is  obtained 
by  taking the random effects  (v  and e)  and 
the relative  size  to be  zero  in (51.1) and by 
solving  the resulting  quadratic  equation  for 
s;. If several  dimensions have been measured 
for  tree  i, then the  preliminary  estimate  s;  is  
computed  from the lowest  measured diame  
ter  (the  average could also  be  used).  

The  first order  Taylor  series  estimate  for 
a2(uij) s?  is  then: 

The preliminary  estimates  s;  are  also  used 
to estimate  average size  (s)  and  relative  sizes  
(s;—s).  When these  approximations  are  ma  
de,  the  model  (51.1)  can be written in the 
form: 

Denote the left  side  by  y(u;j)  and the coef  
ficient  of S|  by  a(u;j),  i.e.,  

Then (51.3) can  be expressed  as  an  ordina  

ry  mixed linear  model 

The model contains ordinary  random 
stand effects  v(u). A better  way  to take the  
random stand effects  into account  will  be 

discussed in the next  section.  

52.  Describing  random stand effects  

using  principal  components 

Let  us then consider  the estimation of  the  

random v-parameters. If diameters have  
been measured at  the  same angles  in differ  

d(u
:j

)  =  ao(Uij)  + + a2(u ij)s?   

a3<uij)  (Si—S) +  v(Ujj)  +  e(Ujj). 

a2("ij)s?  =  a2(uij)s?+  2a
2(uij)s i s i . (51.2) 

d(«ij) ao(Uij) +  a2(u ij)s?+  *3(Uij)(  Si—s)  = 
(51.3) 

[2a2(Uij)Si  +  a;(uij)]s;  +  v(u;j)  +  e(u;j ).  

y(Uij)  = d(Ujj) aofuij)  + (51.4) 

a
2(«ij)sf  +  a3(u;j )( s;

—s),and  

a(u ij)  = 2a 2(«.j)Si +  aJ(Ujj). (51.5) 

y(ujj)  = a(u;j)si  + v(ujj)  + e(ujj). (51.6) 
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ent  stems,  we  could just  use  the standard es  
timation method described in Appendix  
A. 2. But in practice  only  the height  and 
crown  height will  be measured  at 'fixed' an  
gles.  Other diameters are  usually  measured 
at  absolute heights,  which correspond  to  dif  
ferent angles  in the polar coordinate  system.  
Although  it  would be  technically  possible  to 
estimate  a separate v-term  for  each measure  
ment  angle,  this would not be reasonable 

computationally  or  for  the construction of  
the  final stem curves.  

As noted,  the dimensionality  of the stand  
effects  is  low. Already  3 (5)  first  principal  
components absorbed over  99  % (99.9 %)  of  
the  total between-stand variance  both  in the  

overall  and regionalized  models (Table  3).  
Thus v-effects  can  be  expressed  virtually  
without  error  in terms  of 3—5 first  (un  
known)  principal  components.  

Let us  first consider the  determination of 

the v-effects  at the knot  angles.  Let v'  = 
[v(1), ...,

 v(l3)]  be  the vector  of  the v-ef  
fects,  let  qk be the characteristic  vector  
with elements qk(u), u=1,...,13, and let  Q 
be the matrix  having  the characteristic  vec  
tors  as its  rows.  Denote the vector  of the 

principal  components by c  where =  
Then 

Since  Q  is  orthogonal,  

If  only  the first  p  characteristic  roots  are  

nonzero,  then  var(ck)  = 0  for  k  = p  + 1,..., 

13,  and hence Ck  =o,k  = p  +  1,...  ,13  with 

probability  1.  Thus for  u = 1,...,13 

When using  the estimated characteristic  

vectors,  the above expression  is only  appro  
ximative.  

The same expression  (52.3)  is  obtained 
when v(u)  is regressed  on  the first  p  princi  

pal  components. This  can  be seen  by  noting  
that the principal  components are  uncorrela  

ted,  var(c|J  =   
istic  root),  and cov[v(u),qJ  = Thus,  
when regressing  v(u) on the regression  
coefficient  is  cov[v(u),Ck]/var(ck)  = qk(u).  

We should,  however,  express  a  v-effect  at  

any  angle  in terms  of  principal  components. 

The v-effects  change  smoothly  with the  an  

gle  u, so  we  may  assume  that the coefficients  

qk(u)  can  be interpolated  by  cubic  splines.  
The first 5 vectors seem to be smooth 

enough  for  interpolation.  Denote by  qk(uij)  
the (interpolated)  coefficient  of  the k l *l  prin  
cipal  component at  angle  ujj.  Then:  

The model can now be  stated  for  the jth  
measurement of  tree i: 

Finally  the model is  in  a  form  where stan  
dard estimation procedure  for  mixed linear 
models can be applied.  The parameters to be 
estimated are  the  size  s;  for  each tree  i  and  
the values of  the first  p principal  compo  

nents, i.e., ck,  k=1,
...

 ,p.  Because the  
rameters  are  random, and s;-parameters  
can also  be estimated in case  there are fewer 

measurements  than parameters. The special  
matrix  structures  needed in the parameter 
estimation are  presented  in Appendix  C.l,  
including  the case  where the sizes  of  stems  
are assumed  to be random parameters.  If  the 
size  is considered to be random,  the model 

does not  contain any  fixed parameters. 
At  an earlier  stage of  the study,  v(u;j)'s  

were  expressed  in terms of  v(1), ...,  v(13), 
i.e., the v-effects  at  the knot angles  were  the 
random effects  to be  estimated as  in  the ana  

lysis  stage. Results  were  virtually  the same. 
The  approach  based on  the principal  com  
ponents was chosen for  computational  re  

asons:  smaller  linear  systems  need to  be sol  
ved.  

We will  next  consider  prediction  of  diam  
eters  at  the knot  angles.  When deriving  pre  
diction formulas, the  size  is  assumed  to be a 
fixed parameter. The formulas can easily  be 
extended  to the case of random size.  The 

characterization of size  as  a random par  
ameter  is discussed later  in section  71. 

53. Stem curve  and volume of  an 

individual tree  

At this  point  we  assume  that we  have esti  
mated the size  s;  of  stem i  and the first  p 
principal  components of the stand effects,  

Ck, k=1,...,p.  The problem  is  then to pre  
dict  the stem curve  of  stem i at  knot  angles  

c = Qv. (52.1) 

v  = Q'c. (52.2) 

v (u )  =I,  qk(")ck- ( 52-3)  
k=l  

v(u.j)  =  £  Ik(Uij)ck- (52.4) 
k=l 

y(Ujj)  = a(ujj)s;  + £  qk (Uij)ck  +  e(u ;j). (52.5)  
k=l 
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u=1, ...  ,13.  The principal  task  is to predict  
the y-variable  defined  in (51.4)  for  the  knot  
angles.  The predictor  and its  error  variance 
are derived in detail in Appendix  C.2.  The  

predictor  of  the  y-variable  for  stem i  at  angle  
u is  found  to be:  

where z(u)'  = [qi(u),...,  qp(u)]  tells  how 
the random stand effect  v(u)  is  obtained  
from the principal  components; c' = 
(q, ...,  c p

)  is  the vector  of estimated  princi  
pal  components of  the stand  effects;  Wj'  = 

[W(u,u;i),
...,  W(u,U| mi)  ]  contains the covari  

ances between e;(u) and  the e-terms  of  the 
measured dimensions; R;=var[e(uji), ...,

 

e(uj  mj)  ] is  the variance matrix  of  the e-terms  
of  the measured dimensions,  and (y; —s;a;— 

Zjc)  is  the vector  of  residuals for  stem i, 
when the measured  dimensions are  predicted  

by  the stand stem curve,  i.e.,  using  the esti  
mated random stand  effects  (and size).  The 

predicted  log-diameter  is obtained from 

yi(u)  using  definition  (51.4): 

Omitting  the complications  caused  by  the 

s-  and sf-terms  in the model,  the prediction  
of  diameters  at the knot angles is  easy  to 
understand. We calculate the deviations of 

the measurements  from  the predicted  values 
obtained using the estimated size  of the 
stem and the estimated random stand ef  

fects.  Deviations at  the knot  angles  are  then 
predicted  for a given  stem using  the  ob  
served deviations as explanatory  variables; 
the regression  coefficients  are  obtained from 
the within-stand covariance matrix.  Thus 

the observed residuals are used to predict  
the 'unobserved residuals' in the same way  
as  known e-terms  at the measurement  angles 
would be  used to predict  other e-terms.  

If  size  is  a  fixed parameter, then the pre  
dictors  of  the logarithmic  diameters are  un  
biased  for the given  (unknown)  size.  If,  in  
addition  to stand  and tree  effects,  also  size  is  

normally  distributed with a known mean 
and variance,  then  the predictors  are  condi  

tionally  unbiased for  the measurements.  It is  
not  possible  to have a  predictor  that is  con  
ditionally  unbiased both for the given  un  
known  size  and the measurements.  

Determination of unbiased predictors  in 
the arithmetic scale  is based on  the assump  

tions of  normality.  Let  y  be a  normally  dis  
tributed  random variable with mean n  and 
variance a 2,  then z=ey  is a  lognormally  dis  
tributed variable having  t l̂  moment (e.g.,  
Flewelling  and Pienaar  1981): 

From this  formula we get the mean of  z  

(t  = 1): 

If  size  s is  fixed,  we will  get unbiased pre  
dictors  of  diameters in  the logarithmic  scale  
for  the given  unknown size.  In this  case  n  is  
the fixed part  of the model (41.3).  To sim  
plify  the following expressions,  angle  u is 
not  explicitly  written in D(u),  d(u),  y(u),  
v(u), or  e(u). Now, 

Note that var(d)  = var(v)  +  var(e)  = B(u)  + 

W(u)  and var(d)  = var(y).  As  var(d)  is  not  
generally  equal  to var(d),  ex  P(<J)  is  biased  for  
D. An unbiased predictor  for  D  is  obtained 

by:  

For  the normally  distributed random size  
we can get  predictors  of diameters  in the  
arithmetic  scale  that are  conditionally  unbi  
ased  for  the fixed  measurements.  In this  case  

dis  the conditional mean and var(cl—d)  the 
conditional variance. Thus a  conditionally  
unbiased predictor  in  the arithmetic  scale  is  
obtained by:  

Using  formula  (53.4)  (or  53.5,  if  applica  
ble)  we get unbiased predictions  for  the  di  
ameter  at a given  angle.  We may also  be in  
terested in  getting  an  unbiased predictor  for  
the diameter  at  a  given  height.  If  we  convert  
the predictor  £)(  u)  directly  from the polar  
coordinates to the corresponding  predictor  
F>

H(H)  expressed  as  a  function  of  height,  
then £)

H(H)  is  biased  for  a  given  height  un  

y; (u)  = a(u)Sj  + z(u)'c  + w/R-^y—sia —Z,c), 

dj(u)  =  y;(u)  +  ao(u) a
2
(u)sf a

3 (u)(Sj— s ) (53.1) 

Efz 1)  =  exp(t/i  +  j  tV). (53.2) 

E(z)  =  exp( M  +  i«2). (53.3)  

E(d)  = E(d)  = 

E(D)  = E[exp(d)]  =  exp[/j  + and 

E[exp(d)]  = exp[/j  +  j  var(d)]  

D  = exp{<3  +  4  [var(d) var  («!)]}• (53.4) 

D  =  exp[d  +  var(d—d)  ] (53.5) 
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less the stem curve  is  linear.  Computational  

experiments  with the predicted  stem curves  
indicated, however,  that this  bias  is  negligi  
ble.  

One of  the main applications  of the stem 
curve  model is  to predict  the volume of  the 
whole stem or  different stem segments.  The 
first  problem in determining volumes is  
terminological:  Should we 'predict'  or  'esti  
mate' volumes? We 'predict'  diameters at 
different angles,  and the volume is  deter  
mined by  integrating  squared  diameters,  i.e.,  

'predicted'  cross-sections.  Thus we are  also 

'predicting'  volumes. But the stem volume is  

very closely  associated with the  size  of  the 
stem,  and size  is (for  most  of the time) 
treated as a fixed parameter. Hence we 
could also  'estimate' the volume. In the fol  

lowing,  volume is  'predicted',  if  the integra  
tion of  the 'predicted'  cross-sections  is em  

phasized.  Otherwise  volume is  'estimated'. 
Let us then consider how to obtain an 

unbiased volume predictor  from the predict  
ed logarithmic  diameters. The volume  is  
predicted  by  integrating  the cross-sectional  
areas.  In case  the stem  size  is  assumed  to be 

fixed, the volume predictor  is  unbiased if:  

From (53.2)  we  get  

Using  arguments similar to those above 
for  the unbiased predictor  of  D,  an  unbiased 

predictor  for  D  2  is  found to be:  

Thus  the corresponding  'volume unbi  
ased' predictor  of  D  is:  

Similarly, for  random size the 'volume 
unbiased' predictor  is:  

As  the polar  coordinate system was  de  
fined by  expressing  height  in  meters  and di  
ameter  in centimeters,  the volume cannot  be 
obtained  by  integrating  the  stem curve  di  
rectly  over the angle. Any function defined  
in polar  coordinates can,  however,  be con  

verted to the  corresponding  function,  where 
height  is  the argument variable. Then the 
integration  can  be done in  the usual height  
diameter coordinate system. Integration  
over  height  can also  be applied  when pre  
dicting  volumes of  different  stem segments 
and is  easy  to compute. With splines  the 
conversion  from polar coordinates  to height  
coordinates is  simple.  First  the predictor  
£>(  u)  is  computed  for  the knot angles.  Then 
points  (£)(u)tan(u),  £>(  u))  are  used as the 
knot  points  when defining  the stem curve  
splines  in  height  coordinates. 

When the predicted  stem curve of a  thick 

stem is  converted from  polar  coordinates to 

height  coordinates,  the heights  correspond  

ing  to adjacent  angles can be very near to 
each  other.  If  cubic  splines  are  then defined 

expressing  the knot  points  in  height  coordi  

nates, these splines can have wild oscilla  
tions. To  prevent  this  oscillation,  points  we  
re merged  whenever they  were  closer  than 
half a percent  of  the total height  of the tree. 
The arithmetic  mean of  the height  and di  
ameter coordinates seemed to work as well  

as  the more  sophisticated  methods tested.  
The estimation  procedure  can  be applied  

if  any  combination of dimensions is  mea  
sured  for different trees  in the stand. How  

ever, the computations  can be simplified  if  
only  one dimension is  measured for  some 
trees  and size  is  treated as fixed.  According  
to forestry  practice,  trees with  one  measured  
dimension are called tally  trees. A single  
measured dimension is  needed to estimate  

the size;  it does not  contain any  information 
about the stem form. The estimation can 

thus be made in two different stages. First,  

we ignore  trees  with one measured dimen  
sion  and estimate  the stand  effects,  sizes  and 
stem forms  as  described earlier.  In the se  

cond stage we estimate  the sizes  and stem 
forms of  trees  with one measured dimension 

using  the  estimated  stand  stem curve  (esti  
mated random stand  effects).  This  intuitive  

ly sound procedure is presented  more  
formally  in  Appendix  C.3.  

In many stem curve  problems  error  vari  
ances are also  needed. For the predicted  
stem curve,  variance of  the  relative  errors  is  

given  by  var(d—(3).  The exact  derivation of  
the volume estimation errors  would be rath  

er difficult,  because the volume is  predicted  

by  integrating  the stem curve  in arithmetic  
units.  An approximative  description  is  based 
on the close  relation  between the size  pa  

Ep2)  = E(D 2 ).  

E(D2)  = exp(2  M+ 2  o  2).  

(D
2
) exp  {2<l  +  2[var(d) var(d)  ]}.  

D  =  exp[d  +  var(d)  var  (<})]. (53.6)  

D  =  exp[d  +  var(d — d)]. (53.7)  
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rameter  and the volume of the stem. 

The total variance and the variance  com  

ponents of  s are  easily  obtained. The total 
variance of sj  is just  the i tb diagonal  element 
of the inverse  of  the coefficient matrix  H of  
the linear  system  formed to estimate  the size 

parameters and the  stand effects  (see  Ap  
pendix  A.2  and C.l).  As  discussed  in  general  
terms in Appendix  A.2,  any  s;  is  a linear 
combination of  the observed  y's, and hence 
also of the within-stand random effects  e of 

all trees and measurements in the stand. 

Then,  the within-stand variance of  s;  is de  
fined as  the variance  of  s;  with  respect  to the  
within-stand random effects e(u;j)  of  the 
same tree  i:  the within-stand variance is the  

conditional variance of s given the  random 
stand effects  and  the random within-stand  

effects  of other trees.  The between-stand 

variance is  then  obtained  by  subtracting  the 
within-stand variance from the total var  

iance. 

More precisely,  s;  is  of  the form 

where t;  is  some vector  and  

Thus the variance of  s;  with respect  to e;,  
var

w
(sj),  is 

where R;  =  var(ej).  

The  derivation of an explicit  expression  
for t;  in  terms of  the quantities  of  Appendix  
C.l  is  straightforward  but  less  informative  
and is omitted  here. For  the tally  trees  (i.e., 
trees  with  one  measured  dimension)  the vari  

ance components can  be  derived more di  
rectly.  If  only one dimension has been mea  
sured  for tree i, i.e., the diameter at angle 

u;i, then  according  to (C.3.10)  s;  is:  

where a(u;i)  is  defined according  to (51.5). 
Thus in this case  the within-stand variance 

is  

where W(ujj)  = var[e(u;i)].  The total var  

iance of s;  for  this  special  case  is  given  in 
(C.3.12).  

After computing  the within-stand var  
iance var

w
(sj)  and the total variance var

t
(s;),  

the between-stand variance varb(sj)  is  simply:  

Because the within-stand errors  are un  

correlated for different trees, we have: 

If the measurements  are  made at  absolute 

heights,  we get different estimates  for  be  
tween-stand and within-stand variances for 

different trees. Thus the error  of is  of  the 

form  

The theoretical  estimates of variance  

components are  later compared  with  empiri  
cal  estimates. In the empirical  descriptive  
model we have a  single between-stand  error  
for  all  trees  in the same stand. The theoreti  

cal  between-stand variance  is  more compar  
able  with  the empirical  one if  we  write  first: 

Thereafter,  the between-stand  variance 
can  be interpreted  as:  

In this way  the between-stand variance 
will  be the  same for  all  trees in the stand. 

The variance components of the loga  
rithmic  volume errors  (or  relative errors  of 
volume estimates)  can be obtained from the 
respective  variance  components of the size  
parameters  using  the relation 1n(V)=3.042s  
+ constant  (Eq.  33.4):  

S;  = tj'e; +  additional  terms,  

ei'  = [e(ui,)>  ...  i  e(u;
jm

.)].  

varw(Si)  = ti'R.t;, (53.8) 

S;  = e(u;,)/a(u ll
)  +  other terms, 

varw(S|)  = WtUiO/afu;,)
2, (53.9) 

var = var tC si) varw(s,)- (53.10)  

coVw(s
;i)

s
i  2)  =O,  and (53.11)  

covb(s
11

,si  2)  =  cov
t (s

M
,s

12
)  for  i, * i  2. (53.12)  

ski
—s

ki  -  bk,  +  eki.  

sr.— = bk. + (bk,— bk.  + ek,)- (53-13) 

varb( s ki —
§ ki) =  var(bk.)  -  

(53.14) 
[  S  Icov[bkll,  bkl2 )]/n2.  

'l '2 

var[ln(V) ln(V)] =  var[(V—V)/E(V)] = 3.0422var(s).  
(53.15) 
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54.  Measurement errors  

In practice,  all  measurements  contain er  
rors.  If the true diameter is  defined  to be  

the diameter of the circle  having  correct  
cross-sectional  area, then the noncircular 

form brings  about  errors  that  are  compar  
able to 'pure' measurement errors (see 
Matern 1956).  Let d

m
(u)  be the measured 

diameter in  logarithms  for  the angle  u, then: 

where e m(u)  is the measurement  error  in the 
polar  coordinates.  A  later discussion  will  in  
dicate how e

m
(u)  relates  to the correspond  

ing measurement  error  in  the height-diam  

eter  coordinates. 

Let us  assume  that  

Furthermore,  measurement errors  are  as  
sumed to be mutually  uncorrelated and also  
uncorrelated with the  random stand or  tree  

effects.  The variance  of  the measurement er  

rors  may be  a  function  of  d(u). For  practical  
purposes,  the variance may  be  equally  well  
determined  as  a function of d

m(u).  For in  

stance,  if the error  variance is a  constant  c  in 
the arithmetic  scale  for a diamater measure  

ment  D
m,

 then,  using  the first  order  Taylor  
series  approximation,  the  logarithmic  error  
variance is 

If  measurements  are unbiased in the 

arithmetic  scale,  they  have a  bias in  the loga  
rithmic  scale;  this  bias  is, however,  negligible  
for  realistic  measurement  errors  (see  section  
53 for  the connection between the  expecta  
tions in the arithmetic  and logarithmic  

scales).  
When the stem sizes  and random stand  

effects  are  estimated,  the random tree  effect  

e(u)  and the measurement error  e
m

(u)  to  
gether  form a  combined random tree  effect, 
denoted by e

s.(u):  

This new tree  effect  behaves exactly  like  
the previous  e(u).  The only  difference is  that 

the variance of the measurement errors  will  
increase  the variance: 

The covariances  remain unchanged:  

Thus the new within-stand covariance  

function has a jump on the line U]=U2. In 
short,  the stem sizes  and the random stand 
effects  are  estimated as  described in Appen  
dix C,  the only  difference  being  that we add  
the variances of the measurement  errors  to 

the diagonal  elements of R,  the covariance 
matrix of  the within-stand effects.  

The stem curves  are  then predicted  as  

previously  using  the formula (C.2.8).  The 
diagonal  elements of  R;  are  only  augmented  
by  the variances  of  the measurement  errors,  

as in the estimation of the stem sizes  and 

stand effects.  Because  the measurement er  

Fig.  9. Measurement  errors  in  the  polar coordinates dif  
fer from  those in the height-diameter coordinates. 
H

m
 is the  height of the  measurement,  D

m
 is the 

diameter  at H m according to  the erroneous measu  
rement,  D(H m

)  is  the true diameter  at H
m

,  uis the  
angle of the  measurement in  the  polar coordinates, 
and  D(u)  is the true diameter at angle  u. The 
measurement errors are  E1+E2  and E2  in the height  
diameter  coordinates  and  in the  polar coordinates, 
respectively.  

d
m(u)  = d (u)  + em(u)> ( 54-!) 

E[e m(u)]  = 0,  and (54.2) 

var [ em(u)]  
=

 am(u)- (54 - 3 )  

a  2 = c/D
2 . (54.4) 

mm v ' 

e,(u)  = e(u )  + em(u )- ( 54 - 5 ) 

varfeju)]  -  var[e(u)]  +  var[e
m (u)]  =W(u)  +  a2Ju). 

(54.6) 

cov[e,:-(ui), e.(u2)]  = cov[e(Ul ),  e(u2 )]  =  W(u l; u2). (54.7) 
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rors  do not change  the within-stand covar  
iances,  the vector  w,  is  the same as  when no 
measurement errors  occur.  

In practice,  variances  of  the measurement  
errors  are  evaluated in the height-diameter  
coordinates. The measurement errors  for  

height are  the same in both coordinate sys  
tems. Measurement errors  of diameters in 

the height-diameter coordinates can be 
transformed to the polar coordinate system  

using  the following  approximative  proce  
dure. Assume that the stem curve  is  linear  

around the height  of  the measured diameter. 
Denote according  to Fig.  9:  w is  the angle  
between the stem curve and the horizontal 

axis, u is  the angle  of the measured point  in 
the polar  coordinates,  E=Ej  +E2 is  the 
measurement error  in the  height-diameter  

coordinates,  and E  2  is the measurement er  
ror  in the polar coordinates  for angle u. 
Then: 

Hence 

Fig.  10. Coefficient f defined in  (54.9)  as a function of 
u. 

Thus the standard deviation of the mea  

surement errors  in the polar  coordinates is  
the usual standard deviation multiplied  by  f  
defined  in (54.9),  where tan(w)  can  be com  
puted from the average stem curve. Fig.  10 
shows f  as  a  function of  u. 

In the presence of measurement errors,  
the predicted  stem curves  do not  go through  
the measured points  (Fig.  11): the measure  
ment errors  can be corrected to some ex  

tent. In addition,  the stem form model can 
be used to analyze  the effect  of  measure  
ment errors  when different measurement 

devices  and strategies  are  compared. 

Ejtan(w) = E2tan(u), or  

E( E
2tan(u)/tan(w). 

E=EJ  +  E  2  =[l  +tan(u)/tan(w)]E2 , or 

E 2 fE,  where (54.8) 

f [  1+  tan(u)/tan(w)] —1 (54.9) 
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Fig.  11. When  measurements  contain  errors,  the  predicted stem curve is shifted towards the  average  stem curve. 
Assume  that D,  3  is measured without error. In Fig.  11a  the predicted  stem curves  are for measurements:  (1): 
D

j 3=20 cm;  (2):  D,  3=20  cm,  H=19  m, and His  measured without  error;  (3):  D 13
=20  cm, H=19  m,  and the  

standard error  of  measuring His  10 °tc.  In  Fig.  lib the predicted  stem curves are: (1):  D1. 3
=20  cm;  (2):  D1. 3=20  

cm, H=19  m, D,=13  cm, and  the  measurements contain no error;  (3):  measurements  are as in  (2), but the  
standard errors  of measuring H  or D6  are  both 10 %. 
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6.  TEST RESULTS 

61.  Test criteria  

The usefulness  of a stem curve model is 

evaluated  by  its  performance in practical  ap  
plications.  This chapter  describes results  of 
tests where the stem form  model is  used to 

predict  stem curves  and volumes,  the stand  
wise  calibration of  the stem curve  (section  

65)  having  a special  emphasis.  The stem 
form model is used in  its  basic  form, i.e.,  the 
sizes  are  taken to be fixed  parameters,  and 
the measurements  contain no errors.  Ran  

dom size  parameter,  measurement  errors,  
and also  application  of  estimated variances 
in timber assortment problems  and in the 
optimization of measurements are consi  
dered in the  next  chapter.  Let  us  first  dis  
cuss  how the performance  of  a stem curve  
model can  be evaluated. 

The measurement scale  causes problems  
when a stem curve  model is  applied.  The 

prediction  of  the stem curve  should work 
properly in  the arithmetic  scale,  e.g., the 
predictors  should be unbiased in the  arith  
metic  scale  (see  section  53).  The prediction  
variance in the arithmetic  scale is, however,  

closely  associated  with the  size  of the trees.  

Error variances and observed biases  give  a  
better idea  of the overall  performance, if  
they  are  computed  in the logarithmic  scale.  
If,  however,  the predictions  are  in  fact  com  
puted  in the  arithmetic  scale  and the errors  
are  compared  in the logarithmic  scale  with  
out  the bias correction for  the arithmetic  

scale,  there will  result a  slight  gap between 
the predictor  and the evaluation criterion. 
One possibility  to overcome  the problem  is  
to use  relative  errors:  

where y  is  the true  value,  y  is  the predicted  
value, and E(y)  is  the expected  value of y. 

The relative  error  e
r
 is  the  first  order Tay  

lor approximation  of the  logarithmic  error  
ln(y)—ln(y) when the Taylor  series  is ex  
panded around E(y).  If  y is  unbiased for  y, 
then the expected  value of  e

r
 is  zero.  The 

errors  in stem curve  models are  generally  so  

small  that  variances of the relative  errors  are  

very close to logarithmic  error  variances. If  
the size  is  considered to be fixed,  then the 

expected  value of  the diameter D(u)  is:  

where n  is  the  fixed  part  of  the model (41.3)  
and var[d(u)]  = B(u)  +  W(u).  The expected  
value  of the  volume,  E(V),  for  a  given  size  s  
is  obtained from  the regression  equation  

(33.3).  Owing  to  the  close  association  be  
tween size  and volume,  the relative  error  

(V is  near  to  (V —V)/V.  
If  the  size  is  a  normally  distributed ran  

dom parameter  and the  random stand and  
tree  effects are  normally  distributed,  then 
the conditional expectations  of diameter 
D(u)  and  volume V  are  £)(  u)  and respec  
tively,  which  are  used  in the denominator of 
e

r
 in (61.1). Also in the standard regression  

approach,  where measured variables are  as  
sumed to be fixed, E[D(u)] = £)(  u),  and 
E(V) = 

The comparison of  different approaches  

using  relative  errors  is  problematic  because 
the denominators are  different in each case.  

For  instance,  the expected  value of (y—y)/y  
is  not exactly  zero, if  s in  the stem form 
model is  assumed to be  fixed. If two or 

more  dimensions of a tree  are  measured,  the 
different  relative errors  are very close to 
each other.  

According  to the stem form  model, the 
random variation of the stem form  can be 

partitioned  into variation between stands 
and within stands.  Thus the prediction  er  
rors  arise  from these two sources  of vari  

ation. Because  the model works in  the logar  
ithmic scale,  the partitioning  of errors  is  
most  straightforward  for  the logarithmic  or 
relative errors.  

Relative  errors  for tree i in stand  k  are  

described by  the following  empirical  model:  

where m is the overall  bias, is  a random 

error  for stand k and is a random error  

e
r

= (y—y) /E(y)> (6U ) 

E[D(u)]  =  exp {M  +  2  vsr[d(u)  ]), (61.2)  

(yki— yki)/E(yki)  = m  +b
k +  eki> (61.3) 
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for  tree  i within stand  k.  Analysis  of  vari  

ance estimates  (p.  474 in Searle 1971) are  
used  to estimate  var(bk)  and var(ek;);  the es  
timates are  denoted by  si-,

2  and s
w

2
,  respec  

tively.  
The prediction  errors  can  be  partitioned  

into components by  using  our  theoretical 
model for  the stem form variation. For sim  

plicity,  the simple  descriptive  model pres  
ented is.  used to describe  the prediction  of  
stem curves.  It can  also  be  used for analyz  

ing  errors  in  the  reference models.  Theoreti  
cal  total variances will,  however,  be com  

pared with the empirical  total  variances in 
section 73. For  the  estimation of  volume,  
theoretical variance  components (described  
in  section  53)  will  be  compared  with  empiri  
cal  results.  

In typical  applications  the partitioning  of  
the errors  into components is  important.  

Usually  stem curve  and volume equations  
are  applied  for  several  trees  in a  given  stand,  
and the main interest  lies  in  the mean (total)  
characteristics  of the trees.  According  to the  
model (61.3),  the mean of  n relative  errors  in 
a  stand  has a mean square error  (MSE)  

Thus the within-stand errors  cancel each 

other as  the number of  trees  increases,  but  
the between-stand error and bias  remain un  

changed. Hence the main objective  for a 
model is  to  produce  small  bias  and between  
stand error  variance. If  the between-stand 

error  component is  ignored  in the error  
analysis  (as  is usually  done in standard regres  
sion analysis),  then the mean square  error  
for a stand mean is underestimated. Note 

that MSE of  the stand  mean is  not directly  
related to MSE of the mean of relative er  

rors,  if  the  size  of  trees  in a stand varies 

greatly.  
In the  following  applications  the mean, 

standard deviation  and root  mean  square er  
ror  (RMSE) are also computed  for the 
arithmetic  errors.  The mean square error of  
the arithmetic  errors  is  computed  as  the sum 
of  the squared  mean and the variance of  the 
errors.  Sample  variance of the arithmetic  er  
rors  does not,  however,  correspond  to or  
estimate  (even  approximately)  any  quantity  
in the stem form model. 

62. Basic  comparisons  

Parameters of the model were  estimated us  

ing Laasasenaho's data. Thus a  good starting  
point  for testing  the model is  to apply  it  in 
situations where the stem form and volume 

equations  given  by  Laasasenaho (1982)  can 
be used  for comparison.  In the tests  all  of  
the data was  used,  i.e.,  also  those stands 
with one measured tree, which were  not  in  
cluded in the analysis  stage. Relative  size  of  
those single  trees  was  given  a  value of  0.25,  
which seemed to be  in accordance  with their 

average stem form.  The following  equations  
of Laasasenaho (1982) define the reference  
models:  

According  to Laasasenaho (1982),  the to  
tal volume is  calculated as  the volume of  the 

stemwood from the stump  to the top  of  the 
tree. The stump is  defined  as  being  at the 
level  of  the uppermost root  collar  affecting  
cutting,  or  at  least  10 cm.  For  integration  of  
the stem volume using  the predicted  stem 

curve,  the stump  height  is  predicted  using  
the regression  equation (81.1)  of  Laasasena  
ho (1982)  which has the diameter at breast 
height,  Du ,

 and the height  of the tree, H, 
as  explanatory  variables. If either of these 
values is  not  measured,  it  is  replaced  by  the 

respective  predicted  value. 

First  applications  of  the stem form model 
are  based on the overall  model. The size  of  a 

tree  is  taken to be fixed; the random stand 
effects  are estimated using  the first  four 
principal  components of the between-stand 
covariance  matrix  B;  and the stem curves  of  
all  trees  belonging  to the same stand  are  

predicted  simultaneously,  i.e., the stand 
structure  is  utilized  as it  appears in the data. 

Later, if  not indicated otherwise,  the stem  
form model is  also  applied  in  the same way.  

First consider the estimation of the stem 

volume using  Dj  3. The error  statistics  for 
the arithmetic  errors  were for  the stem form 

model (sfm)  and for Laasasenaho's model 
(Laas.):  

m 2 +  varfbk)  + (6l-4) 

;asut  stem curve  

equations  

volume  

equation  

>1.3 

»1.3. H 

»1.3. H, D 6 

(41.1) 

(41.1) +  (41.2) 

(41.1)+ (41.3) 

(61.2) 

(61.3) 

(61.7) 
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5 461380  A  

Fig.  12. Mean  and  mean +  standard deviation  of V—V  (dm3
) within groups  of  80  trees  (86 in  the last  group) with  

respect to D 1.3 and arithmetic size  S  when V  is  computed according  to the stem form  model or according  to 
LaasasenLaasasenaho's  model.  

The above error figures  are about  equal.  
The principal  difference between the  two 
modelling  approaches  can  be seen  in  Fig.  12: 
volume estimates based on the stem form 

model are  virtually  unbiased with respect  to 
size, and Laasasenaho's estimates  are nearly  

unbiased with  respect  to the measured  Dj  3. 
The bias in the arithmetic  scale has  been 

corrected  using  var(d) —var(d)  (Eq. 53.6),  
which should produce  unbiased estimates of 
the  volume for  the given  (unknown)  size.  As 
shown in Fig.  13, this  bias  correction  has a 

very  small  effect.  The bias  correction  for  the 
case  where is  unbiased for V given  the 
measurements  (using  var(d—d), Eq. 53.7)  
would  have a significantly  greater  effect,  if 

applicable.  

iodel mean  

dm3 

sd 

dm 3 

RMSE 

dm3 

RMSE/V 

% 

;fm 3.8 

—7.4 

75.9 

73.9 

76.0 

74.2 

24.3  
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Fig.  13. The effect  of  the  bias  correction  in  volume es  
timation when only  D 1.3  has been measured. The 
corrected estimate divided by  the uncorrected esti  
mate as a function of D 1.3.  The bias correction  
for d is made by  var(d)— var(d), which produces 
unbiased volume estimates for the given size,  or by  
var(d— d), which would produce volume estimates 
unbiased  for the  fixed values of  D1.

3,

 if  d were a  
conditionally  unbiased  estimate of  d for given D]  3.  
The  effect  of the relative size  is  ignored.  

Fig.  14. sb ,
 sw,  and  RMSE  of (D—D)/D at  different rela  

tive  heights  for the  stem form model (solid  line)  or 
for  LaasLaasasenaho's model (broken  line)  when Dj  3 
and  H have been measured.  

Error statistics  were  also  computed  for 
relative  errors  defined by  dividing  V— by  
ty,  V  or E(V)  (Table  5).  Consistent  with  the 
two modelling  approaches,  the stem  form 
model  is  better  with  respect  to relative  error  
(V (or  (V and Laasasena  
ho's  model is  better  with respect  to error  
(V As  will  be discussed  later,  Dj  3  is  
a  better  measurement  for  estimating  the vo  
lume  of  small  trees than bigger  ones. Thus 
the relative  errors  for  small  trees are smaller  
than those for  big  trees:  the root  mean 
square error  (RMSE) relative  errors is 
smaller than the RMSE/V of arithmetic  er  

rors.  

In the second case  we assume that in ad  
dition to D]  3, the  height,  H, is  also  mea  
sured for  each  tree. Different  relative errors  

are  now very  close  to each other:  

Table 5. Mean, between-stand standard error (sb),  
within-swihin-stand standard error (sw ) and root  mean 
square error (RMSE) of relative errors when the 
volume is estimated with measured D!  3 using either  
the stem form model (sfm)  or Laasasenaho's  model. 
Relative error  is  defined by  dividing V—V by  the ex  
pected volume for the given size,  E(V) v by  the true 
volume, V,  or by  the estimated  volume, V. 

mean 

% 

Sb 

% 

Sw 

% 

IV—V)/E(V)  sfm  

Laas.  

0.5 

—5.9  

15.8 

16.2 

11.8 

13.7 

19.: 

22J 

;v—v)/v  sfm 

Laas.  

0.7 

—5.8  

15.0 

15.6 

11.4 

13.4 

18.: 

21.' 

;v—v)/v  sfm 
T  

4.1 14.6 11.2 18.' 

—2.1 

mean 

% 

Sb S
w 

°1c  

[V—V)/E(V)  

(V—V)/V 

IV—V)/V 

0.1 

0.0 

0.5 

3.9  

3.8  

3.8 

6.3 

6.2 

6.2 

7.4 

7.3 

7.3 
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Table  6.  Error  statistics,  when D1.3  and H are measured. Diameters at  relative heights  and volumes  are predicted  by 
the overall model (upper figures)  and by  Laasasenaho's model (lower  figures).  Mean, standard deviation (sd)  and 
root mean square  error  (RMSE)  are first  given when errors  are expressed  in  arithmetic units; RMSE  is also  given 
as a percentage  of  the overall mean. For  relative  errors ((y— y)/y,  in  percentages)  are given the mean, sj,, s

w
 and 

RMSE. 

The prediction  errors  are  so small  that 
the bias  correction  for  the arithmetic  scale  is 

negligible,  as  shown in the following  set-up 
for  error  (V—s)/E(V): 

Error statistics  are shown in Table 6  and  

in Fig.  14 for  the stem form model and for 
Laasasenaho's models  using  error  (y—y)/y.  
The results  are  practically  unbiased for  both  
models,  i.e.,  the mean of the  errors  does not 
contribute to the RMSE. Both models  are  
about equally  good  in  prediction  of  the stem 
curve  as  well  as  in  volume estimation.  

In the  third application  we  further assume  
that the diameter at 6 m, is also mea  

arithmetic < errors relative errors 

y—y  (y— y)/y 
H mean sd RMSE RMSE/X mean 5b 

RMSE 

% cm cm cm % % % % % 

1.0 0.11 1.95 1.96 7.2 0.4 3.6  6.7 7.6 

0.04 2.00 2.00  7.4 —.0.5 3.9  6.8  7.8 

2.5 0.04 1.27 1.27 5.3  0.2 3.2 5.2 6.1 

—0.06 1.31 1.32 5.4 —0.6 3.1  5.4 6.2 

5.0 0.12 0.71 0.72  3.3  0.6 2.4  3.9 4.7 

0.08 0.73 0.74  3.4 0.1 2.3  4.1 4.7 

7.5 0.02 0.49 0.49  2.4 0.2 2.1 3.1 3.8 

0.02 0.50 0.50  2.4 0.0 1.9 3.2 3.7 

10.0  0.01  0.46 0.46  2.3  0.1 1.8 2.7 3.2 

—0.05 0.48 0.48 2.4  —0.2 1.6 2.8 3.2 

15.0 0.04 0.59  0.59 3.1 0.2 1.5 2.9 3.3 

—0.03 0.62 0.62 3.3 —0.1 1.3 3.1 3.4 

20.0 0.02 0.72 0.72 4.0  0.1 1.6 3.3 3.7 

—0.01 0.73 0.73 4.0  0.0 1.3 3.5 3.8 

30.0 0.06 0.85 0.85 5.0 0.3  2.1 3.9 4.5 

—0.03 0.84 0.84 5.0 —0.1 1.8 4.0 4.4 

40.0 0.07  0.95  0.95 6.1 0.3  2.7 4.7 5.4 

—0.03 0.92 0.92 5.9 —0.2 2.2  4.6 5.1 

50.0 0.06  1.03 1.03 7.3 0.4 3.6  5.6 6.7 

—0.02 1.01 1.01  7.2  —0.1 3.3  5.4 6.4 

60.0 0.04  1.17 1.17 9.6 0.3  5.0  7.3 8.8 

—0.02 1.14 1.14 9.3 —0.2 4.8  7.1 8.6 

70.0 0.00  1.28 1.28 12.9 0.2 7.0 9.4 11.8 

—0.03 1.22 1.22 12.3 —0.2 6.9  9.2 11.5 

80.0 0.05  1.23 1.23 17.3 1.1 9.7 12.1 15.5 

0.00  1.14 1.14 16.1  0.2 9.4  12.1 15.3 

90.0 0.06  0.93  0.93 24.9 2.0 12.4 16.9 21.1  

—0.01 0.85  0.85 22.7 1.9 12.3 18.3 22.1 

Vol. dm 3 dm3 dm 3 % % % % % 

0.67 32.50 32.51 10.4 0.5  3.8  6.2 7.3 

—0.68 33.89 33.90 10.9 0.0 3.7 6.2 7.3 

bias  correction mean 

% 

RMSE 

% 

no —0.2 7.4  

var(d)—var(d)  
var(<3 — d) 

0.1 7.4  

—0.2 7.5  
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Fig. 15. sb,  sw  and  RMSE  of (D —D)/D  at different rela  
tive  heights  for the stem form model (solid  line)  or 
for LaasLaasasenaho's model  (broken line)  when  D 1.3 ,  H 
and D  6  have  been measured.  Only  trees  taller than 7  
m are included. 

sured. The stem form model and  Laasasen  

aho's models are also in this case  about  

equal.  Fig.  15 shows  Sb,  s
w  and  RMSE  of  

(D —£>)/£>.  In volume estimation,  the error  
statistics  for  (V—$)/$  were  as  follows:  

The stem form  model does not predict  
well  the  upper parts  of the stem curves  of  

very  exceptional  trees.  This seems  to be  an 
inherent property of the polar  coordinate 

system:  the  angle  between two points  on  the 
stem curve  is  not  always  as  good  a  measure  
of  the distance as  the usual  height  differ  
ence.  For instance,  for  a thick  tree the dis  
tance between the and the top of 
the tree  can  be  very long  when measured in 

angles  (and small  as a height difference);  
therefore  the model does not  force the di  

ameter down to zero  rapidly  enough  when 

moving  from the upwards. 
In conclusion,  when D]  3, H  and possibly  

Dfc  are  measured,  the stem form model gives  
about as  good  results  as  the special-purpose  
equations  of  Laasasenaho (1982).  However,  

Table  7.  Mean, between-stand standard  deviation  (sb),  
within-swithin-stand standard deviation (s w),  and  root  mean 

square  error  (RMSE) of relative errors of volume 
estimates, (V—V)/E(V),  for different measurement 
combinations. If D6  is included, only trees taller than 
7  m  have been accepted.  

the stem form model is computationally  
more difficult  to apply.  The volume  equa  
tions of  Laasasenaho are  not  compatible  (see  
Demaerschalk 1972) with his stem form 

functions,  but  as  indicated by  Table 10 on  p.  
53 in Laasasenaho (1982),  his  stem curve  
models  give  almost as good  volume  esti  

mates as  his  volume equations  do. 
The usefulness  of the crown height  mea  

surements (H c)  is studied by estimating  
stem volumes with measurement  combina  

tions (Dj  3,
 H, H

c
) and (D l  

3,
 H, H

c
). 

Relative errors  of the volume estimates  

f(V-ty/E(V)) are  summarized in Table 7  
for  all  measurement  combinations  used. The 

crown height  improves  volume estimates  on  

ly  slightly.  However,  as  will  be  seen later,  
the crown  height  may be a  useful  measure  
ment in  calibration of  the stem curve.  

63. Differences  between  climatic  regions  

Basic  comparisons  with the equations  of 
Laasasenaho  (1982)  were  based on the over  
all  model;  Laasasenaho also  estimated the 

parameters of his equations for the whole  
country.  In the following  discussion,  the re  
gional  differences will  be  studied using  error 
(V—V)/E(V). 

Table 8 presents  the regional  means and 

summary statistics  of  the relative errors  for 
different combinations of measurements 

when the  overall  model or  the regionalized  
model is used for prediction.  Let us  first  
discuss  the case  in  which only  Dj 3 is  mea  
sured.  The regional  means  of the relative  er  
rors  are  rather large  for  the overall  model,  
but their influence  in RMSE is  modest. If  

the regionalized  version  of the model is  

mean 

% 
Sb 
% 

Sw 

% 

—0.4  

0.0 

1.6  

1.5 

3.2 

3.2 

3.6 

3.5  

measured mean sb S
W  RMSE 

Dl 3 0.5 15.8 11.8  19.8 

Dl 3. H 0.1 3.9 6.3  7.4 

D, 3, H, H
c
 0.1 3.9 6.3 7.4 

D, j, H, D 6 —0.5  1.6 3.3  3.7 

D, j, H, D 6,  Hc  —0.5  1.4 3.2 3.6 
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Table 8.  Regional  means (e;), grand mean (e ), between-stand  standard deviation (SL),  within-stand standard deviation 
(sw ) and RMSE  of the relative volume errors (relative  to E(V))  for the overall model (o.a.)  and the  regionalized 
model (reg.),  and  for different measurement combinations. 

used,  the regional  means  (biases)  are  insignifi  
cant (compared  with except  for the 
small  and strange  coastal  region  7. As  the 

regional  biases  disappear,  sj-,, the standard 
deviation of the  between-stand  errors,  is  also 
decreased. The regionalized  model does not 
have any  significant  effect  on  the standard 
deviation of  the within-stand errors,  s

w
.  

When the height  of each tree  is  also  mea  
sured,  the  same qualitative  conclusions  can 
be made. Now  the  regionalized  model re  
moves  the bias  of region  7. If,  in  addition to 
H  and Dj  3 also is  measured,  the region  
alized  model improves the results only  

slightly.  Since  the  regional  biases  are  already  
quite  modest for  the overall  model,  the re  
gionalized  model cannot contribute much. 

The regional  parameters represent our  

prior  knowledge  of  the stem form  in differ  
ent regions.  If  only  one or  two dimensions 
of a tree  are measured,  this regionalized  

prior  knowledge  significantly  improves  the 
prediction  accuracy.  Comparison  of  Figures  
4  and 7  shows that the regional  differences 
are  not solely in  the thickness  component, 
which can already  be estimated quite  well  
with two measurements. If three or more 

dimensions are  measured,  the regionalized  

prior  knowledge  contains  little new informa  
tion.  

The regionalized  model was also  tested in 
the  case  where the crown height is  mea  
sured. The influence of the crown height  
was similar  to  the results  for the overall  

model presented  in  Table 7.  

64. Effect  of  grouping  trees  into stands 

The stem form model is  based  on  an anal  

ysis  of  variation in  stem form of  stands  and 
of the trees  within stands.  The stand  struc  

ture  enters  into the model through  the ran  
dom stand  effects and through  the average  

(relative)  size.  In this section we  examine 
how significant  these stand effects  are in  
prediction.  Assume first  that the same mea  
surements are  made for  each tree; use  of  
mixed measurement combinations is re  

ferred to in the next  section.  

To  reveal  the effect  of  grouping trees  into 

stands,  the  stem  curves  and stem volumes 
were  predicted  ignoring  the stand structure, 
i.e., the prediction  was made for each tree  
separately.  The results  were  then compared  
with the earlier results  obtained when stem 

curves  were  predicted  simultaneously  for  all  
trees  belonging  to the same stand. 

o o  

When Dj  3 alone was  measured,  there 

were differences  between simultaneous and 

separate prediction,  as  shown below for  the 
error  (V—V)/E(V):  

All differences  between the simultaneous 

and separate prediction  are  due to the rela  
tive size,  because with only  one measured 
dimension the estimates of the random 

measured 

D„  DJ.3,  H  D 
1.3, H,  D 6 

model 

o.a. reg.  o.a. reg.  o.a. reg.  

n n 

e, 112 —9.5 —1.7 4.0 —0.4  105  —1.3 —0.8 

e
2
 234 —0.3 —0.3 3.4 —0.1 206 —1.0 —1.0 

e
3
 199 0.2 —1.1 2.5 —0.1 182  —0.6 —0.6 

e
4
 429 2.8 1.1 0.0 0.2  354 —0.4 —0.3 

e
5
 616 5.5 0.7 —1.1 0.0  559 —0.6 —0.6 

e
6
 440 6.3 0.4 —2.5 —0.1 414 —0.2 —0.2 

Ez  22 —6.3 —3.9 —7.1 0.1 22 —0.4 —0.4 

e
8  274 —18.4 —1.1 1.5 —0.1 177 —0.2  —0.4 

e 0.5 0.1 0.1 0.0  —0.5 —0.5 

s b 
2326 15.8 12.7 3.9 3.4  2019 1.6 1.6 

s
w
 11.8 11.3 6.3  6.2  3.3 3.2 

RMSE 19.8 17.0 7.4 7.1 3.7 3.6 

:stimation mean 

% 

Sb 

% 

sw 

% 

ieparately 

iimultaneously 

—0.2 

0.5  

15.1 

15.8 

14.7  

11.8 

21.1 

19.8 
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stand effects  are zero if the prediction  is  
made separately  or  simultaneously.  The in  
crease in  RMSE in  the separate prediction  is  
due to the increase in the variance of  within  

stand errors.  This may be  explained  as  fol  
lows.  In a separate prediction  the relative 
size  of  each tree  is  estimated  to be  zero; 
therefore  the sum of  relative sizes of  all  trees 

in a stand is  also  zero.  According  to the 
stem form model,  the logarithmic  diameter 
at a given  angle  is a linear  function of  the 
relative  size.  If  a diameter is  measured at the 

same angle for  each tree, then the errors  
caused by  taking  all  the relative sizes  to be 
zero cancel each other when added  over  the 

stand. Angles  corresponding  to the diam  
eters at  breast  height  are  usually  quite  sim  
ilar  for  trees in the same stand. 

When two or  more dimensions are mea  

sured,  then not only  the  relative  size  effect  
but also  the  estimation of random stand ef  

fects  is  different,  depending  on whether 
trees are  grouped  into stands or  not. Esti  

mates of random stand effects  are also ob  

tained when two dimensions of  a  single  tree 
are measured. With several trees these esti  

mates merely  become more  accurate. When 
two or more dimensions were measured,  
however,  the grouping  of  trees  into stands 
did not improve  the  predictions.  This calls 
for  an explanation  both with respect to the 
relative  size  and the random stand effects.  

The relative  size  of  a tree  only  provides  
information about the thickness  component 
of  the stem form, as  discussed previously.  If 
two or more dimensions are  measured from  

different parts of the stem, however,  the 
thickness  component of  the tree  can  be  de  
termined accurately.  Thus the relative  size  
looses its  significance  in  the prediction  of  
stem form. 

The fact that the more accurate  estimates 

of  stand effects  are  insignificant  may  be  ex  

plained  as  follows.  When the same, or  closely  
related,  dimensions are measured  for  several  
trees  in a stand,  we get more accurate  in  
formation  about the stand average of  these 
and correlated dimensions. In the next  sec  

tion we will  see  that,  if  we have not mea  
sured these dimensions for  a tree,  such  in  
formation  helps to predict  them. On the 

contrary,  if we  have measured any  dimension,  
then knowledge  about the stand average of  
the same dimension does not give  any  new 
information. In practice,  the above con  
clusions  are  also valid for  diameters at  a  giv  

en height  even  if  in the polar  coordinate sys  
tem these  diameters are not  same dimen  

sions  for  different trees. 

65. Standwise calibration of the  stem 

curve 

One promising  application  of the stem 
form model is  the standwise calibration of  

the stem curve.  The stem curve  is calibrated 

by  estimating  the  random stand  effects.  As  
shown in the  previous  section,  calibration 
does not help  if  the same dimensions are 
measured for  each tree. In this section we 

consider the case  in which different mea  

surements are  made for different trees.  The 

stem form model can be  applied  for any  
mixture  of measurements, but  for  simplicity  

(and following the usual practice)  trees  in a 
stand are  grouped  into two  sets, calibrating  

trees  and tally  trees, to  which the  calibrated 

stem curve  is applied.  Different combi  
nations of measurements are used for cali  

brating  trees; Dj  3  is  assumed  to be  measured 
for  tally  trees.  In forestry,  calibrating  trees 
are  called 'sample  trees'.  Here only  volume 
estimation will  be considered;  the calibra  
tion of  the height  curve  is  illustrated  in  Fig.  
16. 

Fig.  16. Calibration of  the  height curve in  a stand.  The 
predicted  height  as a function of the  measured Dj  3 
when  there  are 0,  1, 2,  4 or 8 calibrating trees with 
D (  3=20 cm  and H=20  m;  the effect of  the  relative  
size  is  ignored. 
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Fig.  17. Mean, between-stand standard  deviation within-stand  standard deviation  (sw )  and RMSE  of 
the volume estimation  errors  of  tally  trees as a function of the number of  calibrating trees; calibra  
ting measurements  are D 1.3 and  H; the  overall model.  Data  of  Laasasenaho (left)  and data of  Kilkki  
and Varmola (right).  

When  computing  the test  results of  this  

section,  calibrating  trees  were  first  chosen 

randomly,  and all  other  trees  in the stand 
were  used as  tally  trees.  Then the random 
stand effects  were estimated using  the  cali  

brating  trees.  The size  parameters and vo  
lumes  of  tally  trees  were  estimated using  the 
estimated stand effects. Relative errors  in 

volume estimation  are  analyzed  with  the vari  
ance  components  model (61.3).  Estimates  of  
the error variance  components differ  if  dif  
ferent  calibrating  trees are  selected.  Thus er  
ror  variance  components were  estimated 30 
times with different seed values in the ran  

dom number generator used to select  the 

calibrating  trees.  The final estimates  of  vari  
ances  are  then averages  of  the 30  preliminary  
estimates.  

The error  variance components and  
can be estimated  only  if  there are stands  
with  at  least  two  trees.  Hence,  because  there 
are  at most  5  trees  per  stand in the data,  the 
error  variance components for  the  tally  trees  
can  be estimated only  if  there are  at  most  3 
calibrating  trees.  In order  to have the  same 
data in each  case,  only stands with 4 or  5  
trees  were  used all  the time. Because  the trees  

have been sampled  with a relascope,  the 
stands in the tests have a larger  basal  area  
than do stands on the  average. Thus the 

subdata used deviates systematically  from 
the  whole data. Calibration was  also  studied 

using  the data of  Kilkki  and  Varmola.  With 
their data there can be 8  trees  in the calibrat  

ing  set,  and 28  of  the  total  29  stands can  still  
be  utilized.  

In the first  application  we assume  that 

Dj 3  and H  are measured for  the calibrating  
trees. Fig.  17 shows the mean,  between  
stand standard deviation (sj,),  within-stand  
standard deviation (s

w
)  and RMSE of the 

relative errors  (V —V)/E(V)  with respect  to 
the number  of  calibrating  trees  in the  data 
set of Laasasenaho and of Kilkki and Var  

mola. 

The initial  bias in the data of  Laasasenaho 

shows that the subdata used deviate  

from the whole data. In the whole data  

the model is  practically  unbiased (see  Table 
5);  note  also  that initially  (without  calibrat  

ing  trees)  sj, is  smaller  in the subdata than in 
the whole data. In both data sets  the bias  

and st,  decrease rapidly.  
The within-stand standard error  sw  is  prac  

tically  constant,  as  it  should be.  In  the  data 
of  Kilkki  and Varmola both Sb and s

w
 are  

clearly  higher  than in the data of Laasasen  
aho. The  calibration seems to work well  also  

for  their data. 
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Table  9. RMSEb,  for  different calibrating  measurement combinations. 

The results  are  similar  for the other test  

ed combinations of calibrating  measure  
ments.  The between-stand RMSE (RMSEj,)  

combining  the bias and between-stand 
standard error  is  presented in Table  9. The 
results  for  different combinations of cali  

brating  measurements  are  very  close  to each  
other.  Theoretical analysis  shows later that 
the differences  become clearer  as  the number 

of  calibrating  trees  increases.  Combination 

(Dj  3,  H,  H c )  seems  to be  better  than (Dj  3, 
H,  Dfc),  but  later  we  will see  that this  prob  
ably  holds  true  only  for  a  small  number of  
calibrating  trees.  

For the calibrating  measurement  combi  
nation (Dj  3, H, Dfc),  the stem form model 

can  be compared  with  the calibration  system  
of  Pekkonen (1983).  Pekkonen uses  a  poly  
nomial regression  predictor  to estimate  stem 
volume as  a function of  Dj  3. The coeffi  
cients  of the predictor  are calibrated  by  

measuring  Dj  3, H and for the calibrat  
ing  trees.  The  volumes of the  calibrating  
trees are first  estimated with Laasasenaho's 

model;  the  estimates  are  assumed to give  the  
volume correctly.  Then the diameter-vo  
lume  data of the calibrating  trees are  added 
to the a priori  data using  a  heuristic weight  
ing  procedure.  Pekkonen's system  and the 
stem form model are compared using  

RMSEt,.  According  to Pekkonen's  system, 

only  trees with Dj  3 between 4 and 44  cm 
have  been used  in  the  comparison.  Pekkonen 
assumes  that the  height  of  the measurement  
is  determined from  the uppermost root  col  
lar.  In the stem form model, the same di  

ameters  were used;  but  the height  is  mea  
sured from the ground.  RMSEi,  decreases 
much faster initially  with the stem form 
model than with Pekkonen's system  (Fig.  

18). However,  when the number  of  calibrat  
ing trees  increases the difference between 
these systems  becomes  smaller.  

Further comparisons  with Pekkonen's 

system  are  made using  the data of  Pekkonen 
and Laasasenaho,  in which each  stand in  

cluded at least  51 pine  stems. We can as  
sume that the total (stand)  volume of  tally  
trees is  not  affected  by  the tree  effects,  if  the 
number of  tally  trees  is  moderate (e.g.  >  20).  
Thus the  stand errors  can be studied direct  

ly using  stand  totals, without a variance 

components model.  This  way,  large trees in  
fluence  the results  more than in the earlier  

comparisons.  
The model was estimated using trees  

sampled  with a relascope,  i.e.,  the sampling  

probabilities  were  proportional  to the basal  

area  (or  D? 3).  If  the calibrating  trees  are se  
lected  similarly,  their selection is  in  accor  
dance with the estimation of  the model pa  
rameters.  The methods are  compared  using  
the mean,  standard  deviation and KMSE of  
relative  stand errors — (Fig  

-19).  Errors  (Vk .  -  �k'j/Vk.  are  siightly  
smaller  for  both  calibration methods,  the re  
sult  being  the same: Pekkonen's method is  
better if  the number of calibrating  trees  is  
greater than 10. There are  two  possible  ex  
planations  for  this. 

First, the dependence  of stem form  on 
size  may vary  slightly  from stand to stand. 

data of Laasasenaho  

calibrating  overall model regionalized  model 
measurements  

number of  calibrating trees  

0 1 2 3 0 1 2 3 

D,  3, H 13.8 7.3  5.8  5.3 11.1  6.7 5.4 5.2 

Di 3, H, H
c
 13.8 7.1 5.8  5.3 11.1  6.5 5.1 4.9 

D1.3,  H,  D6 13.8 7.2  5.9  5.3 11.1  6.8 5.5 5.2  

D,.3,  H,  D6 , Hc 13.8 7.4  5.9  5.4  11.1  6.5 5.2 5.0  

data of  Kilkki and Varmola 

overall model 

number of calibrating  trees  

0 1 2 3 4 5 6 7 8 

D,  3, H 19.6 13.1 9.9 8.8 7.8 7.8 6.7 6.3  6.3  

D, 
3,
 H, H

c

 19.6 12.9 9.6  8.5 7.6 7.5 6.3 5.9 5.9  

D..3, H, D
6
 19.6 13.0 9.8  8.5 7.9 7.8 6.4 6.5 6.2  

D,  „  H, D6>  Hc
 19.6 12.8 9.6 8.3 7.6 7.5 6.2 6.1 5.8  
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Fig.  18. RMSEb, as  a function of  the  number of calibrating  trees both for  error  (V— V)/E(V)  (solid  line)  and  for 
error  (V(V— V)/V (broken line); the calibration is  done according  to the system of  Pekkonen  (Pekk.) or with  the  
stem form model (sfm,  the overall  model).  Data  of  Laasasenaho are used  in Fig.  18a  and  data  of Kilkki  and 
Varmola  in  Fig.  18b. 

This is  taken  into account  by  Pekkonen's 
method but  not by  the stem form model. 

Although  the stem form model seems  to re  
veal most of the variation in  the stand  stem 

curves,  it is  not  flexible  enough  to describe 
each stand in detail. 

Second,  height (total  height  or  the height  
of  a  diameter)  is  measured from the upper  
most  root  collar in Pekkonen's system  and 
from  the ground  in the stem  form model. As  
the volume is determined from the upper  
most root  collar (except  for  small trees),  
Pekkonen's  system  has thus an advantage  

over  the stem form model. If,  for  the stem 
form  model,  the height  from the ground  was  

computed  by  adding  the estimated  height  of  
the root  collar  to the measured height  from 
the root  collar,  the standard deviation of  
relative stand errors  became smaller than in 
Pekkonen's method. However,  owing  to an 
increase in the bias,  the RMSE  increased 

slightly.  The reason  for  this  additional bias  
is  probably  the irregularity  of  the uppermost 
root  collar in the data of  Pekkonen and Laa  

sasenaho as  compared  with the data of  Laa  
sasenaho.  In any  case,  the stem form  model 
can be recommended when only  a  few cali  
brating  measurements are made. 

Fig.  19. RMSE of relative stand errors  (V^ —Vk.)/Vk. as 
a function of the  number of calibrating trees using 
the stem form model (sfm)  or the  system of  Pekko  
nen;  the  data of  Pekkonen and Laasasenaho. 
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Calibrating  measurement  combinations 

(Dj  3,  H)  and (Dj  3,  H, were also  com  

pared using  relative  stand errors  in  the  data 
of  Pekkonen and Laasasenaho  (Fig.  20).  The 

upper diameter was  worth of  measuring  
if  the number of  calibrating  trees  was  greater  
than three. 

Fig.  20.  RMSE  of relative stand erros  (V^ —Vk.)/Vk. as 
a function of the number of  calibrating  trees  for  ca  
librating measurements (D 1.3,  H)  and (D 1.3, H,  D6);  
the data of Pekkonen and Laasasenaho.  
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7.  FURTHER  APPLICATIONS 

71. Size  as  a  random parameter  

In this chapter  we study applications  
based on the  knowledge  of  different  distri  
butions.  In the  first  two  sections,  the  distri  
butions of  the size  parameter and measure  
ment errors  will  be  discussed.  The last  three 

sections  deal  with the estimation of the er  

ror  variances and their application  in timber 
assortment  problems  and  optimization  of  
measurements. 

In principle,  there are  two main ways in 
formulating  and utilizing  the prior  knowl  
edge to make the predictions  of  the stem 
form model more accurate. The first  me  

thod is  exemplified  in  the regionalized  mod  
el:  we  can divide the  domain of  interest  into 

subdomains defined by easily  measurable  
characteristics,  and then estimate  different 

parameters for different subdomains. The 
division into subdomains can even be con  

tinuous: the parameters can be defined  as  
functions of some  continuous external  vari  

ables.  

The second  way to formulate a priori  

knowledge  is  in the form of prior  distribu  
tions for  some parameters,  i.e., we can as  
sume certain parameters  to be random. The 
stand effect,  v(u), has been a random pa  
rameter  from the beginning.  In addition,  the 
size  of  a  stem may be  assumed to be a  ran  
dom parameter. The  proper distribution of  
size  depends  on the application  at hand. 
Thus the  size  distribution as  exemplified  in 
the present  data may not  be  useful  in specif  
ic  applications.  

In order to apply  the standard theory  of 
linear prediction,  the mean and variance  of 
the random parameters  must  be known or  
assumed. In the data used in this  study,  the 

mean size  is 2.59 (corresponding  to a  volume 
of 157 dm 3) and the standard deviation 0.48. 
The frequency  histogram  is  presented  in  Fig.  

21 with the corresponding  normal  density  
function. The  size  distribution  is  not exact  

ly  normal:  the  best  linear  unbiased predictor  
of size  is not the best  (minimum variance)  
unbiased  predictor.  Note that,  in the case  of  

Fig.  21. Frequency  histogram  of size  s  in  the  data  of  
LaasasenLaasasenaho, and  the  corresponding normal density 
functionfunction. 

random size,  there are  no fixed parameters 
in the model,  hence a  predictor  is  (uncondi  
tionally)  unbiased  if its  expectation  is  equal  
to the population  mean. 

The effect of  defining  the size  as  a ran  
dom parameter was  tested for  measurement 
combinations (H), (Di  3),  (H,  Djj),  and (H,  
Di  3,  Dfc),  using  the mean and variance as  
observed.  The sizes of different trees were 

assumed to  be  uncorrelated. In practice,  and 
also  in the data used,  sizes  of  trees in the 

same  stand are correlated,  although  this  
correlation was  not taken into account.  The 

bias  correction for  the volume estimates  in 

the arithmetic scale  was  computed  according  
to  (53.7),  i.e.,  using  var(d— d).  

Let us first  consider the case in which 

Dj  3 is  the only  measured dimension. If  size 
is  treated  as  a random parameter, then its  
estimates  (and  volume) are  shifted towards 
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the assumed  mean. In Fig.  1/3 is  present  
ed  as  a  function of  Dj  3  where is  estimated 

by  means of  Laasasenaho's model or  using 
the  stem form model for  single  trees  (ignor  

ing  the relative  size)  with  fixed or random 
size. When the estimation is  done simul  

taneously  for  all  trees  in  a  stand,  i.e.,  the  ef  
fect of the relative size is taken into  ac  

count, the volume estimates  of trees with 

large  Dj 3 would be closer  to the estimates  
of Laasasenaho than those presented  in  Fig.  
22. 

As  explained  earlier,  the stem form model 

gives  volume  estimates  that  are  biased  up  
wards for trees  with large  Dj  3, when s is 
treated as  a  fixed parameter. With  random s, 
the volume estimates  change  only  slightly  
and remain biased for  trees with large 3. 
The reason  is  that the distributions of  stand 

effects,  tree  effects,  and size  are  all  skew. 
The skewness  affects  the results  in the same 

direction in each case:  there are more  thick  

stands  and trees  than thin ones  (Fig.  8),  and 
there are less  big  trees than small  ones (Fig.  

21).  Hence,  if  Dj 3  is  measured alone (or  to  
gether  with H and no difference ap  
pears  in the RMSE of volume estimates.  

When height  is  the  only  dimension mea  

sured,  then in  principle  the situation  is  the 
same as  with measured Dj  3. The variances 
of the random effects  of  height  are,  how  

ever,  larger  (Table  2),  and so the prior  dis  
tribution of  size  has more weight  in the es  
timation. Thus the RMSE of the arithmetic  

errors  decreased with random size  from 211 

dm 3  to 171 dm 
3,
 and RMSE of (V—�)/� 

changed  from 81 %  to 65 %.  Consistently,  
RMSE of  (V—�)/E(V)  increased from  51 % 
to 62  %. These error  figures  are  much  larger  
than those observed  when Dj  3 is  measured 
alone. Thus the  height  is  not  usually  mea  
sured alone,  and this  case  has only  theoreti  
cal  interest.  

The randomness of the size  parameter 

was  then studied further  using  a  more  heu  
ristic  approach.  As noted,  the proper  size  
distribution is  different for  different  applica  
tions.  We can,  however,  have general  infor  
mation about how big  Scots  pines  can  grow 
in Finland. The relative  frequencies  of  big  
trees  are  much greater in the data than in 
the forests  generally.  Thus the deep  right  
tail  of the  size  distribution (Fig.  21)  shows 
that trees  with s greater  than 3.5 are  excep  
tionally  rare in  Finland. 

If  the overall  mean and variance of  any  

Fig.  22.  V  1/3 as a function of  D 1.3.  V  is  computed with 
LaasasenLaasasenaho's model (L),  or using the stem form 
model with fixed size  parameter  (F),  or with  ran  
dom size  parameter  (R,  mean of  s  is  2.59  and stan  
dard deviation 0.48). In the stem form model the  
effect of  the  relative  size  is  ignored.  The maximum  
of  D| 3  is  50.9  cm in  the data  of  Laasasenaho.  

general tree  set are  used to determine the 
prior  mean and variance of the random size,  
then the standard linear models do not 

shrink the size estimates for  big trees  
enough towards the mean. Moreover,  the 
size estimates for  the small trees are in  

creased  without any  theoretical justification.  
The one-sided prior  information about 

the size  distribution was incorporated  into  
the model using  the following  heuristic  me  
thod. First  the preliminary  estimate  of  size  

(s)  was  computed  as  usual.  If  s was smaller 
than a given  value /js,  then the size  was  
treated as  a fixed parameter. If  s  was  greater 
than n s ,

 then s  was  treated as  a  random pa  
rameter with mean /x s

 and standard devia  
tion a

s
.  With this  method, estimated us  

ing  Dj 3, can be made unbiased for large  
values of Dj  3. For  instance,  with Ms  -  3  and 
a

s
 = 0.2, the  mean of  arithmetic  errors  for 

trees  with Djj>3s  cm (N=l33)  was  re  
duced from -84  m  3  to —9  dm 3 and RMSE  

from  184 dm 3 to 174 dm 3.  The resulting  

predictor  approaches  Laasasenaho's model 

(see  Fig.  22).  Owing  to the small  number of 
big  trees, the error  statistics  for the whole  
set  of  data did not  improve  noticeably.  
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In conclusion,  some gain  may be attained 

by  defining  the size  as  a  random parameter, 
even  if  specification  of  the proper distribu  
tion is problematic.  If  the model is  used to 
estimate  volumes of  big  trees, and only  one 
measured dimension is  used,  the heuristic  

approach  presented  may prevent  the  results  
from  being  biased with respect to the mea  
sured  dimension. 

If  the size  of  a tree is  partitioned  into a 
random stand effect  and a random tree ef  

fect,  then the results  will  probably  improve  

slightly.  In this  case,  however, we  should be 
able  to specify  two size  distributions instead 
of  one. The randomness of  size  may require  

a  more  sophisticated  (Bayesian)  analysis  than 

was  attainable in  this  study.  

72.  Simulations with measurement  errors  

The effect  of  the measurement errors  can 

be  studied by  generating  artificial  random 
errors  for the measurements.  Section 54 des  

cribed how the existence  of the measure  

ment errors  can be taken  into account  in the 

estimation  by  adding  the  measurement  error  
variances to the within-stand variances and 

how variances of the measurement errors  

should be  transformed for  the polar  coordi  
nate  system.  

As  noted previously,  errors  in the diame  
ter  measurements have two different  com  

ponents: error  due  to the noncircular  form 
of  the stem and the pure measurement  error.  
Errors  due to the uncertain determination 

of  the ground  level  are  classified  here  as  pure 
measurement  errors.  The first component 

can,  in  principle,  be described by  general  
models. In contrast, pure measurement  er  
rors  are dependent  on measuring  devices,  
measuring  conditions,  and  on  human fac  
tors.  Thus pure measurement errors  are  al  

ways  dependent  on the particular  situation. 
Note that the height  measurements  contain 

only  pure measurement errors.  
For  this  study,  the variances of the mea  

surement errors  were  taken from the study 
of  Hyppönen  and Roiko-Jokela  (1978).  To 
simplify  the treatment, observed  biases  were 
combined with the error  variances,  i.e.,  the 
observed mean square error  was  used to esti  
mate the error  variance,  and  the measure  

ments are assumed to be unbiased. In the 

data of Hyppönen  and  Roiko-Jokela  the 
sample  standard  deviations (including  the 

biases)  are  in  arithmetic  units and in  propor  
tion to the mean values:  

Hyppönen and Roiko-Jokela  (1978)  
found no clear  connection between the error  

variance of height  measurements and the 

height.  They  did not  consider  the depend  
ence between the error  variance of the di  

ameter measurement and the true diameter. 

In the simulations both arithmetic errors  

(fixed  error  variance)  and relative  measure  
ment errors  (variance  proportional  to the 

square of the measured dimension)  were  
used. Arithmetic  errors  were generated  ac  

cording  to the normal distribution and rela  
tive  errors  according  to the lognormal dis  
tribution. As the relative  errors  are  used to 

evaluate the volume estimates,  arithmetic  
measurement errors  have  greater effect  in 
small trees  than in large  ones.  The effect of  
the measurement errors  was computed  both 
by taking the measurement error  variances 

properly  into account  in the estimation 

procedure  and by  ignoring  them. For the 
first  case,  the measurement errors  are  said to 

be 'corrected'. The error statistics  are ob  

tained as  averages of 30  runs  with different 
seed values for  the random number genera  
tor.  Error statistics  are presented in Table 
10 for measurement combinations (Dj 3),  
P1.3,  H) and (D u,  D  

6,
 H).  

If  only  Dj  3 is  measured and s is  consi  
dered to be  fixed, then the measurement er  
rors  do not alter the  way  the  stem curve  is  

predicted  in logarithmic  units.  When pre  
dicted diameters are transformed  from the 

logarithmic  scale  to the arithmetic  scale,  the 
increase in predictor  variance changes  the 
predicted  stem curves  slightly.  This change 
has no  practical  effect:  the volume estimates  
cannot be improved  by taking the measure  
ment errors into account.  The estimates  of  

the error  variances will, however, improve.  
The within-stand errors  of the volume esti  

mates increase due to the measurement er  

rors.  If  only  one dimension (e.g.  Dj  3)  is  
measured for each  tree, the between-stand 

standard error  of the volume estimates does 

not  change.  
For other measurement combinations,  

measurement errors  also increase s
w

. If  the  

;asurement  

'1.3 

»6 

0.3 cm 

0.8 cm 

0.9 m 

1.4 

5.3 

6.3 
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measurement errors  are taken  into account  

in the estimation,  then the effect  of the 
measurement  errors  on s

w  can  be decreased 
to some extent.  In general,  measurement  
errors  increase slightly.  

The effect  of measurement errors  in  the 
calibration  of the stem curve  was  also  stu  

died. For the calibration we are interested 

in how errors  in the calibrating  measure  
ments  affect  between-stand variance of the  
volume estimates for the tally  trees.  Dj  3 
and H were  assumed to be measured for the  

calibrating  trees.  Although  measurement er  
rors  make the  calibration slower,  it  is  still  

quite  effective  (Fig.  23).  If  measurement  er  

rors  are taken into account  in  the estima  

tion, their  impact can,  to some extent,  be  

compensated.  Bigger  errors  are  easier  to  cor  
rect.  Thus the correction  procedure  is more  
efficient for  arithmetic errors  of measure  

ment, which are  large  (in  relative  units)  for  
small  trees.  

The effect  of measurement errors  on the  
calibration was  also  studied using measure  
ment combination (Dj  3, H, The re  
sults  were  nearly  the same as  those in Fig.  
23.  

Table 10. Volume  estimation when measurements are 

disturbed by simulated measurement errors. The 
variance  of  the measurement errors is first  propor  
tional to the square  of  the  measured dimension, in  
which case the relative measurement error is 1.4 % 

for D,  3 ,
 5.3 % for and 6.3  % for H. In the  

second case ('arithmetic  measurement error')  the  
variance  of  the measurement errors  is  constant,  the  
standard deviation  being 0.3  cm  for D 1.3 ,

 0.8 cm  for 
D 6  and  0.9 m for H. The measurement errors are 

either taken  into  account  ('corrected')  in  the  esti  
mation omation  or  ignored.  

Fig.  23.  Effect of  errors  in  calibrating measurements. RMSE
b  of  errors  (V—V)/E(V)  as a function of  the number  of 

calibrating trees when there are no errors  in  the  calibrating measurements (lowest  line),  are corrected measure  
ment errors  (middle line),  or  are uncorrected measurement errors  (upper line).  In  Fig.  23a  measurement errors  
have fixed variance  in  the  logarithmic  scale  and  in  Fig. 23b in the arithmetic scale.  

error  type no error  rel.  rel. arith. arith. 

corrected  -  no yes no yes 

measured 
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sb 
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0.4 

15.9 

12.3 
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0.3  

15.9 

13.2 
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0.3 
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13.2 
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0.1 
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—0.3 
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9.4 

10.1 

0.0 
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8.6 

9.5  

—0.2 

4.4 

10.7 
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10.0 

11.0 
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3.2 

3.7 

—1.0 

2.1 

7.7 

8.1 

—0.4 

2.1 
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7.0 

—1.0 

2.0 
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7.8 

—1.0 

2.1 

6.9 
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73. Estimation of  error  variances 

In the stem form model we get  estimates  
of the error  variances for diameters at knot 

angles  and for  stem volume. Error  variances 
in  the polar  coordinates  can  be  transformed  
to error variances of  diameters at a given  

height  using  the correspondence  derived in 
section  54 for  measurement errors.  Esti  

mates of  error  variances are  useful in several 

applications,  e.g., for  estimating  proportions  
of  different  timber assortments  or  for op  

timizing  measurement  strategies.  In this  sec  
tion theoretical variances are compared  

briefly  with  the empirical  (sample)  error  vari  
ances.  

Error variances of the predicted stem 
curves  in the polar coordinates  are first  
compared  in the logarithmic  scale  when 
either  Dj  3  or  Dj 3  and  H  are measured. Er  
ror  variances  vary from  tree  to tree,  but  for 
each stand k  and tree  i  the  expected  value of  

Ld ki (u)-4i(u)] 2 is  equal  to var[dk;(u)—  
a(uki)].  Thus  the average  of the squared  re  
siduals  (sample  mean square error)  should be 
approximately  equal  to the  average of  the 
theoretically  computed variances. This  
equality  should also  hold for square roots, 

which can  be interpreted  as  relative  standard 
errors.  As  can  be  seen  from Fig.  24,  theoret  
ical  estimates  of variance agree quite  well  
with  the empirical  results.  

Error variance for  diameter predicted  at  a  

specified  height  can  be estimated as  follows.  
First,  the error  variances for  the knot  angles  

are  expressed  in terms of the height  using  
the predicted  stem curve.  The variance for 
the given  height  is  then interpolated  with a 
cubic spline.  This interpolated  variance is  
divided by  f 2,  where  fis  the (interpolated)  
coefficient (54.9)  that transforms  an  error in 
the height-diameter  coordinates to polar 
coordinates as  described in section  54. Fig.  
25 shows the correspondence  between the 
theoretical and empirical  RMSE for  differ  
ent relative heights,  when Dj  3  and H have 
been measured. Theoretical and empirical 
results  agree quite  well. 

Variance components  of  volume estimates  
were derived in section  53. Empirical  esti  

mates  of  these variances  are  computed  using 
the  descriptive  model (61.3)  for  relative  er  
rors  (V — V)/E(V).  Observed  biases  are again  
combined with estimated between-stand var  

iances.  As can  be  seen from Table 11, the 
theoretical  standard errors  reflect  well the 

Fig.  24. Sample  RMSE of predicted logarithmic diameter (solid  line)  compared with the theoretical counterpart  
(broken line)  for different angles; D 1.3 is  measured  in  Fig.  24a; D 1.3  and  H are measured  in  Fig.  24b. Data  of 
Laasasenaho, overall model. 
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Fig.  25.  Sample  RMSE  of relative errors  (D—
D)/D  (so  

lid line)  compared with the  theoretical counterpart  
(broken  line)  for different relative heights,  when 
D1.3 and  H have  been measured.  Data  of  Laasasena  
ho, overall model. 

Fig.  26. Empirically  estimated between-stand RMSE 
(RMSEb)  of the  volume estimates  compared with 
the  theoretically  derived between-stand standard er  

ror  (ob)  as a function of the number of  calibrating 
trees. Data  of Laasasenaho, overall model; only  
stands  having at least  three trees have  been  used.  

Table 11. Theoretically  derived between-stand, with  
in-stand  and total standard deviations (ob,  o

w
 and  o t)  

compared with empirically  estimated  between-stand 
RMSE (RMSEb), within-stand and total standard 
deviations (s

w
 and st )  for different combinations of 

measurements. 

differences between  measurement  combina  

tions and between the overall  and  regional  
ized models. 

Empirical and theoretical between-stand 
standard errors of  the volume estimates for 

the tally  trees  are  compared  in  Fig.  26 using  
the data of Laasasenaho. Theoretical stand  

ard error describes  well the rate  of calibra  

tion. As  noted in section 65,  the subdata 
used to test the calibration deviate from  the 

whole data. Hence the  empirical  between  
stand RMSE  is on a lower level than the 

theoretical between-stand standard error.  

74.  Timber assortment  problems  

In timber assortment  problems  the inter  

esting  quantities  (e.g.,  the saw-log  volume)  
are discontinuous functions of  the stem di  

mensions. The estimates  of assortment  vo  

lumes can be  heavily  biased,  if  we just use  
the predicted  stem curves  to estimate  vo  
lumes without taking  the prediction  errors  
into account.  Timber assortment  problems  

are  worth a separate study;  in this section  
the applicability  of the stem form  model  is  
only  demonstrated.  

A key  question  in  timber assortment  

problems  is  whether the  stem dimensions 
meet certain minimum requirements.  From 
a statistical  point  of  view, we  should be  able  
to compute  joint  and conditional probabili  
ties  that diameters at  given  heights  fall  with  
in a  specified  range. Assuming  that the ran  
dom effects  are normally  distributed, the 

probabilities  can be  estimated using  the vari  
ances and covariances  of the  prediction  er  
rors.  

measured model RMSE
b °b S

w
 °b s

. 

D..3  overall 15.8  16.2 11.8 12.1 19.8 20.3 

region. 12.7 12.6 11.3 11.7 17.0 17.2 

D,  j,  H  overall  3.9 4.0 6.3 5.1 7.4 6.5 

region. 3.4 3.7 6.2 5.0 7.1 6.2 

D1.3.  H,  D 6 overall  1.7 2.8 3.3 3.8 3.7 4.7 

region. 1.7 2.7 3.2 3.8 3.6 4.6 
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Fig.  27.  Observed relative  frequency  of trees  with 
D

6
>l7  as a function of  the computed  probability. 

Mean values within 5 %-intervals of  the  computed 
probability.  

Fig.  28. Observed  relative frequency  of  trees with  
H>15 and D6

>l7  as a  function of the  computed 
probability.  Mean  values within  5 %-intervals of  the 

computed probability.  

In the  first  example,  it  is  assumed that 

Dj  3 is  known and we  seek  the probability  
that D6

>l7 cm.  This  probability  was  com  

puted  for  each tree  as  follows. The loga  
rithmic  stem curve  was  first  predicted  for  
the knot angles, and the variances of the  
prediction  errors  were  computed. The near  
est  knot points  (in  the arithmetic  scale)  to 
the height  of  6 m were  next determined. 
Then the percentage points  of  the predicted  
diameters (defined  in the logarithmic  scale)  
of  these angles  were  changed  stepwise  until 
the interpolated  diameter (in  the arithmetic  

scale)  at  6 m was 17 cm.  For  simplicity,  line  
ar interpolation was  used. The observed 
relative  frequency  is  shown in Fig. 27 as  
function of the computed probability.  
Owing  to the effect  of the relative size,  
the computed  probability  is  not  a func  
tion of D]  3 only.  The  correspondence  is  
quite  satisfactory;  the slight  underestima  
tion results,  at least  partly,  from  the linear  
interpolation  used. 

r  

If  we are interested in two or more di  

mensions simultaneously,  then joint (and 

conditional)  probabilities  are required.  In 
the stem form model these could be  ob  
tained using  covariances  of the prediction  

errors.  Because these covariances are not 

used elsewhere in this  study, they  were  not 

computed,  even though  theoretically  their 
derivation is  similar  to that for variances. 

However,  joint probabilities  can be also 

computed  indirectly,  as  indicated in  the fol  

lowing.  
In  the second example,  Dj  3  was again  as  

sumed to be measured,  and the joint  proba  
bility  for H>ls m and D^>l 7  cm was  es  
timated. First,  the logarithmic  stem curve  
was  predicted,  and the variances of  the pre  
diction errors  were  computed.  Then the (lo  

garithmic) height was changed stepwise  
along different percentage points. Each 
height  greater  than 15 m was  used as  a  mea  
surement together  with the measured Dj  3,  
and the stem curve  was  predicted.  Then the 

probability  for  D(,>l7  cm was  computed  as  
in the first  example.  The joint  probability  of  
this  elementary  case  is  the probability  of the 
corresponding  height multiplied  by the 
probability  that  D(,>l7  cm.  The total  prob  
ability  is  then the sum of the elementary  

probabilities.  The correspondence  between 
the computed  probability  and observed rela  
tive  frequency  was good  (Fig.  28). 
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75.  Optimization  of  measurements  

The  stem  form model can  be applied  to 

problems  of  stem form when any  measure  

ments of the stem are available. The stem 

form model was  tested previously  in differ  
ent situations where standard measurements  

are  used. In this section  the stem form mod  

el  is  used to analyze  different measurement 

strategies  theoretically.  The purpose of this  
section  is to  demonstrate how the stem 

form model can  be  easily  applied  to prelimi  

nary  theoretical calculations.  
Assume that we are  measuring a  diameter 

of  a tree  in a given  stand. What is  the op  
timal relative  height  for the measurement? 

According  to the stem form model estima  
tion errors  depend  mainly  on the measure  
ment angle.  Using  the average stem curve  
the angles  can  be  expressed  in approximative  
relative  heights,  which  are better  for  de  
scriptive  purposes. 

• :t: 
_i
 

i_»:„
  

The significance of  the relative measure  

ment height  of  a single measured diameter 

was  studied as  follows. First  Dj.3=2o  cm 
was used as  the only  measurement  for  a tree. 
Then the logarithmically  unbiased stem 
curve was predicted,  and the points  at the 
knot  angles  were used as  possible  measure  
ments for  the same tree. RMSE of  the esti  

mated volume was  then calculated from the 

RMSE of the size  parameter as  described  in 
section  53. There  seems to be an  optimum 
at approximately  40 % of  the total height  

(Fig.  29). The reason  for this optimum 
height can  be seen from Fig.  7, which shows 
the effects  of  the principal  components. The 
diameter at approximately  40 % of the 

height  is  nearly independent  of the most  

important  thickness  component of  the vari  
ation in stem form; thus it  provides  the  
most  precise  estimate  of the stem size.  Note 
that Laasasenaho (1982)  found the 50 %-  

height  to be slightly  better.  When  the mea  
surement  costs  are  taken into  account,  the 
40  %-height  may  be too high  in  most  practi  
cal  measurement situations.  When both the 

measurement  cost  and the  accuracy  of  the 
volume estimates are  considered,  however,  a 

height  greater  than 1.3 m might  be  reason  
able  as  the principal  measurement height  (as  

suggested,  e.g.,  by  Cajanus  1911). 
Next  we determine the optimal  point  for  

measuring  diameter if  the height  is  mea  
sured. The calculations were made in the 

same way  as  for  a  single  measurement.  The 

Fig.  29.  RMSE  of  the  volume estimate  as a function  of  
the relative height of the measured diameter. The 
relative height has  been computed using  an average  
tree. The upper curve is  for the overall  model  and 
the lower curve  for region 5 in  the regionalized mo  
del. 

Fig.  30. RMSE  of volume estimate  as a function of  the 
relative height of the  measured  diameter measured 
in  addition  to the height.  The upper  curve is for  the 
overall model and the lower  curve for region 5 in  
the  regionalized model. 
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Fig.  31.  o b as  a function of the number  of  calibrating  trees for different calibrating  measurements  (a)  and  the 
difference between of  the  overall  model and of  the  regionalized model (b).  

'measured' height  was  taken from the ex  

pected  stem curve  for Dj .3=2o  cm: H is  
14.1 m for  the overall  model and  13.2 m for 

region  5 in  the regionalized  model. Now the 
optimal  relative height  for the diameter 
measurement is  approximately  10 %  (Fig.  

30). RMSE changes  so slowly  that  any  
height  between 5  % and 40  % serves  almost 
as  well. Laasasenaho (1982)  found the 30  %-  

height  to be optimal.  If  the height  of the 
tree  and one diameter are  measured,  then a 
measurement height  of 1.3  m is  reasonable 
in most  practical  measurement  situations.  _

 
-

  
Calibration  of the stem  curve  can also  be 

studied theoretically.  We can generate as  
many calibrating  trees as  we want and then 

survey  the  estimated between-stand stand  
ard error of  the volume  estimate  of  a tally 
tree. If  the measurements are made at fixed  

absolute heights,  then  the  theoretical results  
depend  on the properties  (mainly  size)  of 
the trees used in  the analysis.  For  simplicity,  
the computations  were  made using  Dj .3=2o  
cm  for  all  trees  and,  in addition,  H =  14 m, 

D  6  =  15 cm  and  H
c

—6  m  for  the calibrating  
trees. These measurements correspond  

roughly  to  the average stem form.  The mea  
surement combinations for the calibrating  
trees were  (D l  3,  H),  (Dl  3,  H, H

c
), (D l 3,  

H,  Dfc)  and (Dj  3,  H, H
c
). The theoreti  

cal standard deviation of  the between-stand 

error,  ab,  is  presented  in Fig.  31a as  a  func  
tion of  the number of  calibrating  trees; the 
difference between the overall  and regional  
ized  models  is  shown  in  Fig.  31b. 

As expected, is  greatest for  combi  
nation  (Dj  3, H)  and smallest  for  combina  
tion (Dj  3, H, H

c). With a small 
number of calibrating  trees  (n<2 in the 
overall  model and n<s in the regionalized  
model) of combination (D|  3, H, H

c ) is  
smaller  than of  combination (Dj  3, H, 
Dfc).  Because the within-stand variation of 
H

c
 is  small  compared  to the between-stand  

variation  (see  Table  2),  measurements  of H
c
 

will  rapidly  provide  information  about  the 
stand-effects  of  the taper form. contains 
more  information about the stand stem 

form than H
c
 does,  but because of  the rela  

tively  large  within-stand variation,  we need 
more measurements to obtain this informa  
tion. 

The difference between the overall and 

the  regionalized  model is  significant  for  cali  
brating  measurement combinations  (Dj  3, 
H)  and (Dj  3,  H,  H

c )  even  if  the number  of  
calibrating  trees is  large.  This  agrees  with 
the results  of  section  63. Only  the measure  
ment combination (Dj  3,  H, D 6,  H c)  seems 
to reveal practically  all  the regional  differ  
ences.  
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If  the calibrating  measurement  combina  
tions are  to be  selected optimally,  the mea  
surement costs  must also  be taken into ac  

count. Let us use the same relative mea  

surement  costs  as  Kilkki  (1983),  i.e.,  the rela  
tive  costs  are:  

In Fig.  32 at,  is  presented  as  a  function  of  
the measurement cost. For small mea  

surement costs the combination (Dj  3,  H,  
H

c
) is  optimal,  and for  higher  costs  the  

combination (Dj  3,  H, H
c) is  optimal.  

Thus the combination (Dj  3,  H,  D&),  which 
is  commonly  used in Finland,  is  not  optimal  
for  any  cost  level.  These results  agree with 
those of Kilkki  (1983),  which were  derived 

using  a  different approach.  If  fixed overhead  
costs  are  taken into  account, it  is  not as  ad  

vantageous to measure additional dimen  
sions  (e.g., as indicated in  Fig.  32. 

If,  in the optimization  of the measure  
ment height or  the calibrating  measurement 
combination,  trees  are  assumed  to have dif  
ferent dimensions than above,  the estimated 
error  variances will also  change.  The above  
conclusions  seemed,  however,  to be qualita  

tively  valid for different stem types tested. 

Fig.  32.  ob,  as a function of the measurement cost  for 
different calibrating  measurements;  the overall mo  
del. 

Note that the results  attained in the  polar 
coordinate system can be interpreted  only  
approximately  in the height-diameter  coor  
dinates. Definite  recommendations can be 

made only  after  empirical  tests  designed  for 
specific  practical  applications.  

)ination  cost  

Di 3 ,  H 
Du, H, H

c
 

Du,  H, D6 

Dm, H, D6i H,  

1.0 

1.1 

1.28 

1.38  
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8. DISCUSSION  

81. Generalization of  the results  

The model parameters  were  estimated us  
ing  the comprehensive  data of  Laasasenaho  
(1982).  Because those data were  collected  
with a  different modelling  approach  in  mind,  
generalization  of  the results  to the target 
population  presents  certain  problems.  

First, the measured trees were  selected 

using  a  relascope,  i.e.,  the sampling  probabili  
ties  were  proportional  to the basal  area  of 
the  trees.  In the analysis,  tree size  is treated 
as a  fixed variable and  the random effects are  
assumed  to be independent  of  the size  of  the 
tree.  This  would be the case,  if  the probabil  
ity  of  sampling  were a function of size  or  
were  independent  of  any  tree  characteristics.  
But as  the sampling  probabilities  are  pro  
portional  to the basal  arrea,  it  appears that,  

e.g.,  the thicker  one  of two  nearby  trees  of  
equal  size  has had a  greater sampling  proba  
bility  than the thinner one.  Thus,  according  
to  the  estimated model,  the expected  stem 
forms are too thick.  Because basal area and 

size are highly correlated,  however,  
the bias is  probably  quite  small.  Only  
thicker trees in a given stand have 
had too great a probability  of selection;  
thicker stands have  not had greater 
selection probabilities  than the thinner  
stands.  Thus only  the within-stand  random 
effects  intervene in  the selection of  sample  
trees.  Recall that 'thickness'  means relative 

thickness  after  adjusting  for  size. When the 
model is  applied  for  trees  selected by  rela  
scope,  the results should again  be unbiased. 

Secondly,  our  interpretation  of 'stand' is  
not in accordance  with the common view. 

Each sample  plot  in  the data was  assumed  to 

represent a  stand. A stand is  generally  un  
derstood  to mean a  larger  area  in  which the 
average correlations  between trees are  not  as  
large  as  in the 'stands' of  this  study.  With 
larger  stands  the variances of the within  
stand  effects  would be  greater than estimat  
ed in this study;  the correlations would 

change  much less.  In applications  where the 
correlation structures are more important 

than the variances of between-stand and 

within-stand effects,  this deficiency  is  not  
very  serious.  Test  results  with  the independ  
ent test data of Kilkki  and  Varmola and of  

Pekkonen and  Laasasenaho support this  
view. 

The small  number of  trees  per stand in 
the data also  causes  another problem  in the 
estimation  of  the model parameters. The av  

erage size  of the trees  in  the stand,  s, is  
needed in the model to determine the ex  

pected  value of the random stand effects.  
The relative size  of  a tree,sss,;—s, also  ex  

plains  how the  competitive  status  of  a tree  
affects the stem form. In the model s is  

treated as  a fixed  variable. Because  of the 

small  number of  trees  per stand,  however,  s  
measures  quite  roughly  the true  average size  
in the  measured stands. On the  other  hand,  
it  may  also  be  reasonable to determine the 

competitive  status  of  a tree  using  only  the 
nearby  trees.  

In applications  s  is  computed as  the mean 
of  the preliminary  size  estimates.  The esti  
mated s is  in accordance with s used in  the 

analysis,  if  it  is  computed  as a weighted  
average of  the sizes,  the  weights  being pro  
portional  to  the basal  area.  If  the trees have  
been selected with a relascope,  the average  
can again  be  estimated by the ordinary  
arithmetic  mean. 

82.  Development  of  the  model 

There  are  several  possible  ways to extend 
and refine the model. During  the course  of 
the study  many slight  modifications were  

already  tested. For instance, the following  
alternatives did not work better than the 

methods described  in  this  study:  

(i)  Parameters  were  interpolated by  natural splines or 
by  quasi-Hermite piecewise  polynomials. 

(ii)  Average size  s  was  estimated in  the applications  as a 

separate  parameter. 
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(iii)  Preliminary  estimates  of  size  were used to estimate  
only  s  and not SSs.; — s.  

Preliminary  calculations with the  data  of  
Kilkki  and Varmola and the comparisons  
with Pekkonen's  calibration system in the 
data of  Pekkonen and Laasasenaho indicated 

that the dependence  of stem form on  size  
may vary slightly  from stand to stand.  Thus 
it  might  be reasonable to include a term 

bk(u)ski  into  the explanatory  variables  of  the 
logarithmic  diameter d(u),  where would 
be a random parameter that changes  from 
stand  to stand.  In the analysis  this refine  
ment could be  handled by  standard me  
thods. In the applications,  however,  this  

new term would be  a product  of two un  
known parameters,  which could not  be  esti  
mated simultaneously  by  standard methods. 
An iterative estimation  procedure  might  still  
work.  In the first round the term bk(u)sk;  
could be  neglected or could be  replaced 
by  the preliminary  estimate  already  used in 
the estimation. In the second round  

could be  replaced  by  the estimate  obtained 
in the first  round.  Owing  to the identifica  
tion problems  involved,  any  work  along  such  
lines  should be  very  careful.  

According  to the model presented,  the 
covariance matrix  of  the within-stand  effects  

is  the same for  all  stands.  This  is  not  exactly  
true, because stands are  not equally  homo  

genous. For  instance,  stem forms in  a  stand  
are probably  more alike  after a selective  

thinning  than  before.  Estimation of  a  differ  

ent within-stand covariance matrix  for each 

stand would be possible  only  using  a covari  
ance function  with a few  parameters. The 
simplest  possibility  is  to multiply  a  constant  
covariance  matrix  by  a  variable scale  factor.  
In this case  only  the weighting  of  between  
stand and  within-stand covariance matrices  

would change  from  stand to stand. Separate  
covariance matrices for some subdomains 

(e.g.,  for climatic  regions)  could easily  be 
estimated using  any  sufficiently  representa  
tive data. 

The model was  derived for  fixed angles  in 
the polar  coordinate system.  In applications  
the measurements  can  be at  any  angles,  and 
the needed parameters are  interpolated  by  
cubic splines.  One-dimensional splines  are  
used to interpolate  fixed parameters, charac  
teristic  vectors  and covariances between 

measurement angles  and the knot angles;  
two-dimensional splines  are  used to  interpo  

late covariances between measurement an  

gles.  It  may  be  possible  to  replace  the splines  
with  ordinary  functions,  but mathematically  
these functions are  probably  as  unsophisti  
cated as  the splines  used. 

The analysis  of stem form  variation was  
based on  variables measured from  the trees  

themselves.  Crown height was  the only  exo  
genous variable used in  the  analysis  (in  addi  
tion to the 'measurement' of  climatic  region  
and stand  index).  All  other  variables,  except  
stem dimensions,  are  here called 'exogen  
ous'.  In future development  of  the model it  
should be possible  to incorporate  other  exo  

genous stand variables  or  tree  variables into 
the model. There are several  ways  to do  this.  

Exogenous  tree  variables could be  treated 
in the same way as  the crown  height.  For  in  

stance, crown depth (height crown  

height)  might  be a  reasonable variable  to in  
clude.  In logarithms,  the crown depth  can  
not  be expressed  as  a  linear combination of 
height  and  crown  height, thus it can bring  
to a  linear  model information not  present  in 

height  and  crown height  alone. Variables 
added in  this  way  do not change  the pre  
vious part  of  the model. 

Any  explanatory  stand  variables or  tree  
variables could also be added to the 

equations describing logarithmic  diameters 
at different angles.  For instance, adding  
the basal  area of  the stand would clearly  

improve  the model. But then the esti  
mation of the model parameters should  
be repeated.  In different applications  dif  
ferent sets of exogenous variables are  
known,  and there  should then be  different 
models for  different situations.  This  would,  
however,  contradict  the goal  of finding a 
single  unifying  model applicable  in many  dif  
ferent situations. Perhaps  the principal  
components of  the random stand and tree  
effects  can  provide  a flexible  way of formu  

lating  and utilizing  the information about 
new variables. For  instance,  it  may be possi  
ble  to formulate simple  regression  equations  
for  C],  the first  principal  component of the 
stand  effects.  Then the estimation pro  
cedure can  easily  be modified  accordingly.  

We have seen  that,  using  a single  height  

measurement, the stem curve  can  already  be 
calibrated quite  accurately  for  a  given  stand.  
Hence the usefulness of  exogenous stand in  
formation is questionable,  if  we are  taking  

any  measurements  in the stand.  The situ  
ation is different if  the estimation is  based 



55 

on  general  information  available,  i.e., with  
out field measurements.  

Growth  modelling  may  become an appeal  

ing  area in which this  approach  can be ap  
plied.  With  the  stem form model the change  
in size  can  be  separated  from the change  in 
stem form.  The simplest  way  to predict  the 

path  of  development  of  a stem curve  is  to 
assume  that the random stand and tree ef  

fects  remain constant, and that only  the  size  
is  increasing.  In that case  the development  
of  a stem  curve  can  be predicted  by  predict  
ing  the  growth  in  size.  More complex  statis  
tical  analysis  is  needed if  development  of the  
random stand and tree effects  over  time is 

also  described. In the  growth  modelling it  
should be  taken into account  the  fact  that in  

this  study  the model was developed  for 
cross-sectional  data,  i.e., for  trees at  a  given  
point  in  time.  Because the natural deaths  or  
cuttings  of trees are  correlated with the  
stem forms of trees, the average stem form  

development  of  individual trees  may not  fol  
low the expected  stem curves  of this  study.  

The similarity  of trees in the same stand  
is  formulated in this study  using  random 
stand effects.  This similarity  can  also  be de  
scribed without  stand effects  by  assuming  
that  within a stand the tree  effects are  corre  

lated. Growth modelling  may be  easier  with 
correlated tree effects  than with random 

stand effects.  Stem forms could also be de  

scribed  in an intuitively  appealing  way  with 

principal  components,  if  each  tree  could be 
described using a single set of principal  
components. 

The polar  coordinate system was  used 

originally  by Sloboda (1977  a) to provide  
good  projections  of  growth.  He  also  studied 
curvilinear  coordinate systems  in order to 

express  the  change  in stem form  as  size  in  
creases.  With  the approach  used in the pres  
ent study  the dependence  of stem form on 
size  can  be  expressed  more  simply.  

Extension  of  the model to other  tree  spe  
cies  would probably  be quite  straightfor  
ward. The approach  presented  may also  be 
applicable  in studies of the shapes  of  
other organisms. For instance,  in the stem 
form model the  independence  of  shape  and 
size,  a  topic  widely  discussed in the litera  

ture, is  just  a  special  case.  When  the  dimen  
sions  are  linked  to each other through  the 
size,  an artificial  variable,  and through  a 

simple  covariance structure, we need not 
make a  complicated  nonlinear system  for  the 
interdependence  of  different dimensions. 
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9. SUMMARY  

In this  study  a  general  model for  variation 
in the stem form  of Scots  pine  is presented.  
The model gives  a compact description  of  
how stem form  varies as  a multidimensional 

object.  The dimensions are determined in 

polar coordinates. 
Most of the  apparent variation in  stem 

dimensions can be attributed to differences  in 

size.  The size  is  first  defined as  a  weighted  

mean of  logarithmic  dimensions. Thereafter  
the logarithmic  dimensions are  described  by  
a  simple  linear  model in which size  is  treated 
as an ordinary  fixed variable. The model 
contains a fixed part, which describes how 
the expected  (average)  stem form  depends  
on the size  and relative size  of  the tree. 

Using  random stand  and  tree  effects,  the 
random variation of the stem dimensions is  

partitioned  into variation between stands 
and variation within stands. The variances 

and covariances of the random effects  and 

the fixed parameters of the  model were  esti  
mated using  standard techniques  for  mixed 
linear models.  The principal  components of  
the between-stand and within-stand covari  

ance  matrices were  used to  give  a  more  econ  
omical  description  of  the main directions  of  
the random variation of  the stem form.  

In applications,  the roles of parameters 
and variables  are  changed.  After some ap  

proximative  derivations, the model can 
again  be presented  in the standard form.  
The sizes  of the trees and the random stand 

effects  are  the parameters  to be estimated.  
Random stand effects  are estimated  using  the 
first  few principal  components of the be  
tween-stand covariance matrix.  The model 

can  be  applied  when any  stem dimensions 
are measured. 

With usual measurements  the model is  as  

good  as  the regression  equations  of  Laasasen  
aho  (1982).  The model can  be used to  cali  
brate the stem curve  for  a given  stand;  the 
calibrated stem curve  can then be  applied  for  

tally  trees, i.e. trees with one measured di  
mension. The stem curve  is calibrated by 

estimating  the random stand effects.  By  

measuring  the height  and  diameter at  breast  

height  of a single  tree, the between-stand 
variance of the volume estimates  of tally  
trees  can  already  be  reduced by  70 %.  With 
a  small  number of  calibrating  measurements, 
the model gives  better  results than the cali  
bration system  of Pekkonen  (1982).  

The model also estimates  the error  vari  

ances  of the predicted  stem curves  and vo  
lumes. It is  demonstrated how error  vari  

ances  can be applied  in timber  assortment  

problems. Measurement errors  can  be cor  
rected to some extent by  incorporating  the 
variances of  the measurement errors  into the 

model. 

The model can be used to study different 
measurement strategies.  If  only  one stem 
dimension is  measured,  the optimal  mea  
surement height  seems to be above  the 

commonly  used 1.3  m. Theoretical  analysis  
indicates that the calibrating  measurements  

currently  used in Finland are  not  optimal.  
The stem form model is based on  the 

standard theory  of mixed linear  models. 

Apparently,  the most  compact prediction  
formulas for a mixed linear multivariate 

model are not available elsewhere,  and  are 

therefore derived in this study.  
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SELOSTE  

Männyn runkomuodon  vaihtelun  analysointi  ja  ennustaminen  
lineaaristen  sekamallien  avulla  

Analyysi  

Tutkimuksessa esitetään  yleinen männyn  runkomuo  
don vaihtelun malli.  Mallissa runkomuoto kuvataan 

läpimittojen moniulotteisena  vektorina. Läpimitat 
ilmaistaan napakoordinaatistossa.  Puun  koko määri  
tellään logaritmisten läpimittojen  painotettuna kes  
kiarvona. Logaritmiset läpimitat kuvataan yksinker  
taisella lineaarisella mallilla, missä puun  koko  ja 
suhteellinen koko ovat kiinteitä selittäjiä.  Satun  
naisten  metsikkö- ja puutekijöiden avulla  runko  
muodon satunnaisvaihtelu jaetaan metsiköiden väli  
seen ja metsikön sisäiseen  vaihteluun.  Kiinteät  pa  
rametrit  sekä  satunnaisvaikutusten varianssit ja ko  
varianssit  estimoitiin käyttäen  yleisiä lineaaristen 
sekamallien menetelmiä sekä  Laasasenahon keräämää  
aineistoa.  

Männyn keskimääräinen runkomuoto on keskikokoi  
silla puilla solakampi kuin  pienillä  tai  isoilla  puilla.  
Puut  ovat  sitä tukevampia mitä  suurempia ne ovat  
verrattuna metsikön  muihin puihin. Metsiköiden 
välisen ja metsikön sisäisen vaihtelun kovarianssi  
matriiseja analysoitiin pääkomponenttien avulla.  
Suurin  osa sekä  metsiköiden että yksittäisten  pui  
den runkomuotojen satunnaisvaihtelusta  on puun  
solakkuuden  vaihtelua.  

Noin puolet metsiköiden runkomuodon vaihtelusta 
liittyy  ilmastovyöhykkeisiin.  Mallin parametrit  estimoi  
tiin sekä koko aineiston  avulla että kullekin ilmasto  

vyöhykkeelle  erikseen.  Puut  ovat  keskimääräistä tuke  
vampia Lapissa, Lounais-Suomen  rannikolla ja kitu-  ja 
joutomailla. Lapissa  puun suhteellinen  koko  ei vaikuta 
runkomuotoon  samalla  tavalla kuin muualla Suomessa.  

Mallin soveltaminen  

Mallia sovellettaessa puun  koko  tulkitaan satunnai  
seksi  tai  kiinteäksi  parametriksi,  ja analyysivaiheen  pa  
rametrit  ovat muuttujia.  Malli  kalibroidaan metsikkö  
kohtaisesti estimoimalla satunnaiset  metsikkötekijät 

pääkomponenttien avulla.  Mallia voidaan soveltaa olipa 
metsikön puista mitattu mitä  tahansa dimensioita (lä  
pimitat,  pituus,  latvusraja).  Splinien avulla analyysivai  
heen parametrit interpoloidaan  käytetyille  mittauskor  
keuksille.  

Mittausten  avulla  ennustetaan logaritmiset  läpimitat 

analyysivaiheessa  käytetyille  peruskulmille.  Kun  loga  
ritmiset  läpimitat muunnetaan aritmeettiseen  mittaus  
asteikkoon, käytetään  läpimitan ja sen ennustimen  vari  
ansseista  riippuvaa  korjauskerrointa  harhattoman en  
nustimen saamiseksi. Tämän korjauskertoimen  merki  
tys on kuitenkin pieni,  jos  puun koko  tulkitaan kiinte  
äksi  parametriksi.  Koko runkokäyrä kuvataan splinillä,  
joka määritellään peruskulmissa ennustettujen läpimit  
tojen avulla. 

Ennustettu  runkokäyrä kulkee mitattujen pisteiden 
kautta, jos  mittausten  tiedetään olevan virheettömiä. 
Jos mittausvirheiden varianssi  tunnetaan, mittausvirhei  
tä  voidaan mallin  avulla  korjata.  Mallin  avulla saadaan  
myös  estimaatit ennustettujen läpimittojen virhevari  
ansseille.  Rungon  tai sen osan tilavuus estimoidaan in  
tegroimalla  ennustettua runkokäyrää. Tilavuutta  esti  
moitaessa  käytetään  eri  harhattomuuskorjausta kuin  lä  
pimittoja  ennustettaessa. Tilavuusestimaatin metsiköi  
den välinen ja metsikön sisäinen  virhevarianssi voidaan 
estimoida käyttäen  kokoparametrin  vastaavia  virhevari  

ansseja.  
Yleisillä  mittauskombinaatioilla malli  antaa yhtä  hy  

viä  tuloksia kuin  normaalit regressiomallit.  Lukupuiden 
tilavuusestimaattien  metsikkövirhe pienenee jo 70  pro  
sentilla, kun yhdestä  koepuusta  on mitattu pituus  ja 
rinnankorkeusläpimitta. Ennustettujen läpimittojen 
virhevarianssien avulla voidaan estimoida harhattomasti 

eri  puutavaralajien  määriä. 
Mallin avulla  voidaan tutkia teoreettisesti  mittaus  

strategioita.  Noin  40  %:n korkeudelta mitattu  läpimitta  
antaa tarkimman tilavuusestimaatin, jos puusta  mita  
taan vain  yksi  dimensio. Runkokäyrän metsikkökoh  
taista  kalibrointia  varten kannattaisi koepuista  mitata  
vain pituus  ja  rinnankorkeusläpimitta,  jos koepuumit  
tauksia tehdään  vähän. Jos koepuumittauksia tehdään  
paljon kannattaisi pituuden, rinnankorkeusläpimitan ja  
yläläpimitan lisäksi  mitata  myös latvusraja.  Mittausvir  
heiden merkitystä  voidaan analysoida mallin  avulla. 

Tutkimuksessa sovelletaan yleistä  lineaaristen seka  
mallien teoriaa.  Yleinen lineaarinen ennustin  ja sen vir  
hevarianssi johdetaan sekamalleissa  helpommin soveltu  
vaan muotoon. 

LAPPI, J. 1986. Mixed linear models for  analyzing and predicting stem  
form  variation of  Scots  pine.  Seloste:  Männyn  runkomuodon  analysointi  ja  
ennustaminen lineaaristen sekamallien avulla. Commun. Inst. For.  Fenn. 
134: 1—69. 



59 

APPENDIX 

A. MIXED LINEAR MODELS 

A.l. Model 

Results  for the mixed linear  models that 

are  used in the study  are  presented  here. 
The main  references are  Searle (1971) and 
Harville  (1977).  Prediction  formulas derived  
in  section  A.4 were  not available elsewhere;  
therefore,  their detailed  derivation is  present  
ed. 

Most linear statistical  models are special  
cases  of  the following  general  model: 

where y is  an NXI vector  of random vari  

ables;  X and Z are  matrices  of regressors  
with dimensions NXq  and NXp,  respective  

ly;  a  is  a  qXI vector  of fixed  effects  (para  
meters);  b is  a  pXI vector  of  unobservable 
random effects  (parameters); and e is an 
NXI vector of  random errors.  It  is  assumed 

that E(b)  = 0,  E(e)  = 0,  and cov(b,e')  = 0.  
Let D=var(b),  R=var(e), and  V=var(y)  
= R + ZDZ'. To avoid  unnecessary  com  

plications,  we  assume  that X and Z are  of 
full column rank;  later  all  models  are  also  
defined in  such a  way  that we can  work  with 
inverses  of  matrices  instead  of generalized  
inverses.  

All usual regression  and analysis  of  vari  
ance models are special  cases  of  this  model,  
as  well  as  multivariate,  time-series  and factor  

analysis  models.  Usually  D and R  have  a 

special  structure  (e.g.  diagonal)  so  that there 

are fewer unknown parameters than ele  
ments  in D  and R.  

In the statistical  literature, determination 
of  b from  the data is  termed either 'estima  

tion' or  'prediction'.  Here also the random 

parameter vector b is  'estimated';  the  un  
known y's  are  'predicted'.  Note  that usually,  
but  not  in  our  case, the estimation of  b  and  
the prediction  of y's  coincide. 

The diagonal  elements  of  D  and R  are  call  
ed variance  components; the nondiagonal  
elements are  covariance components. There 
are  several  methods of estimating  D and R.  

If  D and R  are  known,  the estimation of a  
and b is  straightforward.  Let us consider  
this  case  first.  

A. 2. Estimation of  fixed and random 

parameters  

Theoretically,  the  estimation of  the fixed  
parameter vector  a  in  (A.  1.1) is  simple.  The 

generalized  least squares (GLS) estimator is  
the best  (minimum  variance)  linear unbiased 
estimator.  As var(y)  =V, the GLS estimate  
of a  is:  

As  the matrix V  is  of  order N, and V is  not 

generally  diagonal,  even  if  D  and R are,  the 
direct  inversion of  V is,  in most  cases,  im  

possible.  However,  the best  linear  estimates  
of ä  and t)  can  be obtained simultaneously  
from: 

Let 

Then H— l  is also the covariance matrix  
of  the estimation  errors,  i.e.,  its  submatrices  
are  var(ä),  cov(a,V —b')  and  var(t— b).  If  D  
is  singular,  ä  and  I)  can  be  solved  from  equa  
tions given  by  Harville (1977).  Assuming  
normality,  1) is  the best  unbiased and not  
only  the best  linear  estimator.  

If  both a  and b  are  fixed,  they  should be 
estimated using  (A. 2.2)  after  D— 1 is  drop  
ped  from the left  side.  D— 1 brings  into the  
model the prior  information  about the dis  
tribution of  the  b-effects.  

Vectors  ä  and 1) can  be solved directly  
from (A. 2.2).  Another possibility  is  to apply  

y  = Xa  +  Zb + e, (A.1.1)  

a = (X'V-'X)-'X'V-'y (A.2.1)  

"X'R-'X  X'R-'Z 1 fäl  
=

 fx'R  'yl  
Z'R  'X Z'R-'Z +  D-'J  |_bj [Z'R-'yJ  

[X'R-'X X'R-iZ 1 
[_Z'R-«X Z'R—'Z  +  D— 'J ' { >  
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the following  representation  for  V—h 

Thereafter  ä can be  computed  using 

(A.2.1)  and t  can be  computed  as:  

Conversely,  we can first  compute b  and 
thereafter ä: 

Assuming  normality, the presented  esti  
mates  of  a  and b are  also  Bayes  estimates.  In 
the Bayesian  approach  the parameter vector  
a is  also considered to be random but with 

very  large  variance. 
Variances of  the elements of  ä  can also  be 

partitioned  by  utilizing  the fact  that any  
element äj  of  ä  is  linear  combination  of the 
observed  y's,  i.e.,  äj =  c'y  for  some  vector  c.  
Hence 

If  R is  block  diagonal,  the decomposition  
can be developed  further. Let  c  be partiti  
oned into subvectors  C;  corresponding  to the  
blocks  R;  of  R.  Then 

This  decomposition  is  used later on,  
when estimation errors  are  partitioned  into 
between-stand  and  within-stand errors.  Simi  

larly,  the variances  of  bor —
b  can be  de  

composed  into components. 

A. 3. Estimation of  variance  and 

covariance  components 

Estimation of  the variance and covariance 

components from unbalanced data has at  
tracted considerable attention in recent  

years.  Nowadays  there  are  several  different 
methods  available,  e.g.,  the  three methods of  
Henderson,  maximum likelihood (ML),  re  

stricted  ML (REML), minimum variance 

quadratic  unbiased estimator  (MIVQUE), 
and minimum norm quadratic  unbiased es  
timator (MINQUE). For ML and REML  
the reader is  refered  to Harville  (1977)  or 

Dempster  et al.  (1981),  and for MIVQUE 
and MINQUE to Searle  (1979).  

In this  study  the variance and covariance 

components were  estimated using  the fitting  
constants  method (Henderson's  method 3;  
see  Searle 1971).  This  technique  can  be  used 
in mixed models and was  easy  to implement  
in the present  case.  During  the  course  of  the  
study  the maximum likelihood method was  
also used;  the EM-algorithm  as  presented  in  
Dempster  et al.  (1981)  was  generalized  to 
the multivariate situation.  However,  using  
this  more  complicated  method,  no  real  gains  

were  obtained. 

In order  to  describe  the  fitting  constants 
method, we  start  from the model  

where a can now contain both fixed and  

random parameters,  b  contains  only  random 
effects,  and e is  the random error,  uncorre  
lated with other random effects,  and E(e) = 
0  and var(e)  = o*l. 

First, we  fit  the following  reduced model 

by  ordinary  least  squares: 

Let  the resulting  residual sum of squares 
be SSE(a).  The next step is  to fit the full  
model (A. 3.1); let  the resulting  residual  sum 
of squares be  SSE(a,b).  An unbiased esti  
mate of  a  I  is 

The expected  value of  SSE(a) —SSE(a,b)  
is 

Let k be  the number of unknown vari  

ances  (af  and k—l  variances of  random ef  
fects).  Using  (A.3.3) for  the  full  model and 

V-1  = R -i  _ R-IZ(Z , R-IZ+D-1 )-'Z,R-'.  (A.2.4)  

b = (Z'R-'Z + D-'J-'Z'R - '(y— Xä). (A.2.5) 

k  =  (Z'SZ +  D-I )—!Z'Sy,  where (A.2.6)  

S  = R— 1 R-IX(X'R- 1X)-'X'R- 1
,  and  then(A.2.7)  

a =  (X'R—•X)—'X'R—'(y—Zi>). (A.2.8)  

äj = c'y  =  c'(Xa  +  Zb  +  e),  and 

var(äj)  =  c'ZDZ'c  +  c'Rc. (A.2.9)  

var(aj)  =  c'ZDZ'c  + ; c/RjCj. (A.2.10) 

y  =  Xa  +  Zb 4-  e, (A.3.1) 

y = Xa +  e. (A.3.2) 

a]  =  SSE(a,b)/[N-rank(X
t

)], where (A.3.3)  

X, = [XZ]. (A.3.4) 

E[SSE(a)—SSE(a,b)] = 

(A.3.5)  

tr{Z'[l-X(X'X)->X']Z  E(bb')}  

+  ac[rank(XJ —rank(X)].  
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(A. 3.5)  for  different partitioned  models,  we  
can form and solve a linear system  of k  
equations  and k  unknowns. The resulting  
estimates  are  quadratic  forms in the obser  
vations. Generally  the fitting constants  
method is  not  uniquely determined: it  is  

possible  to form more equations  than there 
are  unknowns. In our  special  case  the fitting  
constants  method is, however, uniquely de  
termined. 

Because the stem form model is a  multi  

variate model,  the assumption  var(e)  = a|l 
does  not hold. As  indicated by  Searle and 
Rounsaville  (1974),  the estimates of the co  
variance components can,  however,  be ob  
tained simply  by  the fitting constants  or  by  

any  similar  method. As  noted,  the fitting  

constants  method  gives estimates of  variance 

components which are quadratic  forms in 
the observations.  The corresponding  esti  
mates  of  covariance  components are  bilinear 
forms in the observations  with  the same co  

efficient matrix.  It can be shown that the 

following  well-known  identities are also  true 
for  the covariance  component estimates  (and 
not  only  for  the covariances):  

Therefore,  the fitting  constants  estimates  
for  covariance components can be  obtained 

by  estimating the variance components for 
all  pairwise  sums  of  variates.  

A.4. Prediction  of  new observations 

When applying  the stem form  model, we  

predict  those dimensions which have not 
been measured. Here the prediction  pro  
blem  is  discussed in  general  terms. The pre  
dictor  formula of Goldberger  (1962)  is  devel  

oped  further for  mixed linear  models.  More  

over,  variances  of  the predictor  and the pre  
diction error  will  be  derived. Let us  assume  

the following  model for  the observed values 
of  y: 

where y is  an NXI vector,  X is a  fixed  NXq  
matrix,  a  is  a qXI parameter vector,  and u is  

an NXI vector of  random errors.  Note that 

the general  mixed model (A. 1.1) is a  special  

case  where u = Zb + e. Let ä denote the 

GLS estimate of  a:  

The problem  is to predict  a single  value 
of regressand  yo given  the vector  of  regres  
sors  XQ.  We can write  

where u  0  is  the  random  error for which  E(u0)=0. 

Denote that 

Then according to Goldberger  (1962),  the 
best  linear  unbiased predictor  of  yo,  yo  is  

Assuming  normality,  if  a=  a, then y 
Xa = u and the predictor  yo would be the 
conditional expectation  of yo  given y.  

For a mixed model y=Xa+Zb+e the 
formula (A.4.7)  can  be developed  further by  

substituting  the expression  (A. 2.4)  for  V"
1

:  

Equation  (A. 2.5)  was  used  above  to  get  I)  
into the formula. 

This  formula can  be developed  further  by  

writing  the random error  uo in  terms  of  the 
random effects  b:  

where  cov(b,eo)  = 0.  Denote 

Thus c COV(U,UQ) = cov(Zb  +  e,  ZO'b  +  
eo) = ZDzq  + w.  Then  c  is  substituted into 
Eq.  (A.4.8):  

var(x+y)  = var(x) +  var(y)  +  2cov(x,y),  or 

cov(x,y)  = [var(x+y) — var(x)— var(y)J. (A.3.6)  

y  = Xa  + u, (A.4.1) 

E(u)  = 0, (A.4.2) 

var(y)  = var(u)  = V, (A.4.3) 

ä  = (A .4.4) 

y 0  =  x o'a  + uO , (A.4.5) 

c  -  cov(u,uo)  = [cov(uj,u 0),..c0v(un
,uo)]'  . (A.4.6)  

to = x o
'a  + c'V-'(y-Xa). (A.4.7) 

y 0  =  Xg'a  + c'V-^y— Xä) 

= x o
'a +  c'[R-l—R-iZ(Z'R- I Z+D- 1 )- 12'  R 

Xä) 

= xo
'a  + c'R—!

(y —Xä— Zb). (A.4.8) 

u 0  -  z o
'b  +  eO , (A. 4.9) 

w  — cov(e,eo). (A.4.10) 



62 

Thus the  prediction  formula is  exactly  
the same  as  if  b  were  fixed; the only  differ  

ence  is  in the way  t> is  computed.  
Let  us then derive var(yo)  and var(yo — yo).  

Generally  var(yo)  is  not  of  interest  but  is  ne  

cessary  here when deriving  an unbiased pre  
dictor  in the arithmetic  scale.  

Define  that 

Recall that var(a
s .—a,,) = H l

, where His  
given in (A. 2.3).  Consider  the following  par  
tition of H  

Let  us  first  state some preliminary  results.  

According  to Henderson (1975):  

Using  Eqs. (A.4.17) —(A. 4.22)  and simple  
but tedious matrix  algebra,  this simplifies  
to: 

The derivation of var(yo—yo)  is  simpler.  
Write  first:  

The first  term of  (A. 4.25)  represents the 
error  variance due to the parameter esti  
mation,  and  the  difference var(eo) —w'R  
is  the error  variance when eo  is  regressed  on  
e.  When comparing  (A. 4.25)  with the vari  
ance formula  of Goldberger  (1962),  we see 
that the only  effect  of the randomness  of  b 
is  that X„.'R— !X...  is  replaced  by  H. 

Computations  can be  simplified  for spe  
cial  matrix  structures, if  the variance  formu  
las  are  expressed  in  terms of submatrices  of  
x  

4,
 X„. and H — l.  Equation  (A. 4.25)  can  be 

written:  

y 0  =  xo
'a  + (ZDzO +  w)'R

_
'(y —

Xa— Zb)  

=  xo'a  +  z O 'D(Z'R- Iy-Z'R-'Xa—ZR-'Zt))  + 

w'R—'(y—
Xa

—Zb). (A.4.11) 

From  (A. 2.2)  we  get: 

Z'R-'y Z'R—'Xa Z'R~'Zb = D-'b. (A.4.12) 

Thus (A.4.11)  simplifies  

y  0  =  x
o'a +  z

0
'l)  +  w'R—'(y—Xä—Zi>). (A.4.13) 

x = 
X° , (A.4.14) 

» LzoJ  

X
s

 =  [X  Z],  and (A.4.15)  

3,= (A.4.16) 

H_l  _ var(a) cov(ä,b'—b')  _G u Gi2 
cov(b—b,a')  var(b—b) G  2) G  22  

(A.4.17) 

cov(a,b')  = 0, (A. 4.18) 

var(b)  =D G 2 2,  and (A. 4.19) 

cov(b,  b')  = var(b)  =  D G  22. (A. 4.20) 

From (A. 4.19) and  (A. 4.20) it  follows that 

cov(b,b'—b')  = 0. (A. 4.21) 

From (A. 2.2)  and (A. 2.3) we  see  that 

ä
a
 =  H 'X  'R-'e  +  terms independent of  e. Thus  

cov(ä
s
,e')  =  cov(ä

s

—a  ,e')  =H — and (A.4.22)  

= cov(a^ — a
a
,eo)  =  H—l X

s

'R —'w.  (A. 4.23) 

Now: 

var(y0)  = var[xo'a  +  zo
'b  +  w'R—'(y—Xä—Zb)] 

= var  { x
o'a  + z o

'b  +  w'R—'[—X(a —a)—Z(b—b)+e]}. 

var(yo)  = xo
G

n
x

o +  zo'( D — G22) z
o (A.4.24)  

w'R-'XH-'X  ~'R"'w  +  w'R-'w + 

2z0
'G

21
X'R —1

w  4- 2z0
'G

22Z'R~ I
w. 

yo—yo  =  xJK"3J —e
o +  w'R-I !—:x„(®.—a .) +el  

=  (x^' —w'R—'XJ(ä
(

—aj  —e
o +  w'R—!

e. 

From (A.4.22)  and (A. 4.23)  it  follows: 

var(y0
— yo)  =  (X/—w'R-iXJH-Hx-X'R-lw)  + 

var(eo)—w'R—'w. (A. 4.25) 

var(y
0—y0

)  = xo
'G

u
x
0 + z o

'G
22

z
0 + 

2X0
'G

12
Z

0 + w'R-'X H-'X ;R-'w  

2x
o
'G

n
X'R—'w 2Z

0
'G

21
X'R- 1

W (A. 4.26) 

2x0
'G

12
Z'R—'w 2z

0
'G

22
Z'R—'w  +  

var(eo) w'R—'w  
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the prediction  error  can also be partitioned  
into components in  the same way  as  the  vari  
ances of  the parameter estimates.  We do not  
utilize this decomposition  in  this  study,  how  
ever, but  use  instead  an  empirical  descriptive  
model for  the  same purpose. 

The predictors  are also  linear combinati  
ons  of  the observed y's.  Thus the variance of  

B.  COMPUTATION OF MODEL 

PARAMETERS 

8.1.  Covariance components 

Let us  first consider the estimation  of  vari  

ance  components,  i.e.,  var[v(u)]  and var[e(u)]  
for  different angles  u using  the  overall  mo  
del. From the two equivalent  formulations 
of  the model we use  the first one,  namely  
(41.3).  The  estimation is  achieved by  means 
of  the fitting constants  method;  consequent  
ly  one needs  to evaluate the terms  of  Eq.  

(A.3.5).  
Let K denote the number of stands,  nk  

the number of trees in stand  k,  and N the 

total number of  trees. Now the terms in 

(A.3.5)  are  as  follows:  

The first  and last  column of X are  linear 

combinations of the columns of Z. So 

rank(X.f ) = rank(X)  + rank(Z)  —2  = K+2 
and  rank (XJ—rank(X)  = K—2. Matrix bb' 
is  now  

As  E[vki(u)vk2(u)]  = var[v(u)]  if  kl  = k2  
and zero  otherwise,  E(bb')  = var[v(u)]l.  
Thus 

Denote by  C the coefficient  of  var[v(u)]. 
From the standard regression  theory  we 
know that y'[I—X(X'X)~!X']y  is  the sum 
of  the squared  residuals  when y  is  regressed  
on X.  Thus the sum of  the squared  residuals  
is computed  when each column of  Z is  re  

gressed  on X.  Then C is  the total sum of 
these squared  residuals.  

The within-stand variance  var[e(u)]  is es  
timated by  

where SSE(a,b)  is  the sum  of  the squared  re  
siduals  for the full  model. Because the full  

model has a separate intercept  for each 
stand, SSE(a,b) be computed  easily  by  

regressing  dki (u)—dk  (u) on ski—sk and  
s
ki

— s
k  •  Recall  that SSE(a)  is  computed  by  

regressing  d(u)  on X.  Thus var[v(u)]  is  esti  
mated by:  

In (A. 4.24)  and  (A. 4.26) we can  write  furth  
er:  

w'R-'X H-!X R-iw  = w'R—'XG.iX'R— !
w + 

«• S- 1  1 

w'R-iZG
22

Z'R—'w + 2w'R—'XG
12

Z'R—'w. (A.4.27) 

1 s l,l s
i,i s l. 

X = . . 
,
 (B.l.l)  

S
K,n

K 4,„
k
 SK]  NX4  

rank(X)  = 4, 

a '  = tao( u)'  ai( u )>  a2( u)>  a j(u )]> (8.1.2) 

"l  

1 

Z = 
•

 • 
.

 - (B.  1-3) 
1 

i NXK 

rank(Z)  = K,  and 

b'  = [v l (u),...,v K(u)]. (8.1.4) 

v,(u)v,(u)  ...  v,(u)v K
(u) 

bb' = : • (B. 1.5) 
vK(u ) v i(u)  -  vK( u )vK(u )  

tr {Z'[l—X(X'X)—'X']Z  E(bb')}  = 
tr {Z'[l-X(X'X)-IX']Z)  var[v(u)] 1 j 

var[e(u)]  = SSE(a,b)/[N-rank(X
i[

)], (8.1.7)  
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As  described in  Appendix  A.3,  cov[v(uj),  

v(u2)] and cov[e(ui),  e(u2)] can be estimated 
through  the  variance components of  d(ui),  
d(u2) and  d(uj)  +  d(u2).  

When the variance components are  esti  
mated for  the regionalized  model,  the mat  
rix  X  is  block  diagonal  where the blocks  are  
similar  to X in the overall  model. Hence 

SSE(a,b),  SSE(a)  and  C can be computed  
for  each region  in the way  described  above.  
Then these regional  quantities  are  added to  

gether.  Let L be  the number of regions.  
Then the matrix  ranks  for  the regionalized  
model are:  

8.2. Parameters 

Parameters of  the model can  be estimated 

when estimates  of variance-covariance  com  

ponents  are  available. In fact,  only  the fixed 
parameters are of interest, although  esti  
mates  of  the random parameters  will  also  be  
obtained. Note that the parameters can be  
estimated separately  for  each angle since  the 
model (41.3)  (or  41.4)  has a separate set  of  
parameters for each  specific  angle.  Because 
the random stand  and tree  effects of  dif  

ferent angles  are  correlated,  the parameters  
can  be estimated more  efficiently  by  estima  

ting  them simultaneously  for all angles  
(using  'seemingly  unrelated regressions').  If  
the stand effects  were  treated as  fixed para  

meters, then the simultaneous estimation 
would produce  the same estimates  as  the se  

parate estimation (see  Johnston  1972,  pp. 

238—240).  
In both  separate and simultaneous esti  

mation of  parameters  we  are  solving  the  sys  
tem (A. 2.2).  For  computational  reasons,  the 

parameters  of  the overall  model and also  the 

parameters  of  the regionalized  model for  re  
gions  with  large  number of  stands in  the da  
ta have been estimated separately  for  each 
angle.  Note that the fixed parameters of  the 

regionalized  model can  in any  case  be esti  
mated separately  for  each region.  In the se  

parate estimation matrices  X and Z and  vec  

tors  a  and bin equation  (A.2.2)  are  as  defi  
ned  in 8.1. Furthermore,  

When the parameters  are  estimated sepa  

rately  for  each knot  angle, only  estimates of  
the variance components are  used.  Thus the 
definiteness of the estimated covariance 

matrices causes  no  problem,  and  we can  use  

directly the variance component estimates  
obtained by  means  of the fitting  constants  
method when solving  the system  (A. 2.2).  

For the regionalized  model,  the simulta  
neous  estimation is computationally  feasible 
for  regions  with small  number of  stands and 
trees.  The quantities  in the equation  (A. 2.2)  

are  as  follows:  

where I  is  the identity  matrix  of  order  14, 

As  described in  section 43, the matrix  B 

in (8.2.8)  is obtained from  the fitting  con  

stants estimate  by  adding  a small constant 
to the diagonal.  Some  attention should,  how  
ever,  also  be paid  to the  rank of  R.  It was  
claimed  in section 44 that a 13X13 submat  
rix  of  W is,  in theory,  singular;  thus W and 
R are also in  theory  singular.  Consequently,  
the dimensionality  of W should be de  
creased,  e.g., by  expressing  one diameter as  a 

var[v(u)]  =  { SSE(a)—SSE(a,b)  

var[e(u)] [rank(XJ —rank(X)]}/C. (B.  1.8) 

rank(X)  = 4L, 

rank(Z)  = K,  and 

rank(X
s

)  =K  +  2L.  

R  = W(u)IN,  and (8.2.1)  

D  = B(U)I k , (8.2.2)  

where  W(u)=var[e(u)],  and B(u)=var[v(u)].  

I S, ,1 S|jl Sj I 
x  = • i ' ; : (8.2.3) 

.I  SK.hr 1 1 \
l\  14NX56  

a' = [a0(l),--,a0(14),aI (l),...,a2(l),...,a3(l),...,a3(14)]  

(8.2.4)  

"i 

I 

Z= • . (8.2.5) 

ij  14NX14K  

b'  = [v,(l) vj(l4), v2(1),...,  vk(l4)], (8.2.6)  

R  = diag(W W) I4NXI4N, (8.2.7) 

D = diag(B, B) I4KXI4K. (8.2.8) 
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linear combination of the other diameters 

before applying  Eq.  (A. 2.2),  where R  (and 
thus also  W) is  to be inverted. Because  the 
fitting constants  estimate  of W was  slightly  

(but  clearly)  positive  definite,  the estimation 
was  accomplished  using  the  actual  estimate  
of W.  

C.  COMPUTATIONS IN  THE 

APPLICATIONS 

C.l. Parameter estimates 

In applications,  according  to (52.5)  the  
model is:  

The model is in a form where the stan  

dard procedure  of estimation for  mixed line  
ar  models can be  applied.  Let n and m; be 
the number of trees in the stand and the 

number of  measurements  for  tree  i, respect  

ively.  The terms of the general model 

y=Xa+Zb+e  are  interpreted  as  follows:  

In the estimation the covariance matrices  

D  = var(b)  and R=var(e) are  also  needed. In 
this case:  

where k=1,...,p,  is the kth characteristic  
root  of  B,  the covariance  matrix  of the stand 
effects  v(u).  The matrix  R is  now of  the 
form: 

Matrix  R  is thus block-diagonal  having  as  

many blocks  as  there are  measured trees,  and 
the dimension  of each block  is  equal  to the 
number of measurements  made for the re  

spective  tree.  The elements of R  are  compu  
ted from the within-stand covariance matrix  

W using  two-dimensional splines.  
When the principal  components of the 

between stand effects  were  computed,  the 

crown height  was  excluded. Hence v(14)  
cannot be expressed  in terms of   

k=1,...,p,  without error.  If  the crown  height  
is  measured for some trees, then we must  
add a  new  random effect  cp

+i=v(l4)  to  the 
vector  of  random effects.  In addition,  the Z  
matrix  must  be modified  accordingly.  The 
row  of the Z-matrix  corresponding  to the 
measurement  j  on  tree  i, z(u;j)',  becomes:  

if the measurement is  not  the crown  height,  
and 

for  the crown  height.  D-matrix  becomes 

p 

y(Uij)  =  a(uij)s i  +  t qk(uij)c
k +  e(u ij) 

k=l 

yi 

y  = • ,  where (C.1.1)  

yn 

yi  =  [y(u ii).-.y(u i>mi)], (C.i.2)  

»1  

X = . , where (C.1.3)  

" a
n
 

a i
'

 =  [a(u il)>—>  a(u i,m,)]. (C.1.4)  

a' =  s' =  (5,,...,  sn), (C.1.5)  

V  
Z = ; ,  where (C.1.6)  

_Zn_ 

qi(u ii) -  q
P
(uii)  

z= : : (C.i.7)  

-  qpKmi)_  

b' =  c' = (c,,c p
),  and (C.1.8)  

e' = [e( un), e(u
n
 
mn

)] (C.1.9) 

D diag(tj, t
p
), (C.l. 10) 

R  = diag(R], R
n),  where (C.1.l  1) 

R;  = var[e(uil ),  ..., e(u i  
m.)] (C.1.12)  

z(u ij )'  =  [qi(u ij),... ) q p
(u ij),o] (C.  1.13)  

z(uij)'  = (0,..., 0,  1) (C.1.14) 

t, cov[C],v(l4)]  

D  = t
p
 cov[Cp,v(l4)]  .  

cov[v(  1 4),c, ]... c0v[v(14),cp ] var[v(l4)]  

(C.1.15)  
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Covariance cov(cj
i
,v(l4))  is  obtained  by  

recalling  that (see  52.1)  

Computations  can  be simplified  conside  

rably  using the sparsity  of  X-  and R-matri  

ces.  First  X'R-1  is computed:  

Matrix  X'R- 'X is  diagonal,  the i'h  di  
agonal  element being  

X'R—l2 and  X'R—ly  can  also  be compu  
ted treewise: 

The block diagonal  form of  R simplifies  

naturally  the computation  of Z'R—*Z and 
Z'R—!y.  Because  X'R- !X (left upper cor  
ner  of H in  (A. 2.3)  is  diagonal,  matrix  H 
can easily  be  inverted  using  Cholesky  de  
composition  (see, e.g., Kennedy  and Gentle 
1980) also  when the number of  trees  is  large.  

Let  us  now consider  briefly  the estima  
tion when sizes  of  trees,  s;'s,  are assumed to 
be independent  random parameters with 
mean s and variance  var(s).  The estimation  

procedure  for random parameters assumes 
that the expectations  are zero. Equation  

(52.5)  can  be rewritten as  follows: 

Then  y(u;j)—a(u;j)s  is  the dependent  vari  
able and (s;—s  ) is  the random size  par  

ameter to be estimated.  For fixed size,  
X'R—!X was  found to be diagonal  with di  

agonal  elements aj'Rj
-J

a;  (C.1.18).  If the Sj's  

are now treated as  independent  random para  

meters, var(s)~ 1 must  be added toaj'Ri
- 'a;. 

Otherwise  the estimation  proceeds  as  for  fix  
ed s.  

The standard  estimation theory  can  also  
be applied  when s is  assumed to  have a  ran  
dom or  fixed  stand effect  and a random with  

in-stand effect. In this  case we should re  

evaluate the treatment of in the estima  

tion process.  

C.2.  Predicting  the logarithmic  stem cur  
ve 

We  have now estimated the size  of  tree  i, 

s;,  and the first p  principal  components  

k=1,...,p)  of  the random stand effects.  The  
problem  is then to predict  the stem curve  of  
tree i  at knot angles  u=1,...,13. The main 
task  is  to predict  the y-variable  defined in 

(51.4)  at  knot angles.  The predictor  of  y  for  
tree i at the knot angles  is computed using  

prediction  formula (A.4.13)  derived in the  

Appendix  A.4: 

y,  X,  a, Z,  b  and R are  given  for  this special  
case  in Appendix  C.l.  Other variables have 
the following  interpretations:  

Computations  can  be simplified  by  noting  
that: 

The prediction  formula can  be  written as:  

Because  u in  W(u,u;j)  =  cov[e(u),  e(ujj)]  is  
a knot angle, W(u,Ujj)  can be computed  
from the within-stand covariance matrix  W 

using one-dimensional splines.  If the crown  

height  has been measured for  some trees, a  
random stand  effect  for  the crown height  

13 

ck  = E qk(u)v(u),  thus  
11=1 

13 

cov[ck ,v(l4)] = £ qk(u)B(u,l4). (C.1.16) 
U=l  

a.'Rr 1 
X'R-i= 

•

 . . (C. 1.17) 
'

 VRn

-'  

(X'R-'X),, = a.-Rp'a,. (C.1.18)  

"a.'Rr'Z," 
X'R—'Z = : ,  and (C.1.19) 

,a;<'Z n
_

 

ai'Rr'yi  
X'R~ly= : . (C.1.20) 

_a„'R;r Iyn 1 yn 

y(Ujj)—a(U|j)s = (C.1.21)  

P 

ä(»ii)(Si-S  )  +  t <lk( Uij) Ck  +  e(u ij). 
k=l  

y 0  =  xo
'ä  + z o

'b  +  w'R— ](y—Xä—Zb). 

yo 
= Yi(u). (C.2.1) 

Xq' = [0,..., 0,  a(u),  o,o], (C.2.2) 

z
o'  = z(u)'  = qp

(u)], (C.2.3) 
w' = [O, 0,  Wj'(u),  0, o],  where (C.2.4)  

W;'  = [W(U,U;,), W(u,U;,
mi

)]. (C.2.5) 

x
o
'ä = a(u)s ; (C.2.6) 

and 

w'R—1 = [O,O,  Wj'R— o,...,  o], (C.2.7) 

y;(u)  = a(u)s;  +  z(u)'c  + 

Wi'RrHy—M—ZjC). (C.2.8)  
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(Cp+i)  is used in the last  term but  can be 
omitted from  z(u)'c,  because its coefficient  
is  zero  (see  Appendix  C.l).  The predicted  
log-diameter  a;(u) is  obtained from yi(u)  
using  (53.1).  

When var[y;(u)]  and var[y;(u) —y;(u)]  are  

computed by means of Eqs. (A. 4.24),  
(A. 4.26)  and (A. 4.27),  all  terms  containing  w 
or  Xq can be simplified  by  making  the follo  
wing  substitutions:  

Note that (C.2.11)  and (C.2.14)  are,  in 
fact,  true identities.  Note also that Zq'Dzq  
and Zq'G22Zo  in (A. 4.24)  and (A. 4.26)  need 
to be  computed  only  once  for  a  given stand.  

At  the application  stage all  the needed va  
riances and covariances are assumed to be  

known.  This  means  that the prediction  vari  
ance is  also  known. 

C.3. Formulas for trees with one 

measured dimension 

Suppose  the model has been formulated 
for  n trees  as described above. Then,  add to 
the data a tree  with a single  measurement.  
Denote this  as  observation  number zero,  the 

corresponding  measurement  angle  being  uqi- 
Then the quantities in the corresponding  
model y=Xa+Zb+e are as  follows: 

where y...,  X.,, 5.,, e., and R...  are  the corre  

sponding  quantities  without the new obser  

vation;  b=c and D=var(c)  are as  before. 
Then c  can  be computed using  (A. 2.6).  For 

that, S defined in (A. 2.7)  needs  to  be com  

puted  first. In this  case  direct  matrix  multi  

plication  gives: 

where 5...  is  the  S  matrix  of  (A. 2.7)  without 
the new  observation. When (A. 2.6)  is  used 
to compute c, we find that c  is  the same 
with and without the new observation.  

Thereafter,  the size  vector  s  can  be compu  
ted using  (A. 2.8).  Note that the new  observa  
tion does not affect  the estimation of  the 

sizes  of  the previous  trees  (5.,)  and sq  is  esti  
mated by  

That is, So is solved from the estimated 
stand  stem  curve:  

When other dimensions  yo(u)  of  the new 
tree  are  predicted,  in the general  prediction  
formula  (A.4.13)  

the only  nonzero  component of  w  is the 
first one;  on the other  hand,  the first  com  

ponent of  y—Xä—
Zb  is  zero.  Thus  the  last  

term can be ignored,  and the stand  stem  
curve  should be used to predict  the other  
dimension  yo(u):  

It is easier to derive  var[yo(u)]  and  

var[y 0 (u)—yo(u)]  directly  instead  of  using  
the general  matrix  formulas of Appendix  

x 0 a(u) (C.2.9) 

G,,=var(ä) var(s;) (C.2.10) 
w'R— 'w —*-  Wj'R—'w, (C.2.11) 
G

2l = cov(b —b,ä') cov(c — c,S;) (C.2.12) 
X'R 'w aj'R-iw; (C.2.13) 
Z'R— !

w Z/Rp'w, (C.2.14) 

y(u 0i)  

y  = , (C.3.1)  

y, 

a(u01 )  

X  = , (C.3.2)  

x
s
 

"so"  
a  = , (C.3.3) 

S 

z("oi)'  
Z = , (C.3.4) 

Z 

e(uoi)  

e = , (C.3.5)  

e 

W(u01)  

R  = var(e) = , (C.3.6)  

R  

0 

S  = , (C.3.7) 

S.  

s  0  - a(u
01

)-'[y(u
01

)—:z(u
01)'c]. (C.3.8)  

y(u0i) = a(u01)s0 + z(uol)'c.  

y  =  x
o

'ä  +  z
o
'b  +  w'R—'(y—Xä—Z\>)  

y 0
(u) =  a(u)s

o + z(u)'c. (C.3.9)  
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A.4. Let  us  derive first  some preliminary  re  
sults; according  to (C.3.8)  sq  can be  written:  

Note that 

According  to (A.4.17),  denote: 

Then we  get from (C.3.10)  and (C.3.11):  

According  to (A. 4.18)  and  (A. 4.19)  

Let 

From (C.3.12),  (C.3.15)  and  (C.3.16)  we 

get 

The variance of the prediction  error  is  
obtained from (C.3.11) —(C.3.14):  

If  we have measured only  one  dimension 
for  each tree  in the stand,  we must  use  the  

population  stem  curve  to estimate  the stem 

curves  of the trees.  The above formulas can 

also  be applied  in this case  by  taking  c=o 
and  G  22  = var(c—c)  = var(c). 

If  tree sizes  were assumed to be random 

parameters, then trees  with one  measured 
dimension contain information on  the stem 

form and cannot be estimated separately.  
For instance,  if  we know that trees  cannot 
be very  big,  then we  know that a tree with a 

very  large  diameter at breast  height is  pro  

bably  relatively  thick.  The distinction bet  
ween fixed and random size  may become 
clearer  if  we derive the estimators  for the size  

and stand  effects  when only  one  tree  with 
one measured dimension is measured in a 

stand. Suppose  that tree  sizes are  random 
with mean s and  variance var(s).  Then 

The standard regression  estimator  (pre  
dictor)  for  SQ  is  then obtained  from: 

If the size  is  fixed, then SQ  is  estimated by  
y(uoi)/a(uoi).  Thus the effect  of the ran  
domness of  size  is that the estimate  is  shif  

ted  towards the mean size,  the amount of  
shift  being  dependent  on 

As var(s)  tends to infinity,  the estimator  
of  fixed size  is  the limiting  estimator  of  ran  
dom size. The standard regression  predictor  
for  the random stand effects  is:  

where var[y(uoi)] is  given  in (C.3.22),  and 

cov[c,y(u oi)] = Dz(uo i).  
Thus in the case  of  random size,  already  

with one  measurement  in the stand,  we ge  
nerally  get nonzero  estimates  for the stand 
effects.  

s
0 -  a(u

01)—![y(u 01)—z(u 01)'c]  

= a( uoi)  1  [ a(uoi) s o z(uoi)'(c—c)  + e(u
01 )]. (C.3.10) 

cov[c— c,  e(u
01)]  =O. (C.3.11) 

G  22 = var(c —c).  

var(so)  = a(u 01 )
_2

[Z(U OI )'G22Z(U OI)+W(UOI )], (C.3.12) 

COV(SQ,C' C')  = —A(u
01
)- 1 z(u 01)'G22 (C.3.13) 

cov[s o,eo(u)]  = a(u
01)-

1
W(u01

,u). (C.3.14)  

cov(s
o ,c)  —O,  and (C.3.15) 

var(c)  = D var(c — c)  =  D G  22. (C.3.16)  

a = a(u)/a(u01
). (C.3.17)  

var[y0(u)]  =  var[a(u)so + z(u)'c]  
= a(u) 2var(s

o
)  + z(u)'var(c)z(u) 

= a2[z(u01 )'G22z(u01 )  +  W(u01 )]  + 
z(u)'(D— G

22
)Z(U). (C.3.18) 

var [y 0(u) yo(u)]  = 

var[a(u)s o+z(u)'c—a(u)s0
—z(u)'c—e

o(u)]  
=  var[a(u)s o+z(u)'(c — c)—eo(u)]  
= W(u) + a2 W(u01) 2aW(uol ,u)  +  

[oz(uol )'—z(u)']G22[az(u ol )—z(u)]. (C.3.19) 

y(u 0i)  = a(uoi) s o + z(uol)'c  + e(u01 ), (C.3.20)  

COVOQ,  y(u
01)]  = a(uol)var(s),  and (C.3.21)  

var [y(uoi)]  =  a(u 01) 2
var(s)  +  z(u01)'Dz(u01) + W(u01).  

(C.3.22)  

s
0 

S -  

y( UOI)/a(UQI) S   

I +[z (uoi)'Dz(uot)+W(uoi)]/[a(uoi)var(s)]  

[z(uo i)'Dz(u ol
)+W(uol)]/[a(uol )var(s)].  

c  -  cov[c,y(u 01)][y(u 01
)—  a(  ]/var[y(u01)], (C.3.24)  
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D. LIST OF  SYMBOLS 

a a vector  of  fixed parameters 

ao(u),ai(u),  
a
2(u),a3 (u) = parameters  of  the stem form model, in 

the  applications  they  are  treated as vari  
ables. 

a(u) = parameter  (variable) for angle u,  used in  
the  applications  and  obtained using aj(u),  
a2(u)  and a preliminary  estimate of  the  
size  of  the  tree  (s).  

B = covariance  matrix of the random stand 

effects  at the  knot  angles. 
B(UJ,U 2) 

= covariance  between  the stand effects  at  
angles Uj  and u 

2,
 obtained  from Bby 

interpolation,  
b = a vector  of  random parameters. 
c=(c  ],...,cp

)=  vector of the  first p  principal  components  
of  the random stand effects;  in  appli  
cations this is  the vector  of random 

parameters to be  estimated. 
D = covariance matrix  of  the random par  

ameters (between-class  effects) in a linear 
model. 

D(u) = diameter (cm)  at the angle  u in  the polar 
coordinate system.  

d(u) = ln[D(u)]. 
DJ  J = diameter over bark  at  the height of  1.3 m  

above ground level,  i.e.,  diameter at 
breast  height.  

D 6 = diameter at the height  of 6  m.  
eki( u) = random tree  effect of  the  log-diameter 

at angle  u for tree i  in  stand  k. 
e

m(u) = random measurement error  at angle u. 
H = coefficient matrix in  a mixed  linear 

system.  
H = tree  height  (m). 
H

c = crown height (m).  
I = identity  matrix,  
i = index for trees,  

j = index for measurements, 
k = index for stands.  

m = number of  measurements for  a given tree.  
N = number of  observations (measurements), 
n = number of trees  in  a stand, 

p = the (assumed)  rank  or the between-stand 
covariance  matrix or  the  number  of 

principal  components  of the  random  
stand  effects  used in  the estimation,  

qk = kth characteristic vector  of  the between  
stand covariance  matrix B. 

Q = (qi q»)'- .  
R NXN covariance  matrix of within-class  

effects.  

R(u) ray  to the stem curve at angle u in  the 

polar  coordinate system. 
r(u) = ln[R(u)].  
S size  of  a  tree  in  the arithmetic scale,  es . 
s = size  of  a  tree  defined as a  weighted mean 

of  logarithmic  diameters; an artificial 
fixed  variable in  the analysis  stage,  and a 
fixed  or random parameter  in  the 
applications.  

s = preliminary  estimate  of  s,  used in the 
applications.  

s = average  size of  trees  belonging to same 
stand. 

S|,,s w
 = empirically  estimated  between-stand  and 

within-stand standard errors of  estimates,  

o b>°w = theoretically  derived between-stand and  
within-stand standard errors of estimates, 

tjj = kth characteristic root  (eigenvalue) of  the 
between-stand covariance matrix B. 

u = angle in  the  polar  coordinate system, 
integer values u=1,...,13 are used  for the 
knot  angles;  u=l4  is for the  crown  

height.  
Ujj = angle  in  the  j l *l  measurement for  tree i.  
V = covariance  matrix  of  random effects (in  

cluding both within-class  and  between  
class  effects)  of  a linear model. 

V =  volume of  a tree  stem (dm
3
).  

v(u) = random stand effect at angle u. 
W = covariance  matrix of the  tree effects at 

the knot angles.  
W(u],u2) = covariance  between  the tree effects  at 

angles  Uj  and u 
2,
 obtained from Wby 

interpolation, 
w = vector of the  covariances between the  

random tree effects of observed  dimen  

sions  and a dimension to be  predicted.  
X = model ('design')  matrix  for the  fixed 

effects.  

y = dependent variable, in  the  applications  
y(u) is  closely  related to the log-diam  
eter at angle u. 

Z = model ('design')  matrix  of  the random 
effects  in  a linear model, 

z = vector  of  regressors  having  random 
coefficients, in  applications  the kth 
element of  z(u) is  obtained  from the  
kth characteristic vector by inter  
polation. 
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