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Abstract  

Fungal  viruses  are  obligate  parasites  transmitted via intracellular routes. They  are  

usually  cryptic  (i.e.  there are  no  associated  symptoms)  but also  phenotypic  changes  

associated  with  viruses  have  been reported  among plant-pathogenic  fungi.  Fungal  vi  

ruses  have been classified  into  eight  recognized  families  and one genus  not associated  

with any  specific  family,  but their taxonomy  is  not strictly  associated  with the effect  

on  the host  phenotype.  

Gremmeniella  abietina is  an  ascomycetous  fungus  causing  Scleroderris  canker  in 

coniferous trees. Two types  (A  and B)  of  this  fungus  with different  pathogenic  proper  

ties  occur  in  Finland. G.  abietina type  A is capable  of  seriously  damaging  grown-up 

trees  whereas type  B  occurs  in  seedlings.  

This thesis  comprises  of  experiments  on  three different  double-stranded (ds)RNA  

patterns  found in  G.  abietina  type  A.  In  total  44% of  isolates  contained dsRNA,  but  no 

firm  link  between the occurrence  of  dsRNA  and pathogenicity  of  the fungus  towards 

Pinus sylvestris  could be  established.  All  three different  dsRNA patterns  were  found 

in  a single  mycelium,  and they  could be separated  in isopycnic  ultracentrifugation.  

The co-existence  of  all  three different dsRNA patterns suggested  that  they  are  not  

probably  maintained by  using  exactly  the same mechanisms. Altogether  six  dsRNA 

patterns  were  completely  sequenced  and based on  BLAST searches  they  encoded puta  

tive viruses  of  the families  Narnaviridae,  Partitiviridae and  Totiviridae.  The analysis  

of  their putative  RNA-dependent  RNA polymerase  sequences  suggested  polyphyletic  

origin  for  these viruses.  All  three dsRNA patterns showed effective  transmission  via  

conidia. 
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1.  Introduction 

1.1 Fungal  viruses  
Viruses  are  obligate  parasites  that  infect  all  kinds  of  organisms  from simple  bacteria  

to  mammals (van  Regenmortel  et  al.,  2000).  Therefore it  is  not surprising  that  viruses  

occur  also  in fungi  (Buck,  1986). Fungal  viruses seem to lack life-cycle  outside  the 

cell  and apparently  are  transmitted  only  by  intracellular  routes  (Buck,  1986).  These 

viruses  are  usually  cryptic  (i.  e.  there are  no  associated  symptoms),  which is  probably  

a  major  reason  for  their late  discovery  (Buck,  1986). The genomes of  viruses  may be 

composed  of  DNA  or  RNA,  and the nucleic acid may  be  either  single-stranded  (ss)  or  

double-stranded (ds)  (van  Regenmortel  et  al,  2000).  Only dsRNA,  dsDNA,  and posi  
tive  (+)  ssRNA  viruses are  found in  recognized  members of  the virus families  infect  

ing  fungi  (van  Regenmortel  et  al, 2000).  In addition to  these viruses,  also  retrovirus  

like  elements made of  +ssRNA  are  found and they  have  the  capacity  to incorporate  
their genome into  the host genome as  dsDNA (Buck,  1986).  

Early  observations  on fungal  viruses  or  virus-like  particles  (VLPs)  were  made 

using  transmission  electron  microscopy  (TEM)  (Buck,  1986),  which as a  method is  

simple.  TEM,  however requires  a relative  high  virus  concentration in  the sample and it 

is  easy to  misinterpret  electron  micrographs  as  host specimens  may contain structures  

resembling  VLPs or  the VLPs may remain unrecognized.  Therefore,  fungal  viruses  
have more  recently  been screened by  testing  for  the occurrence  of  dsRNA in mycelium  

as  dsRNA is usually  associated with  viral  infection. The dsRNA  isolation  can  be  con  

ducted by  utilizing  specific  binding  properties  of  different  cellulose  types  (Morris  and 

Dodds,  1997)  or  by  precipitating  dsRNA  with  lithium chloride  (Diaz-Ruiz  and Kaper,  

1978).  dsRNA isolation can  be  used to  detect viruses with dsRNA or also  +ssRNA  

genomes as the latter  ones  form dsRNA as their replicative  forms.  However,  viruses 

with negative  (-) ssRNA  genomes or  DNA genomes cannot  be  detected,  and therefore 

the current  methodology  based solely  on  dsRNA isolation  may give a  biased overall  

picture  of  the viral  diversity  in  fungi as all virus types  can  not  be  detected. 

1 .2  Taxonomy of  fungal viruses  

Taxonomy  tries  to  classify  organisms  according  to a phylogenic  framework,  in which  

the evolutionary  relationship  between different  virus  species  can  be  deduced. To clas  

sify  virus families, a number of  discriminating  characteristics  can  be used,  such as  

virion morphology,  genome organization,  method of  replication  and the number and 

size  of  structural  and non-structural  viral  proteins  (van Regenmortel  et  al.,  2000).  

Nature  does not necessarily  follow such man made classification,  as  only  survival  and 

propagation  are  needed for  a  successful  future of  a  virus  species.  

The current  taxonomy  of  fungal  viruses  consists  of  eight  recognized  families: 

Totiviridae,  Partitiviridae,  Chrysoviridae,  Hypoviridae,  Narnaviridae,  Barnaviridae,  

Metaviridae and Pseudoviridae)  and  one genus (Rhizidiovirus)  not associated  with 

any  specific  family  (van  Regenmortel  et  al.,  2000;  Ghabrial, 2001;  Mayo,  2002).  
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1.2.1 dsRNA viruses  

1.2.1.1 Family  Totiviridae  

Members of  the  family  Totiviridae  usually  cause  cryptic  infections  in  fungi and pro  

tozoa (Van  Regelmortel  et  al.,  2000).  Viruses  found in  fungi  belong  to  the genus Toti  

virus  and those found in  protozoa  belong  to  the genera Giardiavirus and Leishmani  

avirus  (Ghabrial,  2001).  Virion buoyant  density  in  CsCl  is 1.33-1.43 g/cm3 .  Isometric 

particles  of  30-40 nm  in diameter  are  found and they  contain a  single  linear  uncapped  

dsRNA molecule,  4.6-7.0 kbp  in  size.  Defective  and satellite  dsRNAs may be  present.  

mRNAs for  capsid  and RNA-dependent  RNA  polymerase  (Rdßp)  are  produced  via  

conservative  mechanisms.  Two major  open reading  frames (ORFs)  are  present  in  the 

genomes of  totiviruses.  The s'-proximal  end encodes the capsid  protein  (CP)  and 3'-  

proximal  end the Rdßp.  In the translation of  Rdßp  three basic  mechanisms have been 

observed among the members of  the family  Totiviridae. The first  is a hypothetical  

ribosomal hopping  mechanism observed in  Leishmania RNA virus  2-1 (Scheffter  et 

al.,  1995)  to  produce  a  CP-Rdßp  fusion protein.  The second mechanism is  based on 

different types  of  frameshifts.  Giardia lamblia virus  (Wang  et  al.,  1993)  and Saccha  

romyces  cerevisieae  virus  L-A  (Dinman  et  al.,  1991)  seem to translate the CP-Rdßp  

fusion protein  via  a  -1 translational frameshift  mechanism. An opposite  situation to  

the preceding  frameshift  is a +1 ribosomal frameshift  probably  used in  Leishmania  

RNA virus 1-1 (Stuart  et  al.,  1992)  and  Trichomonas vaginalis  virus  strain  Tl  (Tai  and 

Ip,  1995).  Both  of  these frameshift  mechanisms involve  a  consensus  heptameric  slip  

pery  site  and pseudoknot  structures.  The third mechanism used to  translate unfused 

Rdßp  is  a  hypothetical  reinitiation mechanism found in  Helminthosporium  victoriae 

virus 190S (Soldevila  and Ghabrial,  2000).  About twenty  viral  sequences with Rdßps  

similar  to totiviruses  can be found in the Genßank. 

1.2.1.2 Family  Partitiviridae  

Members of  the family  Partitiviridae  usually  cause cryptic  infections  in fungi  and 

plants.  Currently  three genera are  assigned  to  this  family  and  those infecting  fungi are  

members of  the genera Partitivirus. The members of  the  genera Alphacryptovirus  and 

Betacryptovirus  are  found in plants.  Viruses  of  these  three genera contain two  linear  

dsRNA segments  (1.4-3.0  kbp  in size)  and the  two  segments  of  individual viruses  

have almost the equal  length.  Both of  the dsRNA molecules  contain one major ORF.  

The buoyant  density  in CsCl  is  1.34-1.39 g/cm3  in these viruses. Isometric  particles  
of  30-40 nm in diameter are  found and they  contain at  least  two  separate  capsid  types  

containing  one dsRNA molecule each.  The larger  dsRNA encodes the Rdßp  and the  

smaller  one  the CP  and their in  vitro transcription  and replication  uses  a semi-con  

servative mechanism. Satellite  or  defective dsRNAs may be present.  Partitiviruses  

have been hypothesized  to  have originated  from the genus Totivirus (Ghabrial,  1998).  

About twenty  viral sequences with Rdßps  similar to  partitiviruses  can  be found in 

the Genßank. 

1.2.1.3 Family  Chrysoviridae  

The members of  the family  Chrysoviridae  (genus  Chrysovirus)  are  found solely  in 

fungi  and are  former  members of  the family  Partitiviridae.  The buoyant  density  of  
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these viruses  in  CsCl  is  1.35 g/cm 3 and they  are  35-40 nm in  diameter. These viruses  
are  composed  of  three  to  four linear  dsRNA molecules. All  dsRNA molecules contain 

one large  ORF and two  of  them encode the Rdßp and CR The dsRNA molecules  are  

2.8-3.6 kbp  in length.  The functions  of  other  dsRNA molecules are  unknown but 

earlier  they  were  suspected  to  be  satellite  or  defective dsRNAs. Lately,  research made 

on  Penicillium  chrysogenum  virus  (PcV)  revealed that all  four dsRNA molecules 

found in PcV  code  for  virion-associated  proteins  (Castron  et  ai.,  2003).  Therefore,  the 

members of  this family  were  recently  removed from the family  Partitiviridae  (Mayo,  

2002)  after  the sequencing  of  the two  members  of  the genus Chrysovirus.  Rdßps  of  

the  members of  the family  Chrysoviridae  resemble  those of  totiviruses  (Helminthos  

porium  victoriae  virus 7455;  Ghabrial et  al.,  2002).  

1.2.1.4  Family  Hypoviridae  

The members  of  the family  Hypoviridae  (genus  Hypovirus)  lack  true  virions  and  the 

linear  viral genome (9-13  kbp)  is  enclosed inside a pleomorphic  vesicle  made from 

host-derived lipids.  The genome of  hypoviruses  contains  one  or two  ORFs.  The buoy  

ant  density  of  the vesicle  in  CsCl  is 1.27-1.3  g/cm
3 and they  possess  Rdßp  activity.  

Only  few formal members of  this  family  have been sequenced  and  they  are  solely  

found in Cryphonectria  parasitica,  which is the causative  agent  of  chestnut  blight  in 

chestnut  trees.  Some members of  the Hypoviridae  reduce the virulence  of  the fungus  

towards its  host  causing  hypovirulence.  Hypovirulence  can  be  introduced via anasto  

mosis  (Anagnostakis,  1982) or  in  vitro  (Chen  el.  al.,  1994;  Chen and Nuss, 1999)  to  

virus-free  isolates  of  C.  paracitica  or  to a completely  new  fungal  species  by  in vitro 

transformation of  full-length  complementary  DNA (van  Heerden et  al.,  2001;  Sasaki et 

al.,  2002).  Putative  protease,  Rdßp  and helicase  motifs  of  polyprotein  of  hypoviruses  

are  more  similar  to  the plant  virus  Barley  yellow  mosaic  virus  of  the genus Bymovirus  

of  the family  Potyviridae  (Koonin  et  al.,  1991)  than  to  other  fungal  families.  

1.2.2 +ssRNA  viruses  

1.2.2.1  Family  Narnaviridae 

Members of  the family  Narnaviridae infect  solely  fungi  and they  lack  true  virions.  

The linear genomes of  these viruses are  approximately  2.5  kb  in size  and they  con  

tain only  one major ORF encoding  for Rdßp.  There  are  two  genera in the family  

Narnaviridae, which differ considerably  from each other.  The five members of  the 

genus Mitovirus have a GC-poor (approximately  30%)  genome and they  are  located 

and  translated in the  mitochondria  (Cole  et  al.,  2000).  This is  in  contrast to  the two 

members  of  the genus  Narnavirus infecting  Saccharomyces  cerevisiae  (Rodrigues-  

Cousino,  et  al.  1991;  Esteban et al.,  1992), which have a  GC-rich  (approximately  60%)  

genome and can  be found as ribonucleoprotein  (+ssRNA-Rdßp)  complexes  (Solor  

zano et al.,  2000)  in cytoplasma.  Moreover,  the  putative  Rdßps  of  the members of  

the genus Mitovirus  are  more similar  to  a  number of  translated open reading  frames 

found in the mitochondrion of  Arabidopdis  thaliana than to  Rdßps  of  the members 

of  the  genus Narnaviridae (Hong  et  al.,  1998). Some members of  genus Mitovirus  are  

suspected  of  causing  hypovirulence  (Deng  et  al.,  2003).  
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1.2.2.2 Family  Barnaviridae 

Only  one member  infecting  Agaricus  bisporus  is  assigned  to  the  family  Barnaviridae 

(genus  Barnavirus).  The virions  of  Mushroom bacilliform  virus  (MBV)  contain a  

linear +ssRNA genome of  4.0 kb  in length.  The genome of  MBV contains four major  

and three minor ORFs.  Two of  the major  ORFs  encode for  putative  Rdßp  and capsid  

proteins,  which have similarities  with certain plant  luteoviruses  and carmoviruses  

(Revill  et al., 1994). 

1.2.3 Retrovirus-like  elements  

1.2.3.1 Family  Metaviridae 

The family  Metaviridae contains two  genera (Metavirus  and Errantivirus)  and they  

are  morphologically  poorly  characterized  retrotransposons  found in  fungi,  plants  and 

invertebrates.  Five  recognized  members  are  identified from fungi.  Virions  contain  

ing  different intermediates with different lengths  composed  of  RNA  and  DNA  may 

be found. Long  terminal repeats  (LTRs)  are  positioned  at  both  ends of  their genome 

mainly  consisting  of  +ssRNA (4-10  kb) and the 3' end of  the genome is  polyade  

nylated.  The members of  the family  Metaviridae are related to the members of  the 

family  Retroviridae  infecting  vertebrates by  amino  acid sequences  of  their  putative  

reverse  transcriptase  (Peterson-Burch  and Voytas,  2002)  as  well  as  the  family  Pseu  

doviridae. 

1.2.3.2  Family  Pseudoviridae  

The members of  the family  Pseudoviridae are  morphologically  poorly  characterized 

retrotransposons  found in fungi,  plants  and invertebrates and are  commonly  referred 

to  as LTR retrotransposons  of  the SceTylV/DmeCopV family  (Peterson-Burch  and 

Voytas,  2002).  The main difference between members  of  the family  Pseudoviridae 

and Metaviridae  is  in  their genome organization.  The members of  Metaviridae  encode 

the putative  viral  capsid,  nucleocapsid,  protease,  integrase,  and reverse  transcriptase/  

RNase  H.  Again,  the members of  the families  Metaviridae and Retroviridae  encode 

the integrase downstream to  reverse  transcriptase/  RNase H.  LTRs are  positioned  

at  both ends of  their genome consist  of  +ssRNA  (5-6  kb)  and the 3' end is  polyade  

nylated.  All  members of  the family Pseudoviridea infecting  fungi are  isolated from 

Saccharomyces  cerevisiae. 

1.2.4 dsDNA viruses 

1.2.4.1 Genus Rhizidiovirus 

The single  member of  the genus Rhizidiovirus  is  not associated  with any  specific  fam  

ily.  The virions  are  60 nm in  diameter and they  contain one linear dsDNA molecule  
of  25.5 kbp  in size.  No sequences are  available.  The buoyant  density  of  virions  is 1.31 

g/cm 3 .  Virions  have been  found only in  Rhizidiomyces,  which phylogenetically  belong 

to  the kingdom  Stramipila  (Hausner  et  al.,  2000)  and therefore are  not  considered to 

belong  to  the kingdom Fungi.  Therefore it  is  questionable  to consider  the member of  

the  genus Rhizidiovirus  a  mycovirus.  
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1.2.5 Other  viruses  

There are  a number of  viral  sequences available  in  the Genßank,  which can not be 

classified  as members of  the virus  families  listed  above.  These sequences are  gener  

ally  cloned from dsRNA molecules and they  are  usually  associated  with isometric  

particles.  

1.3  Transmission  of  dsRNA in ascomycetes  

Fungal  viruses  are  not  always  considered "true"  viruses  as they  do not lyse  their host  

and are  apparently  transmitted only  by  intracellular  routes.  This  may  seem to  be an  in  

effective  way  to  spread  but  about 30% of  fungal  species  contain viruses  (Buck,  1986).  

One obvious  intracellular  route is the growth  of  hyphae  during  somatic  replication  and 

thus persistent  infection can  be  maintained in a single  fungal  isolate.  

Anastomosis is a special  feature among fungi,  in which hyphae  from different 

fungal individuals are  able  to  make  cell  to  cell  contacts.  These contacts  offer a  way  for 
viral  dispersal.  The anastomosis,  however,  is  restricted  by  vegetative  incompatibility.  

Strains  carrying  the same or  nearly  the same alleles  of  vie  genes (Liu  and Milgroom,  

1996)  are  capable  of  conducting  anastomosis.  However,  fungal  strains  with different 

alleles  are  vegetatively  incompatible,  and therefore no anastomosis  occurs  between 

them. Studies  on  the anastomosis  of  G. abietina have not been  reported.  

In ascomycetes  transmission  of  dsRNA (presumably  inside virions  if  dsRNA is  

associated  inside  virion in  hyphae)  into conidia (asexual  spores)  is  common in most 

cases,  but usually  dsRNA is  not found in  ascospores  (sexual)  (Buck.  1986).  Exceptions  

to  this  common rule  are  the members of  the genus Mitovirus:  when  a strain with Cry  

phonectria  mitovirus 1 acts  as  the mother during meiosis, the dsRNA will  be  passed  

to  ascospores  (Polashock  and  Hillman, 1994;  Polashock  et  al.,  1997).  In contrast  to  

ascospores,  basidiospores  of  Heterobasidion annosum are  frequently  infected  (Ihr  

mark et  al.,  2002;  2004). 

1A Gremmeniella  abietina  

Gremmeniella abietina (Lagerb.)  M. Morelet  var.  abietina is  an  ascomycetous  fungus  

causing  Scleroderris  canker  on  coniferous trees. In  Finland,  two  types of  this  fungus  

have been  observed on Scots  pine  (Pinus  sylvestris  L.):  type  A  (or  large  tree  type,  

LTT)  strains  cause symptoms  on  both large  trees and seedlings,  whereas  type  B  (or  

small  tree  type,  STT)  strains  are  found only  in  seedlings  or  shoots covered with  snow 

during  the winter  (Uotila,  1983;  Kaitera et al.,  1998).  The types  can  be identified by  

morphological  criteria  (Uotila,  1983),  fatty  acid  and sterol  profiles  (Miiller  and Uotila,  

1997),  immunoblotting  (Petäistö  et  al.,  1996),  or  by  using  various  genetic  fingerprint  

ing  methods  (Hellgren  and Högberg,  1995;  Hamelin et  al.,  1996;  Hantula and Miiller, 

1997)  and sequence-specific  PCR (Hamelin et al.,  2000).  Isolates  belonging  to  A  and 

B types  are  able to  produce  artificial  hybrids  with low fitness  (Uotila  et  al.,  2000).  

G.  abietina type  A  has  also  been  introduced to  North America,  where  it  is  causing  

increasing  destruction  among conifers  (Laflamme  and Lachance,  1987;  Hamelin et  

al.,  1996).  In addition to  the  types  observed in Finland,  two  other  types  of  G. abietina 

occur  in  North America and Central  Europe.  They have been designated  as  the North 
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American race and  Alpine  type,  respectively,  and  their  pathogenic  properties  are 

similar  to  type  B. 

In Finland,  severe  Scleroderris  canker  epidemics  during  the  1980s were  caused  

by  G. abietina type  A (Kaitera  et  al., 1998) and  the latest  outbreak of  G.  abietina 
took place  in Sweden where as much as 300 000  hectares of  pine  forest  were  dam  

aged  (Wulff  and Walheim,  2002).  The amplitude  of  damage  caused by G.  abietina 

to  conifers is  dependent  on  several  factors.  Provenance and thus the genetic  makeup  

of  the tree affects  its  sensitivity  probably  via influencing  the process  leading  to  dor  

mancy  (Uotila,  1985).  Low total sunlight  radiation,  summer  frost,  a low temperature  

sum (Uotila,  1988), and probably  also  mild winters  as well as  high  stem density  

(Niemelä,  1992) increase the risk  of  Scleroderris  canker.  Topography,  and  thus the 

microclimate,  in  the growing  site  also  has  an  effect  on  damages  caused by  G.  abietina 

as  trees  in large  water divides,  low-lying  plateaus  and  low relative  elevation (kettle  

holes)  were  found to  be more susceptible  to  G.  abietina in Southern Finland (Uotila,  

1988;  Nevalainen 2002).  In nurseries  chemical  fungicides  can  be  used to control  G.  

abietina. In practical  forestry,  seed from southern provenance  should be  avoided,  and  

in  risk  sites  Scots  pine should not  be grown.  In already  infected sites  heavy thinning  
and removal  of  infected trees  are  advisable.  Global  climate change  is  believed to  result  

in  increasing  rainfall  in  Finland. As  this  is considered to be  beneficial  for  G.  abietina 

(Kellomäki  et  ai,  1988),  the number of  epidemics  caused by  this  fungus may increase  

in  the future.  Thus,  attempts are  needed,  and have  been made (Jacobi  et  al.,  2000),  to  

use  novel  control  strategies  against  the fungus. 

2.  Aims of  the  study  
The widespread  presence of  dsRNA molecules (viruses)  in  fungi  has  been known for 

many years.  Fortunately,  an increasing  number of  these molecules have been cloned,  

sequenced  and  deposited  into  databanks in  the recent  years.  This  makes it  possible  

to make comprehensive  analyses  between different virus species.  Furthermore, the 

possible  practical  applications  of  fungal  viruses  to control  damages  made by  plant  

pathogenic  fungi  enhance the interest  towards  these molecules.  

The aim  of  the study  was  to  characterize  dsRNA  molecules of  Gremmeniella abi  

etina type  A  in  different  ways.  Several  hypotheses  were  made: 

• The  presence  of  dsRNA patterns in G.  abietina type  A reduces its  pathogenicity  

towards Pinus sylvestris  (I). 

• Three different dsRNA pattern  types  found in G.  abietina type  A code for  virus  

genomes (I,  11,  111,  IV).  

• The  three different dsRNA patterns  (viruses)  of  G.  abietina type  A are  not  derived 

from each other but  represent  different  viruses  (11,  111,  IV). 

• Mycoviruses  of  G. abietina may have a  polyphyletic  origin  (IV). 
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3.  Materials  and methods  

The total number  of  G.  abietina isolates  examined for the occurrence  of  dsRNA was  

25 (Table  1). The  type  of G.  abietina isolates were confirmed to be type  A using  

random amplified  microsatellite  (RAMS)  fingerprints  (I  and IV;  Hantula and Mii ller  

1997; Kaiteraet al. 1998). 

dsRNA was  isolated  (I-IV)  with  modifications of  the method of  Morris  and Dodds  

(1979)  based on  specific  binding  of  dsRNA to fibrous  cellulose powder  (CF-11).  dsR  

NA was  visualized on  an agarose gel  (I). Enzymatic  analyses  of  dsRNA  molecules 

were  conducted with DNase 1 and RNAase treatments (Pryor  and Boelen 1987)  as  

described in I and 111. Transmission of  dsRNA molecules to conidia were  tested with  

isolate  SurS4 as  described in  IV.  Two of  the three dsRNA  pattern  types  were  also  used  

in the pathogenesis  experiments  as described  in  I.  Two ultracentrifugation  experiments  

Table 1. Occurrence  of  the dsRNA  molecules in  Gremmeniella abietina type A  isolated main  
ly  from Pinus sylvestris.  

Isolate Origin Culture  type Collector  6000  bp  

dsRNA 

2600  bp 

dsRNA 

1800, 1600 

and  1200  bp 

dsRNA 

HRI  Symptomless tree Mycelial isolate  Hanna  Ranta no no no 

HR2  Symptomless tree Mycelial isolate Hanna Ranta yes no no 

HR3  Symptomless tree Mycelial isolate  Hanna  Ranta yes no yes 

A26 Symptomless shoot  Mycelial isolate  Juha Kaitera  yes no yes 

B2I Symptomless shoot  Mycelial isolate  Juha Kaitera  yes no yes 

C23  Symptomless  shoot  Mycelial  isolate  Juha Kaitera  yes no yes 

Viheriäistenneva  Symptomatic shoot  Ascospore  isolate  Antti Uotila no no no 

HU  1.6 Symptomatic shoot  Ascospore  isolate  Antti Uotila  no no no 

Kankaanranta  Symptomatic shoot  Ascospore isolate  Antti Uotila  no no no 

MH 1.6 Symptomatic shoot  Ascospore  isolate  Antti Uotila  no no no 

Oulanka  Symptomatic shoot Ascospore isolate  Antti Uotila no no  no 

ANYI Symptomatic  shoot  Unkown  Anneli  no no no 

Ylimartimo 

AI Symptomatic shoot  Mycelial  isolate  Juha  Kaitera no no yes 

Bl  Symptomatic shoot  Mycelial isolate  Juha  Kaitera yes no yes 

BI3  Symptomatic  shoot  Mycelial  isolate  Juha Kaitera no no yes 

C5 Symptomatic shoot Mycelial isolate Juha  Kaitera no no yes 

C8 Symptomatic  shoot  Mycelial  isolate  Juha  Kaitera no no no 

Luumäki  2 Symptomatic shoot Mycelial  isolate  Jarkko Hantula no no no 

(type  not identified) 

Luumäki  7 Symptomatic shoot  Mycelial  isolate Jarkko  Hantula no yes no 

Luumäki  14 Symptomatic shoot  Mycelial  isolate  Jarkko Hantula no no no 

(type  not identified) 
Luumäki  15 Symptomatic shoot  Mycelial  isolate  Jarkko Hantula no no no 

(type not identified) 

SurCI Symptomatic shoot  Mycelial  isolate  Jarkko Hantula  no no no 

(Pinus contorta) (type not identified) 

SurS2 Symptomatic  shoot  Mycelial  isolate  Jarkko Hantula  no no no 

(type not identified) 

SurS3 Symptomatic shoot  Mycelial  isolate  Jarkko Hantula  no no no 

(type not identified) 

SurS4 Symptomatic shoot  Mycelial  isolate  Jarkko Hantula  yes yes yes 
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were  conducted: rate-zonal centrifugation  was  performed with isolate  HR3 and iso  

pycnic  centrifugation  with isolate SurS4 to  determine the buoyant  densities  of  differ  

ent  dsRNA molecules or  patterns  as described in  I  and IV,  respectively.  Furthermore,  

fractions  were  taken from the SurS4 ultracentrifugation  experiment  to determine by  

phenol  extraction  if  the dsRNA molecules were  somehow enclosed,  as  described in 

IV.  Altogether  ten dsRNA molecules found in G.  abietina type A were  cloned and 

sequenced  as  described in  lI—IV.  For a general  overview  of  the cloning  process,  see 

Figure  1. Sequences  were  compiled,  analyzed  and aligned  with sequences obtained 

from the Genßank with the Vector  NTI Suite  2 software  package  (InforMax  Inc.).  For  

alignment  the CLUSTAL W algorithm  (Thompson  et al.,  1994)  with  default param  

eters  was  used.  The MEGA 2.1 program was  used for  phylogenetic  analyses  (Kumar  

et al.,  2001). Amino acid  sequences were  searched through  protein  BLAST (Altscul  

et  al.,  1997) and "BLAST 2 Sequences"  (Tatusova  and Madden 1999)  search  engines  

of  the National Center  for  Biotechnology  Information (NCBI)  or  Baylor  College  of 

Fig.1.  General overview of  the cloning  processes. For  details, see II-IV. 
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Medicine HGSC (BCM)  Search  Launcher. Secondary  structures were  predicted  with 

the RNA  structure 3.6  program (Mathews  et  al.,  1999).  

4.  Results  and discussion  

4.1  Identification  of  dsRNA  patterns  

Eleven isolates,  identified to  be G.  abietina type  A  by  RAMS fingerprints,  contained 

dsRNA molecules (Table  1) based  on binding  to  CF-11. Among  these isolates  three 

different dsRNA patterns  (I, II  and  III) were  found and they  could be visualized  in 

an agarose gel  electrophoresis.  The patterns  were  composed  of  one, three and  one 

molecules with apparent  sizes  of  6000 bp;  1800,  1600 and  1200 bp;  and 2600 bp,  re  

spectively.  These patterns  were  treated with  RNase  (from  bovine pancreas)  and DNase 

I,  which confirmed that  the patterns  were  composed  of  dsRNA (not  shown).  All three 

dsRNA patterns were  found to inhabit  the SurS4 isolate  of  G.  abietina type  A (IV) 

and they  were  named as GaRV-L (L  for  lone), GaRV-MS (MS  for  multisegment)  and 

GaMRV-S (S  for  single),  respectively.  All  three dsRNA patterns  could be isolated 

from conidia (N=ls),  thus indicating  efficient  transmission of  all  dsRNA  patterns.  

This suggests  that  these  three patterns are  not maintained using  the exactly  same  

mechanisms as they  seem not  to disturb each other.  The results  of  this  study  show 

clearly  that dsRNA is common among isolates  of  G.  abietina type  A. In total 44% 

of  all  tested  isolates  harbored dsRNA and if  all  samples  originating  from ascospores  

(which  are  not expected  to contain dsRNA molecules in  ascomycetous  fungi  except  

mitoviruses)  are  excluded,  55%  of  isolates  harbored dsRNA. This  is  not  surprising  

as  dsRNA has  been found in  many fungal  species  (Nuss  and Koltin,  1990).  dsRNA 

frequencies  can  wary  considerably  between species,  as  only  32% of  Sphaeropsis  sap  

inea (Steenkamp  et  al.  1998)  isolates  harbored dsRNA  compared  to  79%  of  Discula  

destructiva  (Rong  et  al.,  2001)  

4.2  Effect  of  GaRV-L  and  GaRV-MS  dsRNA patters  
on  the pathogenicity of  G.  abietina  type  A 
Two pathogenicity  tests  with G.  abietina isolates  harboring  GaRV-L and GaRV-MS 

dsRNA patterns were  performed (Table  2,  in  I),  but  no  firm link  between the pres  

ence  of  dsRNA and the pathogenicity  of  G.  abietina towards Pinus sylvestris  could 

be  established.  All isolates  were  pathogenic,  but both dsRNA-containing  and dsßNA  

free isolates  were  found among the most  pathogenic  isolates.  There was no  difference 

between the pathogenicity  of  isolates containing  GaRV-L and GaRV-MS patterns.  It  

should be  noticed,  however,  that  the pathogenicity  tests  conducted could not  be  carried  

out  with  isogenic  isolates  with and  without dsRNA,  that  the test  trees were  genetically  

different, and that the pathogenicity  test  setup  used measured only  how mycelium  is  

able to  grow in phloem  after  inoculation. However,  the same test setup  had previously  

been utilized  successfully  in  a study  of  two  biotypes  of  G.  abietina (Terho  and Uotila,  
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1993).  It  should also  be noted that there was  considerable difference in the canker  

lengths  in  experiments  1 and 2  (I),  which was  probably  due to weather differences in  

different years,  or  because of  the considerable  difference in  the sizes  of  the trees used 

in  the two experiments.  So,  no  firm  conclusion  can  be  drawn on  the effect  on  dsRNA 

viruses  on  the pathogenicity  of  G.  abietina type  A.  

4.3  Ultracentrifugation of  dsRNA  patterns  

In  the rate-zonal ultracentrifugation  experiments  on gently broken cells  of  isolate  

HR3 (Fig.  1 in  I) GaRV-L and GaRV-MS patterns  were  separated  (Fig.  2  in I).  In  a  

CsCl  gradient  of  gently  broken cells  of  isolate  SurS4 three patterns  could be sepa  

rated (Fig.  1  in IV):  dsRNA  patterns  GaMRV-S,  GaRV-MS and GaRV-L were  found 

in  fractions  1, 7,  and 8,  respectively.  The buoyant  densities of  fractions  7  and 8  were  

1.37 and 1.42 g/cm3
,
 respectively,  and phenol  extraction  was  needed for  successful  

isolation of  all  dsRNA molecules.  This  suggested  that  all  three  dsRNA patterns  were  

somehow enclosed into  compartments.  There is no  direct  evidence about the  nature 

of  these compartments  but  the following  speculation  can  be  made. The film on  top of  

the centrifuge  tube containing  the GaMRV-S pattern  could contain lipid  vesicles  or  

organelles  (mitochondria)  with  low buoyant  density.  The buoyant  densities of  fractions  

containing  GaRV-MS and GaRV-L dsRNA  patterns  are  typical  of  the members of  the  

families  Partitiviridae  and  Totiviridae. The virions  of  members in these  two  families  

are  composed  of  dsRNA genome and protein  capsid.  

4.4  Sequences  of  GaMRV-S patterns  from isolates 
Luumäki  7  and  SurS4  (111  and IV)  

Altogether  two  GaMRV-S dsRNA patterns  were  sequenced  from isolates  Luumäki 7 

and  SurS4. The lengths  of  the dsRNA molecules were  2572  bp  (Genßank  sequence 

accession  AF534641)  and  2578 bp  (AY615209),  respectively.  The GC content  of  these 

two  molecules was  31% and they  showed 94% nucleotide (nt)  identity.  The sequences 
of  these two GaMRV-S patterns  did not  contain long  open  reading  frames  (ORFs)  

when using  a  normal translation table. However,  when using  a  mitochondrial transla  

tion  table, in  which UGA codes for  tryptophan,  a  long  ORF could be  identified in  both 

patterns.  These ORFs  encoded for  putative  protein  in  isolates Luumäki 7  and SurS4 

starting  at positions  254 and 269,  respectively.  Both  ORFs  could potentially  yield  a  

protein  of  741 amino acids  (aa)  with  a predicted  molecular mass of  85.4 kDa.  These 

two proteins  had 96% aa  sequence similarity  and both contained the conserved  motifs  

of  RNA-dependent  RNA polymerase-like  (Rdßp) proteins  encoded  by  mitochondrial 

viruses  and related  RNAs  (Hong  et  al.,  1999).  As  it  became evident  that  the GaMRV-S 

patterns  described here coded for  putative  viruses  of  G.  abietina type  A,  the patterns  

were  designated  as Gremmeniella abietina mitochondrial  RNA virus S  (GaMRV-S).  

Isolates  Luumäki 7  and SurS4 harbored strains  1 (GaMRV-Sl)  and 2  (GaMRV-S2),  

respectively.  Other  highly  similar  Rdßps  based  on  BLAST searches  made on  GaMRV- 

S2 were  Ophiostoma  mitovirus 4 (OMV4;  Hong  et  al.,  1999;  aa  similarity  37%),  Ophi  

ostoma  mitovirus  6  (OMVS;  Hong  et al.,  1999;  aa  similarity  34%)  and Ophiostoma  

mitovirus  6  (OMV6;  Hong  et  al.,  1999; aa  similarity  37%)  (Fig.  2 in  IV).  These viruses  
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are  recognized  members of  the  genus Mitovirus.  This  indicates  that GaMRV-Sl and 

GaMRV-S2 are  putative  members of  the genus  Mitovirus. The members of  the genus 
Mitovirus  have a  +ssRNA genome but  they  replicate  via a dsRNA intermediate (Ghab  

rial,  2001),  which was  isolated  in  this  study.  

The putative  initiation codons of  Rdßp of  both GaMRV-S strains  were  located in 

an  AU-rich  context  surrounded by  regions  of  relatively  high  CG  content.  The same fea  

ture  can  also  be  found in  a number of  similar  viruses  (111  and IV),  albeit  no  conserved 

nt sequences were  found. The function of  such  regions  is unknown,  but  they  should 

have a thermodynamically  lower melting  temperature  compared  to other  regions  in 

the genome. Another interesting  feature in GaMRV-S viruses  was  that  the  ends of 

these two strains  were  not  exact,  as  length  and sequence variations  occurred  in  both 

ends  (Fig. 2  for  GaMRV-Sl;  11,  IV).  Such  a  feature has  not  previously  been found in  

Fig.2.  Direct sequencing  experiment of the ends of GaMRV-SI. The arrows  indicate the 
direction of  sequencing  reaction and the running  numbers indicate the base position  on the 
GaMRV-SI genome. 
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similar  viruses  in fungi  (II and IV).  Panhandle and stem-loop  structures  were  found 

in  both untranslated regions  (UTRs) of  GaMRV-Sl genome (III). Similar  structures 

were found in genomes of  OMV4  and OMV6 but not in GaMRV-S2,  Ophiostoma  

mitovirus  3a (Hong  et al.,  1998),  OMVS and Sclerotinia  homoeocarpa  mitovirus  1 

(Deng  et  al.,  2003),  which contained only  a  3'UTR stemloop  structure. Despite  this 

difference these findings  together  suggest  that  the viruses  discussed  here  might  have 

a  recent  common ancestor  and therefore would be  closely  related to  each other. 

4.5  Sequences of  GaRV-MS  patterns  from isolates  
C  5  and SurS4  (II  and  IV)  
Altogether  six  dsRNA molecules from two G. abietina type  A isolates  harboring  

GaRV-MS dsRNA pattern  were  sequenced  from isolates  C  5  and  SurS4.  The lengths  of  

these molecules were  1782 bp (AY089993),  1586 bp  (AY089994),  1186 bp  (AY089995)  

in  isolate  C  5 and  1781 bp  (AY615211),  1586 bp  (AY615212)  and 1186 bp  (AY615213)  in 

isolate  SurS4,  respectively.  The corresponding  molecules had nucleotide identities  of  

98%,  98%  and 97%,  respectively.  An  ORF could be  identified in  all  molecules starting  

at nt  63 (539  aa,  62.1 kDa),  100 (433  aa,  47.1 kDa),  348 (237 aa,  26.6 kDa),  63 (539  

aa,  62.1 kDa),  100  (433 aa,  47.1 kDa),  and 348 (237 aa,  26.5 kDa),  respectively.  The 

corresponding  putative  proteins  had  similarities  of  98%,  99.5% and  97%,  respectively.  

The largest  dsRNA molecules in both G.  abietina isolates  coded for  Rdßp  as  they  con  

tained the conserved motifs  111,  IV,  V and VI  found in the Rdßps  of  dsRNA viruses  

infecting  lower eukaryotes  (Bruenn,  1993). Also  two  new  possible  conserved motifs  

(Vila  and Vila)  unique  for  certain  partitiviruses  were  identified (Fig.  3  in  IV). As  it  

became  evident  that the GaRV-MS patterns  described here  coded for  putative  viruses  

of  G.  abietina type  A,  the  patterns  were  designated  as  Gremmeniella abietina RNA 

virus  MS (GaRV-MS).  Isolates  C 5  and  SurS4 harbored strains  1 (GaRV-MSI)  and 2 

(GaRV-MS2),  respectively.  Based on  BLAST searches  made on  the putative  Rdßp  of  

GaRV-MS2, other  highly  similar  Rdßps  could be found in  Penicillium  stoloniferum  

virus  S (Kim et al.,  2003;  aa similarity  71%),  Discula  destructiva  virus 1 (DdVl)  

(Rong  et  al.,  2002;  64%),  Discula  destructiva virus 2  (Rong  et  al.,  2002;71  %) and 

Fusarium solani  virus  I  (FsVl)  (Nogawa  et  al.,  1996;  60%),  of  which FsVl  is  a  rec  

ognized  member of  the genus Partitivirus  (Fig.  3  in  IV).  This  shows that  GaRV-MSI  

and GaRV-MS2 are  putative  members of  the genera Partitivirus.  A BLAST search  

suggested  that the 1586 bp  molecule in  both isolates  would code for  a putative  coat  

protein  (CP).  The smallest  molecule in both isolates  showed some similarity  with  the 

putative  protein  of  RNA3 in DdVl (Rong  et al.,  2002).  Besides  sharing  similarities  

in their  coding  region,  also  sequence similarities  between these viruses  were  identi  

fied in  their UTRs (Fig. 3 in  II;  IV).  These findings  suggest  that all viruses  discussed 

here might  have a  recent  common ancestor  and therefore would  be closely  related to  

each other. 
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4.6  Sequences  of  GaRV-L patterns  from isolates  
HR2  and  SurS4 (II  and  IV) 

Altogether  two GaRV-L dsRNA molecules were  sequenced  from isolates  HR2 and  

SurS4.  The lengths  of  the dsRNA molecules were  5122 bp  (AF337175)  and  5129 bp  

(AY615210),  respectively,  and they  showed 90% identity.  dsRNA molecules in  isolates  

HR2 and SurS4 contained  two  large  partially  overlapping  ORFs.  The  first  ORF started  

at  nt  positions  276 (776 aa,  80.5 kDa)  and 272 (776 aa,  80.4 kDa),  respectively.  Start  

ing  nucleotides  for  the second  ORFs  were  2603 (825 aa,  90.0  kDa)  and  2559  (825  aa,  

90.1 kDa),  respectively.  These two  putative  protein  pairs  showed 97% similarity  to 

analogous  predicted  proteins  described above.  The protein  encoded by  second ORFs 

contained all  eight  conserved motifs  of  Rdßps  of  viruses  infecting  lower eukaryotes  
(Bruenn,  1993).  As  it  became evident  that  the GaRV-L patterns  described here  coded 

for  putative  viruses  of  G. abietina type  A,  the patterns  were  designated  as  Gremmen  

iella  abietina RNA virus L  (GaRV-L).  Isolates  HR2 and SurS4 harbored strains  1 

(GaRV-Ll)  and 2 (GaRV-L2),  respectively.  Based on  comparisons  of  Rdßp by  BLAST 

made on  GaRV-L2,  other  highly  similar  viruses  were  Sphaeropsis  sapinea  RNA  virus  

2  (Preisig  et  al.,  1998;  aa similarity  50%),  Coniothyrium  minitans RNA virus  (Cheng  
et  al.,  2003;  50%), Helicobasidium mompa Totivirus  1-17 (Nomura  et  al.,  2003;  35%),  

Sphaeropsis  sapinea  RNA virus 1 (Preisig  et al.,  1998;  35%)  and Helminthosporium  

victoriae virus  190S (HvVI9OS)  (Huang  and  Ghabrial 1996;  35%)  of  which HvVI9OS 
is  a recognized  member of  the genus Totivirus  (Fig.  4 in IV).  Therefore it  can be 

concluded that  GaRV-Ll and GaRV-L2 are  putative  members  of  the genus  Totivirus.  

The first ORF  in both isolates  coded for  putative  CP,  as BLAST searches  indicated  

high  similarity  with  analogous  proteins  of  the viruses  described above.  Besides  shar  

ing  similarities  in  their  coding  regions,  sequence similarities  between these viruses  

were also  identified in their 5' UTR regions  (Fig.  2 in II; IV)  approximately  55 nt  

downstream from the CP starting  godon.  All  viruses  discussed  here  have partially  

overlapping  ORFs  to  code CP and Rdßp and the juncture  point  of  ORFs contains an 

overlapping  start/stop  tetramer AUGA speculated  to be a facilitator  of  reinitiation 

mechanism (Soldevila  and Ghabrial, 2000)  for  the production  of  Rdßp.  These find  

ings  suggest  that  all  viruses  discussed  here might  have a recent  common ancestor  and  

therefore would  be  closely  related to  each other. 

4.7  Phylogeny  of  RNA  virus  families  with  members  
found in  G.  abietina  

An analysis  of  virions  should answer  the fascinating  question  about the evolution of  

viruses  and their possible  relationships.  Research made on this  topic  shows that  viri  

ons  from different families  share similarities  in their virion structure (Bamford  et al., 

2002)  and  aa sequences of  different proteins  (Koonin  et  al.,  1989; Koonin et  al.,  1991; 

Bruenn,  1991;  Koonin,  1992;  Koonin et  al.,  1993;Gibbsetal.,  2000;  AhnaLee,  2001).  

Of  these studies  Koonin et  al. (1989;  1991;  1992;  1993), Gibbs  et  al.  (2000),  and  Ahn 

and Lee (2001)  are  in  favor  of  polyphyletic  origin  of  dsRNA viruses  whereas Bruenn 

(1991)  favored a monophyletic  origin.  
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Partitiviruses  have been hypothesized  to  have originated  from the genus  Totivirus  

(Ghabrial,  1998). This  hypothesis  is  not supported  by the  general  picture  of  conserved 
motifs  of  Rdßps  of  putative  viruses  of  G.  abietina (Figs.  2-4  in  IV).  Also  the phylo  

genic  analysis  made on  the Rdßps  of  some putative  members of  the families  Totiviri  

dae and Partitiviridae  (Fig.  1 in  II) suggest  that  such  a  hypothesis  is inaccurate.  This 

investigation  supports  the theory of  polyphyletic  origin  for  GaMRV-S,  GaRV-MS and  

GaRV-L viruses  as their conserved motifs  of  Rdßps  are  more similar to viruses  or  

putative  ORFs  of  non-fungal  origin  (Figs.  2-4  in  IV).  The Rdßp of  GaMRV-S  is  more 

similar  to  ORFs  found in  mitochondria of  the plants  Arabidopsis  thaliana (Unseld  et  

al.,  1997)  and Brassica  napus L  (Handa,  2003)  than to  the two other viruses  found 

in  G.  abietina. Also the Rdßp  of  GaRV-L was  found to  be more similar  to  Cucurbit 

yellows-associated  virus (Coffin  and Coutts,  1994),  isolated  from the plant  Cucumis  

sativus  L.,  than to  the Rdßps  of  the GaMRV-S and GaRV-MS. Finally,  replicases  of  

Sweet potato  feathery  mottle virus (Sakai  et al.,  1997) and Sorghum mosaic  virus 

(Yang  and  Mirkov,  1997)  of  the genus Potyvirus  were  found to  be somewhat similar  

to Rdßp  of  GaRV-MS. 

5.  Concluding  remarks  
dsRNA  molecules  of  polyphyletic  origin,  probably  encoding  viruses belonging  to  fam  

ilies Narnaviridae,  Partitiviridae  and Totiviridae,  were  identified in  G.  abietina type  

A.  All  three putative  viruses  were  found from a  single  isolate  of  G.  abietina. These 

viruses  showed efficient  transmission via  conidia which probably  is  the main  route 

for  virus  dispersal  if  the normal somatic  hyphal  growth  is excluded.  The co-existence  

of  these viruses  indicates  that  they  are  not probably  maintained by  using  exactly  the 

same mechanisms. In centrifugation  experiments  it  was  found that  the RNAs genomes 

of  these viruses  were  enclosed albeit  the exact  composition  of  these compartments  

was  not identified. Unfortunately,  the number of  fungal  isolates used in  this  study  was  

quite  small as isolates  from symptomless  trees,  which were  in priority  in  study,  were  

hard to find. The viruses  described here  do  not seem  to  induce hypovirulence  in  G.  

abietina type  A. More isolations  from symptomless  trees could be done in  order to 

find hypovirulent  strains  of G.  abietina. One possibility  to induce  hypovirulence  in 

G.  abietina would be  in vitro transfection of  a C. parasitica  hypovirus  but  such  work  

involves  major  questions  of  ethics  and biohazards.  
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Summary  

The  occurrence of  double-stranded RNA (dsRNA) among isolates  of  Gremmeniella abietina var. 
abietina type  A  was studied. Nine  out  of the 17  isolates investigated  contained dsRNA, but  none of  
them  was of  ascospore origin.  Two fairly  different dsRNA patterns were found and they  occurred  
independently  of each  other.  The first  was composed  of  a single  approximately  6000  bp  long  dsRNA 
molecule. The  second  was a multisegmented  dsRNA pattern composed  of  three  dsRNA  molecules 
with  apparent sizes  of  1800  1600  ana 1200  bp, respectively.  In pathogenicity  experiments  no major  
differences were observed  between dsRNA-containing  and dsRNA-free  isolates. 

1 Introduction 

Gremmeniella abietina  (Lagerb.)  Morelet  var.  abietina is  the causative  agent of Scleroderris  
canker on coniferous trees.  In Finland two types of this  fungus  have been observed on 
Scots  pine (Pinus  sylvestris  L.):  type A (or  large  tree  type, LTT)  strains  cause  symptoms  on 
both large  trees  and seedlings,  whereas type B  (or  small  tree  type, STT)  strains  are found 

only  in seedlings  or  shoots covered with snow during  the  winter  (Uotila  1983; Kaitera  
et al.  1998).  Isolates  belonging  to  A  and  B  types are  able  to  produce  artificial  hybrids  with  
low fitness (Uotila  et al.  2000).  

During  the  1980s Finland suffered from severe  Scleroderris canker  epidemics,  which  
were caused by  G. abietina type A (Kaitera  et al.  1998). It  is  anticipated  that global  
climate  change  in Finland will  result  in increasing  rainfall,  which is  considered to be  
beneficial  for  G. abietina (Kellomäki  et  al.  1988),  and so the number of  epidemics  caused 
by  this  fungus  may increase  in  future. In addition to  being  a  problem  in Finland and other 

parts  of  Europe,  G. abietina type A has been introduced to North America,  where it is  

causing  increasing  destruction among the  conifers  (Laflamme  and  Lachance 1987; 
Hamelin et  al. 1996). Thus,  attempts  are  needed,  and some have already  been made 
(Jacobi  et  al. 2000),  to  use  novel  control  strategies  against  the  fungus.  

The  occurrence  of  dsRNA is  usually  linked to  virus  infection in fungi. These virus-like  

particles  are not true  viruses  because  they do not have extracellular  life  cycles.  The three 
dsRNA virus families  found among fungi  are  Totiviridae,  Partitiviridae and Hypoviridae  

(van  Regenmortel et al. 2000).  Virions in Totiviridae  have a single 4.6-7.0 kbp  long and 
uncapped  dsRNA molecule  that codes for a coat  protein  and  RNA-dependent  RNA 
polymerase  (RDRP).  Members of  Totiviridae,  which infect  fungi,  belong  to  genus  Totivirus.  
Members of Partitiviridae,  which infect  fungi,  are  divided to  two genera: Partitivirus  and 
Chrysovirus.  Virions  of  Partitiviridae  contain two  unrelated linear  dsRNA segments from 1.4  
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to  2.2  kbp,  which are  separately  encapsidated.  The two  segments of  individual viruses  have 

very  similar  sizes.  The smaller  segment usually  codes for  capsid  protein  and the larger  for  
RDRP.  Chrysovirus  virions  contain three to four unrelated and separately  encapsidated  
dsRNA segments of  about 3 kbp  each.  Hypoviridae  family  has  only  one genus, Hypovirus  
and they  infect  Cryphonectria  parasitica  fungus.  These pleomorphic  vesicles  contain linear 
dsRNA which is  about 9-13 kbp  long. All  three virus  families  may have additional segments 

(satellite  and defective)  present (van Regenmortel et  al.  2000).  
DsRNAs have also  been observed in another  pine  pathogenic  fungus,  Sphaeropsis  sapinea  

(Steenkamp  et al. 1998) and in a  number  of  different plant  pathogenic fungi  (Nuss and 
Koltin 1990;  Zhang et  al.  1994; Nuss  1996;  McCabe et  al.  1999).  DsRNA  elements may 
have a  significant  effect  to  the phenotypes  of  their  hosts  as  has been shown  in  the cases  of  
Cryphonectria  parasitica  (Murrill.)  Barr. (Day et al.  1977)  and  Ophiostoma  ulmi (Buism.)  
Nannf. (Brasier  1983).  Due to  this  capability  the  dsRNA of C.  parasitica  has  been used as  

a biological  control  agent against  chestnut  blight.  On most  other  pathogens,  however,  the 
effects  have  been less  clear  or  non-existent (Zhang  et  al.  1994;  Steenkamp et al.  1998). 

In this  study  the occurrence  of  dsRNA was  tested among Finnish  isolates  of  G. abietina 
var.  abietina type A.  Furthermore,  the effect  of  dsRNA on  the pathogenecity  of  G. abietina 
was  examined. 

2 Materials and methods 

2.1 Fungal  isolates  

The 17 fungal  isolates examined are  listed  in  Table 1.  Three of them originated  from studies 
on endophytic  fungi, and thus have  been isolated from healthy  trees  in  areas where no 
epidemics  prevailed.  Three other  isolates  originate  from areas  with serious  infections,  but 
from symptomless  shoots. The remaining 11 isolates originate  from shoots showing  
symptoms.  All  isolates  were  grown on  modified orange  serum  agar  (MOS)  (Muller  et  al.  
1994) at 15-20° C. 

2.2 Identification of  the  G.  abietina type 

The type of  most  isolates has been previously  identified. During  this  study  the type of  
isolates  HRI,  HR2 and HR3 was  identified using  random amplified  microsatellite  (RAMS) 

fingerprints,  which contain markers  specific  for  each type. For  details of identification,  see 
Hantula and Muller (1997) and  Kaitera et al.  (1998).  

2.3 DsRNA  isolations 

DsRNA  was  isolated by  a modification  of the method of  Morris and Dodds (1979). In 
short, the fungal  mycelium  was  disrupted  and homogenized  by  quartz sand  in  a lysis buffer 
[5O  mM Tris-HCI  pH 8.0,  50 mM EDTA,  3% sodium dodecyl  sulphate  (SDS) and 1% 
/j-merkaptoethanol].  After the  disruption two phenol-chloroform  (1  :  1) extractions  
followed by  one chloroform-isoamylalcohol  (24  :  1) extraction  were carried  out. The 
obtained material was  ethanol-precipitated,  and resuspended  in TSE buffer (10  mM 
Tris-HCI  pH 8.0,  100 mM NaCl, 1  mM EDTA)  containing  15% ethanol,  and mixed 
with CF-11 cellulose for 10  min on ice.  The material  was  transferred to a  column,  and 
washed with TSE buffer  containing  15% ethanol. Finally  the dsRNA was  eluted by  TSE 
buffer,  precipitated  with ethanol,  dried under a vacuum and resuspended  in TE (6  mM 
Tris-HCI  pH  8.0,  1 mM  EDTA).  
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2.4 DNase 1 treatment  

The DNase treatment (30  min at 37°  C) was  carried  out using 10  units of  DNase 1 
(Boehringer  Mannheim,  Mannheim,  Germany)  in a DNase buffer (4  mM  Tris-HCI,  

pH 8.0,  100 mM  NaCl,  5mM MgCl 2). The common  cloning  vector  pUCIB  was  used  as  a  
positive  control.  

2.5 RNase treatment 

The RNase  treatment (30  min  at  37°  C) was  carried  out  using  0.1  /zg  RNase  (from  bovine 

pancreas, Boehringer  Mannheim) in 1 x  SSC (0.15  M NaCl -  0.15 M sodium citrate, 

pH  7.0)  or  in 0.01 x  SSC.  For  control,  a subsample from a  dsRNA isolation sample  was  
taken before the CF-11 column. In this  subsample  both DNA and  single-stranded RNA 
(ssRNA)  were  still  present.  

2.6 Electrophoresis  

The material  from DNase 1 and  RNase  treatments  were  analysed  in 1% agarose gels  (FMC 
Bio  Products,  Rockland,  ME, USA) using  Pstl-,  Ecoßl-  and bacteriophage  
X DNA as  a  size  control.  When necessary,  agarose gels  supplemented with 1% synergel  
(Diversifield  Biotech,  Boston,  MA, USA)  were  used. The electrophoreses  was  carried  out 
in TAE-buffer  (40  mM Tris-acetate  pH 8.0,  1 mM  EDTA).  

2.7  Ultracentrifugations  

Isolates HR2,  HR3 and C 5 were used for ultracentrifugation  experiments.  Sample  

preparation  for  ultracentrifugation  was  performed  with ULTRA-TURRAX®  TP-18/10 
(Janke  and Kunkel  GmbH and Co KG  IKA-Werk,  Staufen,  Germany)  homogenizer  at  
4°C using  50 ml  test  tubes.  Mycelia  (2-3  g) grown on MOS agar  for  4-8  weeks at 20° C  
were homogenized  in 2  ml  of  osmotic  stabilizer (OS)  buffer  (0.6  M NaCl in phosphate  
buffer  pH 6.0) (Phillips  1993) for 30 s.  The homogenized  mycelia  were pelleted  with 
Labofuge  GL (Heraeus  Christ  GmbH, Osterode,  Germany)  centrifuged  for 10 s at 
RCF

max = 2800 g. The homogenization  and centrifugation  steps were then repeated.  
The supernatant was  stored on ice  until  used  in  the centrifugations.  

The 34-68% sucrose  gradient  (RCF
average  = 71 000 g, 20 h) centrifugations  were 

performed with  Sorvali®  Discovery  
M
 100 (Sorvali  Products,  L.P  Newtown,  CT,  USA) 

ultracentrifuge  using  TH-641 rotor  (Dupont;  Sorvali  Products)  at  4°C.  The gradients  were 
fractionated and  the occurrence  of  dsRNA in fractions  was  tested electrophoretically  as  
described above. 

2.8 Pathogenesis  of  type  A G. abietina on Pinus sylvestris  

The pathogenicity  of  dsRNA harbouring  fungal  isolates  was  tested at  Hyytiälä  Forestry  
Field Station (University  of Helsinki)  as  described by Terho and Uotila (1999).  
Inoculations of experiment  1 were done in October  1997 on Scots  pine  trees, 2 m in 

height,  derived from  seeds. Five trees  were inoculated twice with the  same isolate.  
Gremmeniella abietina type A isolates  HR3,  C  23,  MH  1.6 and type B isolate  Siika  1.1 

were used. Thus 10 replicates  were made with each isolate.  The mycelia were put into 
the phloem  of the  trees.  The holes in the tree  stem were  made using  a  4  mm cork  borer 
and the  bark was  replaced  over  the mycelium.  The instruments used were sterilized  
between inoculations with 70% ethanol. Six  control  inoculations without mycelia  were 
also carried out. In June 1998 the pathogenicity  of  each isolate was  estimated by  
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measuring  the  length  of the  lesion under the bark.  Inoculations of experiment  2  in  
October 1999 were  carried  out in a similar  manner in the field as described above on 

Scots  pines, 0.5 m tall,  derived  from seeds.  The fungal isolates  used  were C  5, C 23,  

HR2,  HR3,  MH 1.6 and  Valkea 1.2, and 12 replicates  were made. Ten control trees  

were  punctured  with a  sterile  cork  borer. The pathogenicity  was  measured in  May  2000 

as  described  above. The results  were  analysed  with non-parametric  Kruskall-Wallis  test,  
because  the variances were not the same between isolates.  Gremmeniella abietina was  

isolated  from  the  infected tissue of  the first  and  last  tree of  each set and  tested for their 

RAMS fingerprints.  

3 Results  

3.1 Identification of dsRNA 

Only  isolates  confirmed to  be G. abietina type A by  RAMS fingerprinting  were  studied. 
Nine isolates  contained material which was  bound to CF-11 cellulose and formed bands 

in an agarose gel.  Although  CF-11 cellulose is considered to bind specifically  dsRNA,  
the  nature of  these bands as  dsRNA was  further tested by  treatments with DNasel  and  
RNase  (from  bovine pancreas)  as  described by  Pryor  and Boelen 1987). The DNase 
treatment did not  have any  effect  on the obtained material  in conditions in which 100 ng  
of  plasmid DNA was  completely  digested.  The obtained material  was  also resistant  to 
RNase treatment  in conditions of  high  salt concentration  where ssRNA  was  digested.  
However,  in conditions  of  low salt  concentration both ssRNA  and dsRNA were 

digested.  Based on these experiments  we concluded that  the  obtained material was  
dsRNA. 

Fig.  1. The common dsRNA patterns  observed in G.  abietina type A.  The samples  are as follows: (1)  
dsRNA from isolate HR2; (2)  dsRNA from isolate HR3; (3)  dsRNA  from isolate C 5  and  (4)  is  X  DNA 

digested  with restriction  enzymes  Pstl,  Ecoßl  and Xhol. The essential  band sizes  of  DNA  marker are  
marked on the  right  
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Table 2. The pathogenicity  of  G.  abietina isolates in  two  inoculation experiments.  Isolate C  5  
harboured 1800, 1600  and 1200  bp  dsRNA molecules. Isolates HR3 and C 23 harboured 6000, 1800, 
1600  and 1200  bp  dsRNA molecules. Isolate HR2  harboured a 6000  bp  dsRNA  molecule. Other 

isolates did not contain dsRNA 

3.2 DsRNA  molecules in type A G. abietina 

Four molecular weight  classes  of  dsRNA were observed (Fig.  1; Table 1). The apparent 
sizes  of  these  molecules were 6000,  1800, 1600 and 1200 bp  when compared  to a DNA 
standard. 

The 6000 bp  band was  observed in six  isolates  (Table  1). The  1800,  1600 and  1200 bp  
coexisted in  eight  isolates,  five  of which also contained the 6000 bp  molecule. The 6000 bp  
molecule was,  however,  observed  alone in the isolate HR2.  

No dsRNA was  observed in cultures  derived from single  ascospores.  In mycelial  isolates  
1800,  1600 and 1200 bp  molecules occurred  in four out of  the six  isolates  obtained from 

symptom-free  shoots  and in  four out of  the  six  isolates from shoots  showing  symptoms  of  
Scleroderris canker. Thus, the distribution of these molecules did not correlate to 

symptoms.  In contrast, the 6000 bp  molecule was observed in five  out of  six  isolates  
obtained from symptom-free  shoots,  but only  in one isolate originating  from a shoot 
showing symptoms.  Thus,  there was a statistically  significant  difference from a random 
distribution (p  = 0.0400,  Fisher's  exact test).  

Fig.  2. Ultracentrifugation  of disrupted  mycelium  of  isolate HR3.  The first sample  is  X DNA  digested  
with restriction  enzymes  Pstl,  Ecoßl  and Xhol. The other samples  show  the occurrence of dsRNA  in 
the fractions as the density  of  the  sucrose gradient  increases  from left to  right  (34-68%).  The  1800  and 

1600 bp  bands have not yet been separated  

Isolate 

Canker length  (mm) 

Mean Standard deviation 

Experiment  1 
HR3 102.3  31.8 

C23 89.7 54.1 

MH 1.6 108.1 28.3 

Siika 1.1 86.3 14.8 

Control 17.8 2.0  

Experiment  2 
C5 40.6 11.9 

C23 52.2  14.9 

HR2 53.8  10.0 

HR3 40.3  4.5 

MH 1.6  43.8  8.0 

Valkea 1.2 52.8  7.0 

Control  6.4  0.7 
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Ultracentrifugation  was  performed on gently broken cells  in  order  to  test  the separation  
of different dsRNA  molecules within the mycelium.  The migration  rate  of 6000 bp  dsRNA 
was  different from that of  1800, 1600 and 1200 bp  dsRNA molecules (Fig.  2).  

3.3 The effect  of  dsRNA on the pathogenicity  of Gremmeniella abietina type  A 

Pathogenicity  tests  were  performed  in order  to  obtain information about the  effect  of the 

presence  of  dsRNA  on  the  fungus.  There was  (Table  2),  however,  no obvious  link between 
the  presence of dsRNA in fungi  and the  pathogenicity of  G.  abietina type A towards 
P.  sylvestris  in the present  test  conditions.  It seems that the variation in canker  size  was  
caused  by  other factors  than the presence of dsRNA in G. abietina type  A. All  isolates  
were  pathogenic  when compared  with controls  (p < 0.0001).  There were also  differences 
between  isolates  in  canker  size  (p <  0.01 in  experiment  1), but  both dsRNA-containing  and  
dsRNA-free isolates  were observed among  the  most  pathogenic  isolates.  No differences 

were found between isolates  containing  either  the 6000 bp  or  the three other dsRNA 
molecules.  The original  dsRNA  patterns  were found from mycelia  re-isolated  from cankers  
in all 

cases
 in  which this 

was
 tested. 

4 Discussion  

The results  of  this  study  show that dsRNA is  common among  isolates  of G.  abietina type 
A as,  in  total,  53% of all  tested isolates  contained dsRNA. If  the  samples  originating  from 

ascospores  were excluded,  then the natural proportion  of  dsRNA-containing  isolates  is  

82%. This is  not surprising,  as  dsRNA is known from a large  number of  fungi  (Nuss  and  
Koltin 1990),  and as  for example  most of  the  studied Puccinia isolates  contain dsRNA 

(Zhang  et  al.  1994).  Thus,  the  present  finding  supports  the  idea that dsRNA would be a 
common genetic  element among  fungi.  

Four  dsRNA molecules were observed among G.  abietina type A isolates  in Finland. 
Molecules with sizes  of 1800,  1600 and 1200 bp were linked to  each other as  they co  
occurred in the same  isolates  and they  had similar  mobility  during  ultracentrifugation.  
However,  the  6000 bp  molecule was  found in isolates  with and without the  other three 
dsRNA molecules and it had unique mobility  characteristics  in centrifugation.  

Furthermore,  the 1800, 1600 and  1200 bp  molecules were  found in  isolates with  and  
without the 6000 bp  molecule. Based on these observations  it  was  concluded that two 

separate  dsRNA patterns  occur  in  type A G.  abietina. They  were  designated  as  GaRV-L  (L  
for  lone)  and GaRV-MS (MS  for  multisegment).  Based on  what  is  known about dsRNA in  

fungi  GaRV-L might  be a member of  the Totiviridae and  GaRV-MS the Partitiviridae  
family,  although  sequence  data  is  needed to confirm  this.  The  finding  of two different 
dsRNA patterns  in the same fungal  species  is  not  unique,  as  many other similar  cases  are  
also  known (e.g.  Sanderlin and  Ghabrial 1978).  

The  dsRNA pattern composed  of only  the  6000 bp  molecule was  correlated with the  

origin  of  isolates  from  symptomless  shoots.  This  might  suggest  that  GaRV-L would reduce 
the  virulence of  its  host. We tested this  hypothesis  by  pathogenicity  experiments,  which 

however,  did not  support  our  hypothesis.  Therefore it was  concluded that  dsRNA does not 

seem to have a major  effect  on the pathogenicity  of G. abietina. It  should,  however, be 
pointed  out  that  it  was  not possible  to  carry  out  these tests  using  isogenic  isolates  with and  
without virus infection,  the experiment  trees  had different  genotypes and that the  

pathogenicity  experiments  conducted during  the present study  tested  only  how the  

mycelium  can grow in phloem  after  penetration.  The same  method has previously  been 
successfully  used,  for example,  to examine  differences in  pathogenicity  between two 
G. abietina biotypes  (Terho  and Uotila 1999). In the  present study  considerable 
differences in canker  length  were  observed between  experiments  1 and 2,  which probably  
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were  due to  weather changes  from year  to  year or differences in  the tree  sizes  used  in the two 

experiments.  
The main conclusions  of  this  study  are that (i)  dsRNA is  common among isolates  of  

G. abietina type A  in Finland,  and (ii)  two  fairly  different  dsRNA patterns  were  found. 
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Resume 

Deux  profils  inde'pendants  d'ARN doubles  brins  sont  presents  cbez  le Gremmeniella abietina var. 
abietina de  type A de  Finlande 

L'existence d'ARN doubles brins  (dsRNA)  a ete etudiee chez  des isolats finlandais de Gremmeniella 
abietina var.  abietina de type  A.  Parmi dix-sept  isolats  examines,  neuf contenaient un dsRNA,  mais  
aucun d'entre eux  n'etait d'origine  ascosporee. Deux profils nettement differents de dsRNA ont ete 

trouves,  independants  l'un de l'autre. Le premier  etait constitue d'une molecule unique  d'environ 
6000  pb.  Le second  presentait  un profil  en plusiers  fragments  de tailles apparentes  de 1800, 1600  et  
1200  pb  respectivement.  En  test  de pouvoir  pathogene,  nous  n'avons  pas  observe  de  difference notable 
entre les isolats contenant ou pas  d'ARN  doubles brins. 

Zusammenfassung  

Vorkommen von zwei  voneinander unabhd'ngigen  doppelsträngigen  RNS  in Gremmeniella abietina 
var. abietina Typ  A aus Finnland 

Bei 17 Isolaten von Gremmeniella abietina var. abietina Typ A wurde das Vorkommen von 

doppelsträngiger  RNS (dsRNS)  untersucht. Dabei enthielten neun Isolate dsRNS,  jedoch  keines  von 
ihnen stammte aus  Ascosporen. Es  wurden  zwei  deutlich unterschiedliche dsRNS-Muster gefunden,  
die unabhängig  voneinander  vorkamen. Das  eine  dsRNS-Muster  bestand aus  einem einzigen,  ungefähr  
6000  bp  langen  Molekiil. Das  zweite war multisegmentiert  und bestand aus drei dsRNS-Molekiilen 
mit der ungefähren  Grösse  von  jeweils  1800 bp,  1600  bp  und 1200  bp.  In Pathogenitätstests  waren 
keine grösseren Unterschiede zwischen  Isolaten mit  und ohne dsRNS  zu  beobachten. 

References  

Brasier,  C.  M.,  1983:  A  cytoplasmically  transmitted disease of  Ceratocystis  ulmi. Nature 305,220-222. 

Day,  P. R.;  Dodds,  J. A.;  Elliston,  J.  E.;  Jaynes, R.  A.;  Anagnostakis, S.  L.,  1977:  Double-stranded 
RNA  in Endothia parasitica.  Phytopathology  67, 1393-1396.  

Hamelin, R.  C.;  Lecours, N.; Hansson, P.;  Hellgren, M.; Laflamme, G., 1996:  Genetic 
differentiation within the European  race  of  Gremmeniella abietina. Mycol. Res. 100, 49-56.  

Hantula, J.; Muller,  M., 1997: Variation within Gremmeniella abietina in Finland and other  
countries as determined by  Random Amplified Microsatellites (RAMS). Mycol. Res.  101,  169-175.  

Jacobi,  V.;  Plourde, A.;  Charest,  P. J.; Hamelin, R. C.,  2000:  In vitro toxicity  of natural and 

designed  peptides  to  tree  pathogens  and pollen.  Can. J.  Bot. 78,  455-461.  
Kaitera, J.; Muller, M.;  Hantula, J., 1998: Occurrence of Gremmeniella abietina var. abietina 

large-  and small-tree types  in separate Scots  pine  stands in northern Finland and in the  Kola  
peninsula.  Mycol. Res.  102, 199-208. 

Kellomäki, S.;  Hänninen, H.;  Kolström,  T.,  1988:  Model computations  on the impacts  of the  
climatic change  on the productivity  and silvicultural management of  the  forest  ecosystem. Silva  
Fennica 22,  293-305.  

Laflamme, G.;  Lacfiance, D.,  1987:  Large  infection center  of  Scleroderris  canker  (European  race)  in 
Quebec  Province. Plant Dis.  71,  1041-1043.  

McCabe, P. M.;  Pfeiffer,  P.;  Van  Alfen,  N. K.,  1999: The influence of dsRNA viruses on the 

biology  of  plant  pathogenic  fungi.  Trends Microbiol. 7,  377-381.  



Two independent  ds  RNA patterns in Gremmeniella abietina var. abietina type A  205 

Morris, T.  J.; Dodds,  J. A.,  1979:  Isolation and analysis  of  double-stranded RNA from virus-infected 

plant  and fungal  tissue.  Phytopathology  69,  854-858. 
MiiLLER, M. M.;  Kantola, R.;  Kitunen, V.,  1994:  Combining  sterol and fatty  acid  profiles for  the  

characterization of fungi. Mycol. Res.  98,  593-603.  
Nuss,  D. L.,  1996: Using  hypoviruses  to  probe  and perturb  signal  transduction processes  underlying  

fungal  pathogenesis.  Plant Cell  8,  1845-1853. 
Nuss,  D.  L.;  Koltin,  Y.,  1990: Significance  of  dsRNA genetic  elements in plant  pathogenic  fungi. 

Annu. Rev.  Phytopathol.  28, 37-58.  
Phillips, A. J. L.,  1993: The use  of protoplasts  for the preparation  of  homokaryons  from 

heterokaryotic  isolates of  Rhizoctonia solani.  Mycol. Res.  97,  456-460.  
Pryor,  A.;  Boelen, M. G., 1987: A  double-stranded RNA mycovirus from the maize  rust  Puccinia  

sorghi.  Can. J. Bot. 65,  2380-2383.  
van Regenmortel,  M. H. V.;  Fauquet, C.  M.;  Bishop, D. H. L.;  Carstens,  E. B.;  Estes,  M. K.;  

Lemon, S.  M.;  Maniloff, J.; Mayo,  M. A.;  McGeoch, D.  J.; Pringle,  C.  R.;  Wickner, R. 8.,  
2000:  Virus  Taxonomy:  The Classification and Nomenclature of  Viruses.  The Seventh Report  of  
the International Committee on Taxonomy  of Viruses.-Virus Taxonomy.  Vllth report of  the  
ICTV. San  Diego,  CA,  USA:  Academic Press,  pp.  491-520.  

Sanderlin, R.  S.;  Ghabrial,  S. A.,  1978:  Physiochemical  properties  of  two distinct  types  of virus-like  
particles  from Helminthosporium  victoriae. Virology  87,  142-151. 

Steenkamp, E. T.;  Wingfield, B.  D.;  Wijnand, S.  J.; Wingfield, M. J., 1998:  Double stranded RNA  
and associated virulence in South African  isolates of  Sphaeropsis  sapinea.  Can. J. Bot. 76, 1412  
1417. 

Terho, M.;  Uotila,  A.,  1999:  Virulence of  two Finnish Gremmeniella abietina types  (A  and  B).  Eur. 
J. For.  Path.  29, 143-152.  

Uotila, A.,  1983:  Physiological  and morphological  variation among Finnish  Gremmeniella abietina 
isolates. Commes Instituti  Foralis Fenniae 119, 1-12. 

Uotila, A.;  Hantula, J.; Väätänen, A.  K.;  Hamelin, C.,  2000:  Hybridization  between two biotypes  
of  Gremmeniella abietina var. abietina in artificial pairing.  For. Path. 30, 211-219.  

Zhang, R.;  Dickinson,  M. J.;  Pryor,  A.,  1994:  Double-stranded RNAs  in the rust  fungi. Annu. Rev.  
Phytopathol.  32,  115-133. 





Paper  II 

TWmivirta,  T.T. and Hantula,  J.  2003. Two unrelated double  

stranded RNA patterns in  Gremmeniella abietina type  A  code  for 

putative  viruses  of  the families  Totiviridae and Partitiviridae.  

Arch. Virol. 148, 2293-2305. 





Arch  Virol (2003)  148: 2293-2305 

DOI 10.1007/500705-003-0194-6 

Two unrelated  double-stranded  RNA  molecule  patterns  

in  Gremmeniella  abietina  type A code  for  putative  viruses  

of  the  families  Totiviridae  and  Partitiviridae*  

T.  T.  Tuomivirta 1,2 and  J.  Hantula
2 

'Department  of  Applied  Biology,  Plant Pathology  Laboratory,  
University  of  Helsinki,  Helsinki,  Finland 

2
Finnish  Forest  Research Institute, Vantaa Research  Centre,  Vantaa, Finland 

Received June 3,  2002; accepted  July  7,  2003 
Published online September  19, 2003 © Springer-Verlag  2003 

Summary.  Two double stranded (ds)  RNA molecule  patterns,  probably  of  viral  

origin,  were sequenced  from Gremmeniella  abietina  var. abietina  type  A. The 

genome  of  Gremmeniella abietina  RNA virus  LI (GaRV-Ll)  from isolate HR2 

was  5133  bp  and  contained two open  reading  frames  (ORFs).  The s'-proximal  ORF 
coded for  a  putative  coat protein  (CP)  and  the  S'-proximal  ORF encoded  putative  

RNA-dependent  RNA polymerase  (Rdßp).  GaRV-Ll  had  sequence similarities  
with a  previously  described  totivirus  (Helminthosporium  victoriae  190S  virus)  and 

two unclassified  members of  family  Totiviridae  (Sphaeropsis  sapinea  RNA virus  

1 and  Sphaeropsis  sapinea  RNA virus  2).  The  genome of  Gremmeniella  abietina  

RNA  virus  MSI (GaRV-MSI)  from isolate C 5 was  composed  of  three  dsRNA  
molecules coding  for  a putative  Rdßp  (dsRNA 1), a putative  CP (dsRNA2)  and 

protein  of  unknown  function  (dsRNA3).  The  lengths  of  these  dsRNA molecules  

were 1782, 1586  and  1181  bp,  respectively.  Sequence  comparisons  indicated that 
the GaRV-MSI  dsRNA  pattern  comprises  a putative virus  that is  highly  similar  

to Discula  destructiva  virus  1, Discula  destructiva  virus  2 and  Fusarium solani 

virus  1 of  the  family  Partitiviridae.  

Introduction  

The occurrence  of  double stranded (ds)  RNA in fungi  is  usually  associated  with 

a virus infection.  The four fungal dsRNA  virus families  are Chrysoviridae,  

The Genßank accession  numbers of the sequences of GaRV-Ll and GaRV-MSI  

(composed  of dsRNAI,  dsRNA2 and dsRNA3)  reported  in this paper are  AF337175,  
AY089993, AY089994 and  AY089995, respectively.  
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Hypoviridae,  Partitiviridae  and  Totiviridae  [16,36].  Members of  the family  Parti  

tiviridae are isometric  cytoplasmic  viruses  with  a  genome  composed  of  two  linear  

1.4-3.okbp  dsRNA  segments  [B],  The smaller RNA codes  for  a coat protein  

(CP) and  the  larger  RNA  for a virion-associated  RNA-dependent  RNA poly  

merase  (Rdßp) [B], Additional  satellite  RNA or defective RNA segments  may 
be  present. Transcription  and  replication  are  based  on a semi-conserved  mech  

anism [B],  Family  Partitiviridae  was divided  into four genera. Partitivirus  and  

Chrysovirus  for viruses  that infect  fungi, and Alphacryptovirus  and  Betacryp  

tovirus  for viruses  that  infect plants [7].  Recently  the  genus  Chrysovirus  has  
been taken  out of  the family  Partitiviridae  and  is placed  into  the  new  fam  

ily Chrysoviridae  [l6].  All these viruses  cause  latent infections  and may have 

originated  from totiviruses  [6].  Members  of  the family  Totiviridae  are  isometric  

dsRNA  viruses  with  single,  linear,  uncapped  4.6-7  kbp  dsRNA  genomes [39].  The 
mRNA for  CP and  Rdßp  proteins  is  produced  via  a conserved  mechanism  [39].  
Lower eukaryotes  (fungi  and protozoa)  often carry  latent  infections  of  totiviruses,  

which  may have  shared  an  archetypical ancestor before  fungi  and  protozoa  di  

verged  [3].  The effect  of  dsRNA  varies  but  usually  no  symptoms  on  the  host  are  
observed. 

Gremmeniella abietina (Lagerb.)  M.  Morelet  var.  abietina  is  the  causative  

agent  of  Scleroderris  canker  on  coniferous trees. In  Finland,  two variants of  this  

fungus  occur  on  Scots pine  (Pinus  sylvestris  L.):  type  A  (or  large  tree type,  LTT)  

strains  cause  symptoms  on  both  large  trees and seedlings,  whereas  type  B (or  small  

tree  type,  STT) strains  are  found  only  in  seedlings  or  shoots  covered  with snow  

during  the winter [l2,  33], The Alpine type,  present  in Central  Europe,  and the  

endemic  North  American (NA)  type are two additional  G.  abietina  variants.  The 

two  variants of  G. abietina  in  Finland  should probably  be  considered  as closely  

related,  but  distinct  species  [34], 
The  occurrence  of  two cryptic  (i.e.  no  associated  symptoms)  dsRNA  pat  

terns designated  as GaRV-L  and  GaRV-MS  in G. abietina  type  A was  recently  

reported  [32],  In this  study  a representative  of  each pattern was  cloned and 

sequenced.  

Methods  

Fungal  isolates and large  scale  purification  of  dsRNA 

The GaRV-L 1  (G. abietina RNA virus L,  strain  1) and  GaRV-MS  1 (G. abietina RNA virus 

MS,  strain  1) dsRNA  patterns  to  be  cloned and  sequenced  were  derived from G.  abietina type  
A isolates HR2 and C  5,  respectively  [32],  The GaRV-L  1 pattern  was  composed  of  a  single  

approximately  6000 bp  dsRNA  molecule. GaRV-MS 1  was  a  multisegmented  dsRNA  pattern  

composed  of  three dsRNA  molecules with apparent  lengths  of  1800 bp  (dsRNA  1),  1700 bp  

(dsRNA2)  and 1200 bp  (dsRNA3),  respectively.  The isolates were grown on  modified orange  
serum agar [lB]  covered  with a cellophane  membrane at 15-20 °C. 

A large  scale  modification of the method of Morris and Dodds  [l7]  based of  CF-11 

(Whatman,  Maidstone,  England)  was  developed  in order to  purify  large  amounts of  dsRNA. 

Mycelia  (40  g) were homogenized  in lysis  buffer (50  mM Tris-HCI pH  8.0,  50 mM EDTA,  
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3% sodium dodecyl  sulphate  and 1%  P-mercaptoethanol)  twice with a  ULTRA-TURRAX®  
TP-18/10 (Janke  &  Kunkel  GmbH &  co  KG  IKA-Werk,  Staufen, Germany)  homogenizer,  

and  extracted  with water  saturated phenol  (pH  8.0).  Hexadexyltrimethylammonium  bromide 

(CTAB)  (Sigma  H-6269)  and  NaCl were  added  to  final concentrations of  1% and  425 mM, re  

spectively,  and samples  were  incubated at  65  °C  for  10 min.  Phenol:chloroform:isoamylalco  
hol (25:24:1)  extraction  was  followed with two  cloroform:isoamylalcohol  (24:1) extractions.  

After the  supplementation  of  ethanol (16.5%)  and  CF-11, samples  were mixed and centrifuged.  

Supernatants  were  discarded and  CF-11 pellets  were  suspended  to  TSE buffer (10  mM Tris-  
HCI  pH 8.0,  100 mM  NaCl,  1 mM  EDTA)  supplemented  with 15% ethanol. Columns were  
loaded  with CF-11 sample  suspension  and  washed with 100 ml of  TSE + 15% ethanol  buffer.  
The dsRNA bound to CF-11 was  eluted with TSE buffer without ethanol and  divided to  

fractions.  Samples  from each  fraction were  assayed  for  dsRNA in an agarose gel.  Fractions 

containing  dsRNA  were  pooled  and  precipitated  with ethanol. The dsRNA  was  finally purified  

by  electrophoresis  in an agarose LM-MP gel  (Boehringer  Mannheim GmbH,  Mannheim,  

Germany).  Each  dsRNA band was  cut  out  with scalpel  and  extracted from LGT-agarose  with 
the  "RNaid  Kit"  (Bio 101,  CA,  U.S.A.)  as  described by  the manufacturer. Finally,  the purified  
dsRNA  was  precipitated  with ethanol and  dissolved into diethylpyrocarbonate  (DEPC)  treated 

water.  The concentration  of  purified  dsRNA was  determined in an agarose gel  using  DNA 

standards of known  concentration. With this method yields  from isolates HR2  and  C  5 were  

25  p,g and 1 |xg per dsRNA molecule,  respectively.  

Cloning  of  viral cDNA with random primers 

The  cloning  of  random cDNA  from dsRNA  molecules was  performed  with  the  "Superscript™  
Plasmid System  for cDNA Synthesis  and Plasmid Cloning"  kit  (Life technologies  inc.,  

Rockville,  MD,  U.S.A.).  The cDNA synthesis  was  performed  as  described by  the manufacturer 

except  that 5  |ig  of  pD(N)6  Random Hexamers (Amersham  Pharmacia Biotech, Uppsala,  

Sweden)  were  used as primers  and  denaturation was  done by  boiling  0.4 to  1.5 |xg  of  dsRNA 

(dissolved  into DEPC  treated water)  with primer  mixture  for  10 min.  The denaturated sample  

was  rapidly  cooled  at —BO  °C.  After the first-  and second strand synthesis,  and the addition 

of linkers,  the dsDNA was  ligated  to  pUCIB (Amersham  Pharmacia Biotech,  Uppsala,  

Sweden)  cut  with Sail  (Boehringer  Mannheim GmbH,  Mannheim,  Germany).  Ligated  plas  

mids were  transformed into Escherichia coli  DH5a (Life  technologies  inc.,  Rockville,  MD, 

U.S.A.)  and  screened  for  inactivity  of  P-galactosidase.  Plasmids  were  isolated with QlAprep®  
Miniprep  (Qiagen  GmbH,  Hilden,  Germany),  and  the size  of  the cloned cDNA  was  estimated 

by  electrophoresis  of  PCR amplified  inserts.  For  this  purpose Ml  3  reverse  and  forward 

(—2O)  primers  of  "TOPO  TA Cloning"  kit (Invitrogen  corp., CA,  U.S.A.)  were  used  with 

DyNAzyme™  II  (Finnzymes  OY, Espoo,  Finland)  thermostable polymerase  as described by 
the manufacturers. 

Cloning  of  the 3'  ends 

The 3'  ends  of  the viral dsRNAs were cloned  as  described by  Lambden et  al.  [ 15] using  5' phos  

phorylated  and  3' inactivated T4 RNA  ligase  adaptor  (GCATTCGACCCGGGTT)  (Amersham  

Pharmacia Biotech,  Uppsala,  Sweden).  Ligation  was  performed  as  described by  the  manufac  

turer  using  0.4-5 |xg  of  dsRNA  and  3.5 |xg  of  T4 RNA  ligase  adaptor  combined on  ice  and  ten  
units  of  T4 RNA ligase  (Fermantas,  Vilnius,  Lithuania),  except  that a  final concentration of  

10%  of  dimethyl  sulfoxide (DMSO)  (Sigma-Aldrich  Chemie GmbH, Steinheim, Germany)  
was  used  and  the ligation  reaction was performed  at  4°C for  20  h. To  remove  free adaptors,  
the "High  pure PCR product purification  kit" (Boehringer  Mannheim GmbH, Mannheim,  
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Germany)  was used as  described by  the manufacturer. SuperScriptll  RT (Life  Technologies  

inc.,  Rockville,  MD,  U.S.A.)  enzyme  was  used in the first  strand  reaction as  described by  the 
manufacturer except that dsRNA (1  p,g)  and  RT primer  (AACCCGGGTCGTATGC)  (1  |ig)  

were denaturated by  boiling  (10  min)  and  subsequent  cooling  at —BO  °C.  One of  500 mM 
EDTA (pH  8.0)  was  added  to  stop  the  RT  reaction. RNA  was  hydrolyzed  by adding  3  |xl  of  

1  M NaOH and incubating  the reaction  for  60  min  at  65  °C.  The reaction was  neutralized by  

adding  10 |xl of  500  mM Tris-HCI  (pH6.9)  and  3  (xlof  1  MHCI. Short ssDNA  fragments  were  
removed with  the "High  pure  PCR  product  purification  kit"  as  described by  the manufacturer. 
The eluted samples were used  as  templates  in PCR.  Specific  primers,  based on sequences 
obtained from primary clones,  were  designed  to  anneal to  each end  and were used separately  

with the RT  primer  to  amplify  the  ends.  For  amplification  "Expand™  High  fidelity  PCR  
system"  (Boehringer  Mannheim GmbH,  Mannheim,  Germany)  was  used  as  described by  the 
manufacturer (initial denaturation 95  °C  10 min, followed by  20-25 cycles  of  amplification  

95 °C 1 min,  62  °C  1 min,  68  °C  2  min and final extension (68  °C  4 min)). The PCR  products  
were  purified  with  "High  pure  PCR  product  purification  kit",  cloned with "TOPO  TA  Cloning" 

kit and  screened as  described above. 

Sequencing  and computer aided analyses  

Cloned viral  cDNAs  were  sequenced  with a  4200L-2 NEN  Global IR2 System  (LI-COR  inc.,  
Lincoln, NE,  U.S.A.)  using  the  SequiTherm  EXCELII  sequencing  kit  (Epicentre,  Madison,  

WI,  U.S.A.) with IRD7OO  labelled Ml  3  Forward  and  IRDBOO  labelled M l 3  Reverse  oligonu  

cleotides as  described by  the manufacturer. Sequences  were  compiled,  analysed  and aligned  

(with  sequences from Genebank)  using  Vector NTI  Suite 2 (InforMax inc.,  MD, U.S.A.)  
software package.  Phylogenetic  and molecular evolutionary  analyses  were conducted us  

ing  MEGA version 2.1 [l4]. Complete  and partial  nucleic acid sequences  were screened  

through  "BCM  Search Launcher: Nucleic Acid Sequence  Searches" (Baylor  College  of 
Medicine HGSC,  http://searchlauncher.bcm.tmc.edu).  Complete  amino acid  (aa)  sequences  

were  screened trough  protein  BLAST [2]  and "BLAST 2 Sequences"  [3l]  search  engines  of 

National Center for Biotechnology  Information (NCBI).  

Results  

Cloning  and  genome organization  of  GaRV-Ll  dsRNA  pattern  

The uttermost 3' ends of  linear dsRNA molecule  were  independently  cloned  twice 

and  identical  clones  were  obtained  from each  end.  The  remainder  of the genome 

was  cloned and sequenced  independently  three to eight  times.  The  dsRNA  genome  
of  GaRV-Ll (accession  number  AF337175)  was  5133  base  pairs (bp)  with a GC 

content of  57%.  Both strands  terminated  at  the 3'-end  with UGC  triplet.  The 

genome contained two  large  open  reading  frames (ORFs) on  the same strand and 
which overlapped  by  a single  nucleotide.  ORFI encoded  a  putative  CP  (according  

to BCM Search Launcher the smallest sum  probability  values were  lowest  with 
members of  family Totiviridae  CPs).  ORFI  started  at  nt 276  (AUG) and  ended  

at  nt 2604  (UGA), thus  encoding  a 776  amino  acid  (aa)  protein  with a predicted 
molecular mass  of  80.5 kDA.  The second ORF2 started  at  nt 2603 (AUG) and 

ended  at  nt  5078 (UGA),  thus encoding  a  825 aa  protein  with a predicted  molecular 

mass  of  90.0 kDA.  This second ORF encodes a putative  Rdßp,  in which all  
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eight  conserved  motifs of  Rdßps  from dsRNA  viruses  of  lower  eukaryotes  [3]  
were  found (data  not shown). In comparison  with sequences in Genbank,  ORFI  

(putative  CP)  and  ORF2  (putative  Rdßp)  had  highest  similarities  with  homologous  

proteins  of  an  unclassified  member  of  the family  Totiviridae,  Sphaeropsis  sapinea  
RNA virus 2 (SsRV2)  [23],  with  aa sequence similarities  of  60% and 50%,  

respectively.  Based on  BLAST searches  other  similar  Rdßp  and CPs  were  those  of 

Sphaeropsis  sapinea  RNA virus  1 (SsRVI)  [23]  and  Helminthosporium  victoriae  
virus 190S  (HvVI9OS)  [9].  These  four putative viruses  shared  a proline  rich  
C-terminus  (130  amino acid)  of  their  CP  (containing  26, 25,  21, 23% of  proline,  

respectively).  

Cloning  and  genome organization  of  GaRV-MSI  dsRNA  pattern 

The  complete  dsRNAI sequence  (accession  number  AY089993)  was  derived  from  

twenty  independently  produced  clones,  with  each  nucleotide  position  determined  
from  at  least  five  independent  sequencing  reactions.  The length  of  dsRNA 1 was  

1782bp with aGC content of  50%. DsRNAI included  one  ORF  spanning  91% 
of  the  molecule.  This  ORF  started  at  nt  63 and  ended  at  nt 1680,  thus  encoding  a 
539  aa  protein  with  a  predicted molecular mass  of  62.1  kDA.  This  putative  protein  
contained conserved Rdßp  motifs  3,  4,  5,  and 6 from dsRNA viruses  infecting  

lower  eukaryotes  [3]  and,  therefore,  probably coded  for the  viral  Rdßp  (data  not 

shown).  The  Rdßp  was  most  similar  to  the corresponding  protein  of  an  unclassified  
member of  the family  Partitiviridae,  Discula  destructiva  virus  1 (DdVl)  with  

identity  of  65%  [24],  

DsRNA2  sequence  (AY089994)  was  compiled  from twelve  independently  

produced  clones,  with each nucleotide  position  determined from at least  three 

sequencing  reactions.  DsRNA2  was  1586  bp  with aGC  content of  52%,  containing  

one  ORF  spanning  84%  of  the  molecule.  This  ORF started  at  nt 100  and  ends  at  nt  

1429,  thus  encoding  a  433  aa  protein  with  a  predicted  molecular  mass  of  47.1 kDa. 

This  putative  CP  had lowest  sum  probability  values  with  CPs  of  viruses  in the 

family  Partitiviridae  according  to BMC Search  Launcher.  The  CP  had highest  

similarity  (51%)  with the corresponding  protein  of  an  unclassified  member of  the  

family  Partitiviridae,  Discula  destructiva  virus  2 (DdV2)  [24],  
DsRNA3  sequence  (AY089995),  was  compiled  from nine  independently  pro  

duced  clones  with  each nucleotide  position  determined  from at  least six  reactions.  
DsRNA3 was  1186 bp with aGC content of  47%. This segment  contained one  

ORF  spanning  only  64%  of  the dsRNA3.  This  ORF  started  from nt 348  (AUG) and  
ended at  nt 1059  (UAG),  thus encoding  a  237  aa  protein  with a  predicted  molecular  

mass  of  26.6 kDa.  Surprisingly,  no  similarities  with known  proteins  were  found 
when this  putative  protein  was screened  through BCM Search  Launcher  and 
NCBI Protein  BLAST search  engines.  However,  placement  and size of  this  ORF 
resembled  the putative  ORF of  DdVl  RNA3  [24].  As  "BLAST 2  Sequences"  [3l]  

analysis  showed significant  similarity (expect  value  le-18)  between these two 

putative  proteins,  we  deposited  the gene product  of  dsRNA3 into Genßank. As 
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protein  coded  by dsRNA3  was now  available as  a  protein  in  Genbank,  similar  pro  

tein  found  from RNA3  of  DdV  1 was  used to screen  protein  BLAST  search  engine  

at NCBI. The  best  match  was ORF  of  dsRNA3  of  GaRV-MSI and  the  "expect  
value"  between  these two  putative proteins  was 7e-17,  which  was indicative  for  a 

relatively  high similarity.  

Phylogenetic  relationships  of  GaRV-Ll and GaRV-MSI 

dsRNA  patterns  

Based  on multiple alignments  of  available  complete  putative aa  sequences  of 

Rdßp  phylogenetic  tree  was  constructed  (Fig.  1).  The tree showed  that GaRV-Ll 

grouped  together  with SsRV2,  a virus from a  pine  pathogenic  fungus  Sphaeropsis  

sapinea  [27].  Other closely  related  Rdßps originated  from fungal  (SsRVI  and  

HvVI9OS)  or  protozoal [Eimeria  brunetti RNA virus 1 (EbRVI)  (AF356189),  

Leishmania  RNA virus  1 (LRVI-1)  [29]  and  Leishmania  RNA virus 2-1  (LRV2- 

1) [2s]]  hosts.  The  same phylogenetic  analysis  showed  that  GaRV-MSI  grouped  

together  with  DdVl,  DdV2,  and Fusarium solani virus  1 [l9],  of  which FsVl  is  

a  classified  member of  the  genus Partitivirus.  

The  noncoding  regions  of  the  GaRV-Ll  and  GaRV-MSI  
dsRNA patterns  

Both  dsRNA  patterns  included  relatively long  noncoding regions.  Upstream  of 

GaRV-Ll ORFI  there  was a noncoding  region  (275  bp)  that shares a 14nts 

Fig.  1.  Unrooted,  condensed (50%  cutt-off)  neighbor  joining  tree  [l4]  of  different putative  
dsRNA  viruses  based on the  alignment  of their available complete  putative RNA-dependent  

RNA  polymerase  amino  acid  sequences.  The tree  is  based on sequences  of  AbVl,  Agaricus  

bisporus  virus [3s]; AhV-2H,  Atkinsonella hypoxylon  virus (isolate  2H) [2o];  BVC-3,  
Beet cryptic virus 3 [4o];  Cp  L-dsRNA,  Larger  dsRNA of Cryptosporidium  parvum [l3]; 

DdVl,  Discula destructiva virus 1 [24]; DdV2, Discula destructiva virus 2 [24]; Eb-  

RVI,  Eimeria brunetti RNA  virus 1 (AF356189);  FpVIO,  Fusarium poae  virus [4];  FsVl,  

Fusarium solani virus 1 [l9]; GLV, Giardia lamblia virus [37];  GaRV-Ll,  Gremmeniella 

abietina RNA virus LI  (this  study);  GaRV-MSI, Gremmeniella abietina RNA  virus MSI 

(this  study);  HmVl,  Helicobasidium mompa dsRNA mycovirus  (strain  V7O)  [22];  HvV  

-1455,  Helminthosporium  victoriae virus 145S (AF297176);  HvVI9OS,  Helminthosporium  

victoriae virus  190S [9]; Ha-Pt,  Heterobasdion annosum P-type  partitivirus  [11];  LRVI  

- Leishmania RNA virus 1-1 [29]; LRV2-1, Leishmania RNA virus 2-1 [24]; NrVLI, 

Nectria radicicola  virus LI [l]; PcV,  Penicillium chrysogenum  virus  (AF296439);  Pp  

dsRNAI,  dsRNAI of Pyrus  pyrifolia [2l]; RsV-717, Rhizoctonia solani virus 717 [2B];  

ScV-La, Saccharomyces  cerevisiea virus La [3]; ScV-L-A Saccharomyces  cerevisiea 

virus L-A [10];  SsRVI,  Sphaeropsis  sapinea  RNA virus 1 [23];  SsRV2,  Sphaeropsis  

sapinea RNA virus 2  [23]; TVV-Tl,  Trichomonas vaginalis  virus strain T1 [3o];  

UmV-Hl, Ustilago  maydis  virus HI [3]. Bootstrap  values are indicated at the  branch  

points 
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sequence with SsRV2 (Fig.  2a).  The same region  had  sequence similarities  also  
with SsRVI  and  HvHI9OS.  No  sequence  similarities  were  found among  3'-  
untranslated  regions  (UTRs)  of  these  molecules.  

The sizes  of  5' UTRs  of  dsRNA  1 and  dsRNA2 were  62  and  99  bp,  respectively.  
The  lengths  of  3'  UTRs  of  the same  molecules were  100 and 155 bp.  The lengths  
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Fig.  2.  Genomic similarities between GaRV-Ll, Gremmeniella  abietina RNA  virus  LI  (this 

study);  SsRVI,  Sphaeropsis virus  1 [23];  SsRV2,  Sphaeropsis  sapinea/?/VA  virus 

2 [23];  HvVI9OS,  Helminthosporium  victoriae virus 190S [9].  a  The gray box refers  to  the 

identical bases  between GaRV-Ll and  SsRV2.  The asterisks  refers  to  identical bases  between 

SsRV  1 and  SsRV2.  The two  possible  consensus  sequences  between  these four putative  viruses 

are  determined, b  The overlap  of  ORF I and  ORF2 of  GaRV-L  1,  Hv  190 SV,  SsRV  1  and  SsRV2.  

The putative  start codon for  ORF2 is  bolded. The putative  stop  codon for  ORFI is underlined. 
The consensus  bases  in the  overlap  region  are  boxed 

of  UTRs of  RNAI and  RNA2  of  DdV  1 and  DdV2  [24]  were  very  similar  to those 

of  GaRV-MS 1, and  conserved motifs  could be  found  between  these six  molecules  

(Fig.  3a-d).  Furthermore,  additional conserved motifs  could be found among these 
three  viruses (Fig.  3c-d).  Neither of  the noncoding  regions  of  GaRV-MS  1 dsRNA3  
had  sequence  similarities  with other  molecules,  except  for  a GCAAA  motif  at  the 

beginning  of  the 5' UTR. 
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Discussion  

The  cloning  strategy  used  in  this  investigation  resulted  in a  complete  sequence  of  
two dsRNA viral  genomes. The  genomes of  GaRV-Ll  and  GaRV-MSI dsRNA  
molecule patterns  resembled  those of  SsRV2 and  DdVl,  respectively.  Both pat  
terns contained ORFs  possibly  coding  for  putative  Rdßp  and putative  CPs.  The 

origin  of  dsRNA3  of  GaRV-MSI  is  unknown  but  because  it  was more  similar  to 
RNA3 in DdVl than to any  sequence  in GaRV-MSI itself,  it  is  not a defective  

segment  but  may be  a satellite  RNA. This, however,  is not clear, as dsRNA3 
has never  been observed separately  from dsRNA  1 and  dsRNA2,  and  all  three 

segments  migrate  together  in rate  zonal  centrifugation  [32],  Based  on  aa  sequence 

similarities  it is  clear  that  dsRNA3  and RNA3  of DdVl share a common  origin,  

although  the  functions  of  the  putative  proteins  encoded  by  these dsRNA  molecules  

are unknown. 

Overlapping  region  ofORFI to ORF2 of  GaRV-Ll dsRNA pattern  

In the  family Totiviridae  three  basic  mechanisms  have  been  observed  in the  
translation of  Rdßp.  The first  is  a hypothetical  ribosomal hopping  mechanism 
used in LRV2-1 [2s]  for  the  production  of  coat-Rdßp  fusion  protein.  The second 
mechanism  is  based  on  different  types  of  frameshifts.  Giardia  lamblia  virus  [37]  
and Saccharomyces  cerevisiea  virus  L-A (ScV-L-A) [s]  seem  to produce  coat- 

Rdßp  fusion  protein  via  a —1 translational  frameshift  mechanism.  In contrast,  

LRVI-1  and  Trichomonas  vaginalis virus  strain T1 [3o]  probably  use  +1 ribo  
somal frameshift  mechanisms  [6],  Both of  these mechanisms  involve  consensus  

heptameric  slippery  sites  and  pseudoknot  structures,  which are  not found  in  GaRV-  
Ll.  In  addition,  the  possible  change  of  frame  in GaRV-Ll  should  take  place in  a 

region  of  only  15 nts.  Therefore,  these mechanisms are  probably  not used for  the 
translation of  Rdßp  in  GaRV-Ll.  The third mechanism  used to translate  Rdßp  is a 

hypothetical  coupled  termination-reinitiation mechanism  found  in  HvI9OSV  [26],  
As  GaRV-Ll and HvI9OSV (as  well  as  SsRVI  and SsRV2,  Fig.  2b) share a highly  
conserved  motif  in  the start  codon  of  Rdßp  it  is  possible  that  a  coupled  termination  
reinitiation mechanism also is  used in GaRV-Ll. 

Taxonomic considerations 

Phylogenetic  analysis  show  clearly that  the two  unrelated dsRNA molecule pat  

terns of  Gremmeniella  abietina  type  A code  for viral  genomes of  the families  
Totiviridae and Partitiviridae.  The taxonomy  of  dsRNA viruses  similar to GaRV-  
Ll  and  GaRV-MSI is  somewhat  confusing.  HvVI9OS  is  a  member of  the genus  
Totivirus,  whereas  LRVI-1 and  LRV2-1 are  members of  the  genus  Leishmani  
avirus.  EbRVI is  an  unclassified  member of the family Totiviridae as are  SsRVI  
and SsRV2. On  the  other  hand ScV-L-A and  Saccharomyces  cerevisiea  virus  
La (ScV-La)  [3]  also  belong  to the genus Totivirus  [39],  despite  being  grouped  
separately  from HvVI9OS  in phylogenetic  analysis.  
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The dendogram  analysis  of  dsRNA molecules  similar  to GaRV-MS  1 does  not  

entirely support  the current  taxonomy  of  the family  Partitiviridae.  The dsRNA  1 
found  in Pyrus  pyrifolia  [2l],  an unencapsidated seed-  and  pollen-transmitted  
cryptic  linear  dsRNA  molecule,  groups together  with  BCV-3  [4o],  a member  of 
the genus  Alphacryptovirus.  These two putative  Rdßp's  form a  firm  group and they 

split the  currently  known  putative  members of  the family  Partitiviridae  infecting  
fungi  into  two separate  groups. The recent  removal  of  Penicillium  chrysogenum  
virus  (PcV;  AF296439-AF296442)  and  Helminthosporium  victoriae  virus  145S  

(HvVI4SS;  AF297176-AF297179)  from the family Partitiviridae  to  a  new  family  
Chrysoviridae  [l6]  is  well  justified,  as  the  representatives  of  this  new  family are  

clustering  separately  from the  family  Partitiviridae  in  our  phylogenetic  analysis.  
Their Rdßp  seems  to be similar  to the members  of  the family Totiviridae,  and  all  

eight  conserved  motifs  from Rdßps  of  dsRNA  viruses  of  lower eukaryotes  [3]  can  

be  found  (data  not shown).  

Based  on  our  phylogenetic  analysis  (and  other  aspects)  two distinct  groups, 
those  similar  to GaRV-Ll  (including  SsRVI, SsRV2  and HvI9OSV)  and  GaRV  
MS 1 (including  DdV 1, DdV2  and  FSVI), were  identified.  These  dsRNA  molecule  

clusters,  however, do not  represent  all  members  of  the  genera Totivirus  and Par  

titivirus.  Therefore,  we  conclude  that taxonomy  of  the families  Totiviridae and 

Partitiviridae  should be  further clarified  in  the future. 
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Summary.  A  double  stranded  (ds)  RNA genome of  Gremmeniella  abietina  mito  
chondrial RNA virus  S 1 (GaMRV-S  1) was sequenced.  The length  of  the  genome 

was  2572 base pairs,  it had a very  low GC content (30.6%), and  sequence  and 

length  variations  occurred  in  both  ends  of it. The genome coded  for a  putative  741 

amino  acid  long  RNA-dependent  RNA polymerase  (Rdßp)  using  a  mitochondrial  
translation code. Comparison  of  the putative  amino  acid  sequences  suggested  that 

GaMRV-S  1 is  a putative  member  of  the  genus Mitovirus.  

* 

Viruses  of  fungi  have genomes  composed  of  double stranded  (ds)RNA  or positive  

sense  single-stranded  RNA  [(+)ssßNA]  [7].  Viruses  with ssRNA(+)  genome  

belong  to the families  Narnaviridae  or  Barnaviridae [7],  Members  of  the  family 
Narnaviridae have been divided in  two genera, Narnavirus and Mitovirus.  These  

viruses  do not form true virions and  their genomes  code  only for an RNA  

dependent  RNA  polymerase  (Rdßp)  [2,  s]. Some  of  the  conserved  motif  domains  
of  the putative viral  Rdßps  resemble those found in the (3  subunit  of  coliphage  

replicases  [9,  24].  Viruses  of  the  genus  Narnavirus reside  in the  cytoplasm  where  

the  Rdßp  is  translated  [33],  and their  genomes are  GC rich  [3,  29].  In contrast,  

*The Genbank accession  number of  the sequence of  GaMRV-S  1  reported  in this  paper is  

AF534641. 
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viruses  of  the genus  Mitovirus  are  located in mitochondria,  in  which the Rdßp  is  

translated,  and  their genomes  are  GC poor  [9,  11]. 

Gremmeniella  abietina (Lagerb.)  M. Morelet  var.  abietina  is  the  causal  agent  

of  Scleroderris  canker  on  coniferous  trees.  In  Finland,  two variants  of  this fungal  

pathogen  occur  on  Scots pine  (Pinus  sylvestris  L.).  Strains  of  type  A (designated  

also  as the  'large  tree type',  LTT)  cause  symptoms  on  large  trees and  seedlings,  

whereas strains  of  type B ('small  tree type', STT) are  found only  in  seedlings  

or  shoots  covered with  snow during  the winter [l2,  31]. These  two variants  of  
G.  abietina  in Finland  probably  should  be considered  as  closely  related  but  distinct  

species  [32],  We have  recently shown that  two unrelated  dsRNA  patterns  code  
for  putative viruses  in G.  abietina type  A [2B,  29].  In this study,  we  report  the 

occurrence  and  genomic  sequence  of  a  third dsRNA pattern in  the  type  A strains  

of G. abietina.  The name Gremmeniella abietina  mitochondrial RNA virus SI 

(GaMRV-Sl)  is  proposed  for  this  novel virus. 
The  type  of  the dsRNA-containing  isolate  luumäki  7 of  G. abietina,  obtained 

from a pine  branch  showing  typical  symptoms  of  Scleroderris  canker,  was  iden  

tified using  random  amplified  microsatellite  (RAMS) fingerprints  as  described in 
Hantula and Miiller  [B]  and  Kaitera  et  al.  [l2],  For  DNA and dsRNA extraction,  

the fungal  isolate  was  grown at 15-20  °C on  modified  orange serum  agar (MOS) 

[l9] covered  with a  cellophane  membrane. dsRNA was  isolated using  a  previously  
described method [lB,  modified  as in  29]  based  on  CF-11  cellulose  (Whatman,  

Maidstone,  England). The nature of  nucleic  acids bound  to and  eluted  from 

CF-11  were  characterized  using DNase  1 and RNase treatments. The DNase 

treatment (30  min at  37  °C)  was  carried out using  10  units  of  DNase  1 (Boehringer  

Mannheim,  Mannheim,  Germany)  in 40  mM Tris-HCI,  pH  8.0, 6mM MgClo.  

The  cloning  vector pUCIB (Amersham Pharmacia  Biotech,  Uppsala,  Sweden) 

was  used as a positive  control.  The RNase treatment (30  min at 37 °C) was  

carried out using  0.1  ug  RNase  (from  bovine  pancreas, Boehringer  Mannheim, 

Mannheim,  Germany)  in  2 x SSC  (0.3  M NaCl  -  0.3 M sodium citrate, pH  7.0)  

or in 0.01 x SSC. 

cDNA synthesis  was  based on the ligation  of  adapters  to  the 3'  ends  of  dsRNA 
molecules  [ls],  allowing  cDNA synthesis  from the 3'  ends  of  both  template  strands 
of  the dsRNA molecule as  described  in [29]  except,  that  the  following  modifica  
tions  were  applied. In the ligation  reaction  using  T4 RNA  ligase  (Fermantas,  

Vilnius,  Lithuania),  2  |xg  of  dsRNA and 3.5  |xg  of  5' phosphorylated  and 3'  in  
activated  ligase  adaptor  (s'-GCATTCGACCCGGGTT-3', Amersham Pharmacia 
Biotech,  Uppsala,  Sweden) were  used.  dsRNA was  denatured  by  boiling  the 

sample  (including  the primers)  for  10  min,  and  320  ng  of  dsRNA was  used for  the 

reverse  transcription  (RT)  with Revert  Aid  H minus  M-MuLV reverse  transcrip  

tase (Fermantas,  Vilnius,  Lithuania).  The  cDNA  sample  was  purified  with "High 
Pure  PCR product  purification  Kit"  (Boehringer  Mannheim GmbH, Mannheim,  

Germany) and  used  as a (1  [il)  template  in polymerase  chain  reaction  (PCR)  

(28  cycles;  Expand  High  Fidelity  PCR System, Boehringer  Mannheim GmbH, 

Mannheim,  Germany)  with  a  RT  oligonucleotide  (s'-AACCCGGGTCGTATGC  
-3',  complementary  to the  adaptor  sequence).  With this  method,  only  incomplete  
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amplification  products  were  initially obtained,  but  the  reduction  of  the  dsRNA  

denaturation  time  down  to two minutes  resulted  in  a  single  PCR  product  corre  

sponding  to the  size  of  the dsRNA molecule. Only  25  cycles  of  amplification  was 
needed. PCR products  were  cloned  and  sequenced  using previously  described  
methods  [29].  In  addition,  four  primers designed during the study  were  used: 

s'-GATTACTACTTTATCTGGTGTTG-3',  s'-ATCTCGTACCATTGGCA-3',  s'-  

T CTATTA  AGAG  ATA AGTA ATAAT GTTT- 3'  and 5'  -  ACTGT  CG  AGGGGT  GA  A  

-3'.  These  labeled  primers  were  based  on  the  preliminary  sequences  obtained 
from the  first sequencing  reactions  and  used  in  the  cycle  sequencing  reactions  
as described for Ml  3 primers  [29]  except  that  the annealing  temperature  was  
47  °C  instead  of  50  °C.  Sequences  were  compiled, aligned  and analyzed  using  the 

Vector  NTI Suite 2  software  package  (InforMax  inc.,  MD,  U.S.A). Phylogenetic  

analyses  were  conducted  using  MEGA version  2.1  [l3].  Complete nucleic acid  
and putative  amino acid (aa)  sequences  were  screened  using  protein  BLAST  [l] 
search  engine  of  the National  Center  for Biotechnology  Information (NCBI).  The 

RNAstructure  3.6  program  [l6]  was  used  to predict  secondary  structures.  

The RAMS  fingerprinting  analysis  of  Luumäki  7 isolate indicated  that  it 

belongs  to G. abietina type A (not  shown).  The isolate contained a ~2500  bp 
nucleic  acid  molecule  (not  shown).  This  molecule  was resistant  to DNase  1 

as well as to RNase  in  high salt concentration,  but  in  low  salt  concentration  it 

was degraded  by  RNase (not  shown). Thus,  we  conclude that the  molecule was  

composed  of  dsRNA  [2O,  22]  and probably represented  the  genome  of  dsRNA 

virus or a replicating  form of  ssRNA(+)  virus.  The molecule  was  later  designated  

as  Gremmeniella  abietina mitochondrial RNA virus  S  (strain  SI)  (GaMRV-Sl),  
and we  use  this name  hereon. 

The GaMRV-Sl sequence  (accession  number  AF534641)  was  assembled  from  

the  sequences  of  twenty  independently  amplified, overlapping  PCR  products.  

Any portion of  the final  sequence was  verified from at  least four independent  
clones.  Furthermore,  the  5'-  and  3'-ends  of  the GaMRV-S  1 genome were  cloned  

independently  ten and five times, respectively.  The length  of  the GaMRV-Sl 

genome  was  2572  bp  and  its  GC  content was  30.6%.  Using  the universal genetic  

code  there  were  no  long  ORFs  in  the  genome of  GaMRV-S  1. However,  using  the  
mitochondrial  translation  table,  in which  UGA  codes  for  tryptophan, GaMRV-  

S1  was  found to contain  a single  large  ORF spanning  86%  of  the genome. The 

putative  start  codon for  this  ORF  was  AUG  (position  254)  and  the  stop  codon  was  
UAA (position 2477),  potentially  yielding a protein  of  741 amino  acids with a  

predicted  molecular  mass  of  85.4 kDa.  This  putative  protein  contains  conserved 
motif  domains  of  Rdßp-like  proteins  encoded  by  mitochondrial  viruses and  related  

RNAs  [ll] (Fig.  1). 
The most  common  sizes  of  5'  and  3'  untranslated  regions  (UTRs)  of  GaMRV-  

S1  were  253  and  122 bp,  respectively.  The UTRs could potentially  form  stem-loop  
and panhandle  structures  (data  not shown).  These structures were  predicted  to be  
stable  even  when a genomic  region  of  up to 300  bp was  used  for  analysis.  The 
GaMRV-Sl and  related  sequences  in Genbank (see  below)  did  not share long  
conserved nucleic acid  motifs in  their  UTRs. However,  the putative  start  codon 
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of  GaMRV-Sl occurred in  an  AU rich  context,  which  in  turn was surrounded  

by  regions  with  high  GC content (data  not show).  The putative start  codons  of 

Ophiostoma  mitovirus  3a  (OMV3a;  [9],  Ophiostoma  mitovirus  4 (OMV4; [ll],  

Ophiostoma  mitovirus 5  (OMVS; [ll],  Ophiostoma  mitovirus 6  (OMV6; [ll] and  

Sclerotinia  homoeocarpa  mitovirus 1 (SMVI;  AY 172454)  also  are  located  within 

an  AU rich  context within GC-rich  genomic  regions. 
The genome  of  GaRV-MS  1 resembles  viral genomes  of  the members of  the  

genus Mitovirus  found in Ophiostoma  novo-ulmi. The putative Rdßp  contained  
amino acid  sequence  motif  domains I-VI  characteristic  of  the Rdßp-like  proteins 

encoded  by  mitochondrial  viruses and  related  RNAs  [ll],  The  uttermost ends  of  

untranslated  regions  formed  several  stable  stem-loop  and  panhandle  structures. 
These structures  resemble those  found in the members of  genus  Mitovirus  in  

fecting Ophiostoma  novo-ulmi  [9, 11] and  their satellite  viruses  [lo].  Despite  
these similarities  in genomic structure and  amino  acid  sequence, no  extensive  

nucleic  acid  sequence  similarities  were  found between the untranslated  regions  of 
GaMRV-Sl and these  viruses.  Also  the lack  of  nucleic  acid sequence  similarity 

at  the  close  proximity  of  the  putative  start  codon  was  unexpected.  These  features  

of  GaMRV-Sl differ from the two previously  described (unrelated)  viruses  of 

G.  abietina and their  closest  hypothetical  relatives  which  are  located  and  translated 

in  the  cytoplasm  of  the their host cells  [29].  

There  was  length  variation in the  primary  clones  obtained  from the  very 

uttermost ends of  both strands.  Signatures  of  length  and sequence  variation  also  

were  observed  in direct sequencing  reactions  towards both  ends  of  a complete  
PCR product  of  GaMRV-S  1 (data not shown).  Therefore,  it  is highly probable  that  

length  and sequence  variation occurred  in  the ends of  the RNA  molecule  (within  

a  single  strain  of  G.  abietina).  We consider  this observation  reliable,  because  the  
border  between the  clear  and  unclear sequence was  precise  in direct  sequencing  

experiment.  The length  of  this  variation,  however,  was  not possible  to determine 

conclusively  here,  but it seems  that  the  panhandle  structures  in  the ends  of  the  

single  RNA-molecules  were  not disrupted  due  to these  variations.  Such  variation 

has not previously  been reported  for  other members of  the genus  Mitovirus,  either 
because  they do not exist  or  because  they have  not been looked  for. If  the latter 

alternative  is  true, it will be  interesting to see  if  similar  variations  also  occur  in 
other  mitoviruses.  

A phylogenetic  analysis  (Fig.  2)  based  on  multiple  alignments  of  the puta  
tive  Rdßp  amino  acid  sequences grouped  GaMRV-Sl  together  with OMV4  and 

OMVS, OMV6.  Other  similar  putative  Rdßps, based on blast  searches,  were 

those found from  Cryphonectria  mitovirus  1 (CMVI;  [2o],  Rhizoctonia  virus  M 2 

(RVM2;  [l4],  OMV3  and SMVI.  Also,  the  amino  acid  sequences  deduced  from 

0RF204  (expect  value 2e-19),  0RF251 (expect  value 1 e- 17) of  the mitochondrion 

[3o]  and chromosome 2  (locus  At2g07749;  NM_147269;  expect  value  2e-15)  DNA 

of  Arabidopsis  thaliana were  found  to have  similarities  with the  putative  Rdßp  of  
GaMRV-Sl. GaMRV-Sl,  OMV4,  OMVS  and OMV6  formed  a group supported  

by  a high  bootstrap  value. It  is  remarkable  that OMV3a  was  excluded from  this 
cluster  and was  rather  grouped  with SMVI  and RVM2. 
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Fig.  2. Condensed (70%  cutt-off)  neighbor  joining  tree  [l3]  based on  the  complete  amino 
acid  sequences  of  the  putative  RNA-dependent  RNA  polymerases  aligned.  The tree  is  based 
on the  sequences of  GaMRV-Sl,  Gremmeniella abietina RNA  virus  SI (this  study);  OMV3a,  

Ophiostoma  mitovirus 3a [9]; OMV4,  Ophiostoma  mitovirus 4 [11];  OMVs
,
Ophiostoma  

mitovirus 5 [11];  OMV6,  Ophiostoma  mitovirus 6 [11]; CMVI,  Cryphonectria  mitovirus 
1 [20];  RVM2,  Rhizoctonia  mitovirus 2 [l4];  SMVI,  Sclerotinia homoeocarpa  mitovirus 1 

(AY  172454);  SNV-20S,  Saccharomyces  narnavirus 20S RNA [24];  SNV-235,  Saccharomyces  
narnavirus 23S  RNA  [3];  MS2,  Enterobacteria phage MS2 [4];  Qbeta,  Enterobacteria phage  

QP  [l7];  Atm  Pol 0RF204,  Rdßp-like  gene  in  Arabidopsis  thaliana mitochondrial DNA [30],  

Bootstrap  values are  indicated at  the  branch points  

The evolution  and  coexistence  of  mitoviruses  has  been discussed  by  Hong  

et  al.  [ll].  Fungal  viruses  do not have an  extracellular phase  in their infection 

cycle,  and it  has  been  suggested  that  they  may co-evolve  with their hosts  [6].  On  
the other hand,  horizontal  transmission  of  viruses  between different fungal  species  

may  occur,  as  discussed  by  Hong  et al.  [9]  and Preisig et al.  [2l], or replication  of  

different mitoviruses  in  the  same  cell  may  require  sufficient sequence  divergence  

[ll],  The data available  does not conclusively  favor  either  of  these  two hypotheses  

[2l,  25,  29]  and the  finding  of a  putative  mitovirus  in  G.  abietina type  A reported  

here  adds  a new  piece of  this puzzle  of  fungal virus  evolution,  and supports  the  
view  that  the diversity  of  fungal viruses  does  not completely  follow  the  evolution  
of  their hosts.  

There  have  been  many reports  on  multiple dsRNA  molecules  occurring  in 

fungi  [23,  26,  28].  Now,  it  has become evident  that G. abietina type  A is  infected  
with  a  number of  different virus  species  [29;  this  study].  To our  knowledge,  this  is  

the  first case  where a single  fungal species  is  known  to host  viruses  representing  
three  major  fungal  virus  families  (Totiviridae,  Partitiviridae  and Narnaviridae).  
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Three  unrelated  viruses  occur  in  a  single  isolate  of  Gremmeniella  
abietina  var.  abietina  type  A 

Tero T.  Tuomivirta*  and Jarkko Hantula 

Finnish Forest Research  Institute,  Vantaa Research Centre,  RO.  Box  18, FIN-01301 Vantaa, Finland  

Summary 

Five  enclosed  double stranded (ds)RNA bands in electrophoresis,  probably  of viral origin, were 
found from a single  isolate (SurS4)  of  Gremmeniella abietina var.  abietina type A. Analysis  
of  the dsRNAs  revealed  that they  represented  three  different viruses,  named as  Gremmeniella 
abietina mitochondrial RNA virus S2 (GaMRV-S2), Gremmeniella abietina RNA  virus MS2 

(GaRV-MS2)  and  Gremmeniella abietina  RNA  virus  L  2  (GaRV-L2). The  genome of  GaMRV- 

S2 was  2587 base  pairs (bp)  long and had a  very  low  GC  content  (31%).  Sequence variations  
occurred  at  both ends.  The genome coded  for a  putative  RNA-dependent RNA  polymerase 

(Rdßp)  under a mitochondrial translation code.  The  GaRV-MS2 genome was  composed of 
three  dsRNA molecules (1781 bp, 1586 bp and 1186 bp). They coded for putative  a  Rdßp,  a  

coat  protein  (CP)  and a  protein with an unknown function, respectively.  The GaRV-L2 genome  
was  5129  bp long and contained  two ORFs. The  s'-proximal  ORF coded  for  a putative  CP,  
whereas  the 3'-proximal  ORF encoded  for  a  putative  Rdßp. The  buoyant density of  GaRV-MS2 
and  GaRV-L2  were  1.37 and  1.42 g/ml, respectively.  GaMRV-S2, GaRV-MS2 and  GaRV-L2 

were  closely  related to the  previously  described viruses GaMRV-Sl,  GaRV-MSI and  GaRV- 
Ll, respectively and are  putative  members  of  the genera  Mitovirus, Partitivirus and Totivirus, 

respectively.  This  is  the first  report on the occurrence  of  viruses of all these  different genera in  
a  single fungal host,  and  in  a single fungal isolate. 

Keywords:  Gremmeniella abietina, dsRNA,  Mitovirus,  Partitivirus, Totivirus 

Introduction  

Closer examination has revealed that  viruses are of  fre  

quent occurrence in mycelia  of  different fungi (Buck,  

1986). Usually  they do  not form extracellular particles, 

but  are dispersed via  cellular contacts  during anastomo  

sis.  The viral genomes  usually  consist  of  double stranded 

RNA  (dsRNA)  segment(s),  sometimes associated with  a 

protein  capsid  or  membrane  structures  (Ghabrial, 2001). 

Based  on the sequences  available in  Genßank, the three 

most  common  genera of fungal viruses  are  Mitovirus, 

Partitivirus  and  Totivirus.  The  viruses of  these genera 

usually  cause  minor or  no detectable effects.  In  contrast, 

the members of  genus  Hypovirus  are less  common but  

may  significantly  reduce  the  virulence of  their  hosts  that 

are  plant pathogens (McCabe et  al.,  1999). 

Members  of  the  genus  Mitovirus  are  positive-sense  

single-stranded  RNA  [(+)ssßNA]  viruses that replicate 

via  replicative  dsRNA  intermediate (Ghabrial, 2001). 

"Corresponding author: Fax:  +358-102112204  
E-mail  address:  Tero.Tuomivirta@metla.fi  

Mitoviruses, located and translated in mitochondria, 

do not form true  virions  (Cole et  al.,  2000), have  a  low 

CG content  and  only a  single open  reading  frame  (ORF) 

coding for a  putative  RNA  dependent  RNA-polymerase  

(Rdßp)  (Hong et  al., 1998; 1999) can  be  found. On  the  

other hand, members  of  the genus Partitivirus  have 

isometric cytoplasmic  virions  and  the  genome  is  com  

posed of two 1.4-3.0 kbp dsRNA segments,  of  which 

the smaller one codes  for  a coat  protein  (CP)  and larger 

for a Rdßp (Ghabrial et al.,  2000). Defective  and satel  

lite  RNA  segments may  also  be  present (Ghabrial  et  al., 

2000).  Partitiviruses have been proposed to have origi  

nated from the genus Totivirus (Ghabrial, 1998), which 

also  have  isometric  cytoplasmic  particles and  contain a 

single 4.6-7 kbp  dsRNA coding for a  CP and  a  Rdßp 

(Wickner et  al., 2000).  

There  are few  reports  on the  occurrence  of  multiple 

viruses in single fungal isolates and which have been 

verified by sequencing of the observed dsRNAs.  In 

Sphaeropsis  sapinea, which is  a known pathogen of 

pines throughout the  world, two  different  totiviruses  

(Preisig  et  al., 1998) and in Ophiostoma novo-ulmi. 
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infecting  Dutch elm, four  mitoviruses (Hong et al., 

1998; Hong  et al., 1999)  were  found in  single  fungal  

isolates. Furthermore two viruses belonging to  families 

Totiviridae (Huang and Ghabrial,  1996) and Chrysoviri  

dae  (Ghabrial et  al., 2002) were  found in  the  mycelium  

of  a single  isolate  of  Helminthosporium victoriae  that 

infects victoria  variety  oats.  A single  isolate of Rhizoc  

tonia  solani, which causes  economically  important 

diseases  on numerous  crop, turfgrass  and tree  species,  

contained two dsRNA molecules, which were related  to 

plant  bromoviruses (Jian,  et  al.,  1998) and  mitoviruses 

(Lakshman et  al,  1998). 

Gremmeniella  abietina  (Lagerb.) M. Morelet  var.  

abietina is  the causative agent of  Scleroderris canker on 

coniferous trees.  G.  abietina causes  severe  epidemics 

which are  mainly  dependent on annual weather condi  

tions (Uotila,  1988). The  latest  outbreak  of G.  abietina 

occurred  in Sweden in  year  2001 (Wulff  and Walheim, 

2002) when more than  50000 hectares of  pine  forests 

was severely  affected.  In  northern  Europe,  two variants  

of  this  fungus occur  on Scots  pine (Pinus  sylvestris  L.): 

type A (or  large tree type, LTT)  strains  cause symptoms 

on both large trees  and seedlings,  whereas  type B (or 

small  tree  type, STT)  strains  are  found only  in  seedlings  

or shoots covered with snow during the winter (Uotila,  

1983; Kaitera etal., 1998). The two types  of  G.  abietina 

in northern Europe should  probably  be  considered as  

closely  related, but  distinct species  (Uotila  et  al., 2000). 

The  Alpine  type, present in  Central  Europe,  and  the en  

demic North American (NA)  type  are  two additional G. 

abietina  variants.  We  have  recently described  viruses  of 

genera  Totivirus,  Partitivirus and Mitovirus in isolates  

of  G. abietina type A (Tuomivirta  and  Hantula, 2003  a;  

2003b). 

The  aim  of the study  was  to  report the  occurrence  

of  three different viruses in  a single G. abietina type A 

isolate. We also  discuss  about phylogenic relationship  

of these  viruses based  on the conserved  motifs of their  

putative  RNA-dependent RNA  polymerase amino  acid  

sequences.  

Methods 

Fungal  isolate  

Isolate SurS4 of  G.  abietina type  A  was  obtained  from a  

pine branch, that showed typical  symptoms of  Sclerod  

erris  canker in Nummi-Pusula, Southern Finland (60° 

34',  23° 53').  The  type of G.  abietina was determined 

using random amplified  microsatellite (RAMS) finger  

prints  as  described in Hantula  and  Miiller  (1997) and  

Kaiterae/aZ. (1998). 

Nucleic  acid  isolation and electrophoresis  

Isolate  SurS4 was  grown on modified  orange  serum  agar  

(MOS) (Miiller et al.,  1994) covered  with cellophane  

membrane at 20 °C. dsRNA was isolated from the  

mycelium  with  the method of Morris  and  Dodds (1979), 

but  modified as in  Tuomivirta et  al., (2002; 2003  a). The  

protocol  is  based on the specific  binding  of dsRNA  

to CF-11 cellulose (Whatman, Maidstone, England) 

dsRNA was  detected by  electrophoresis  as  described 

before  (Tuomivirta et al., 2002).  

Single spore isolations  

Conidiospores  were  produced by  cultivating  SurS4  iso  

late in  a  150  ml  Erlenmyer  flask containing autoclaved  

barley  grain and milled pine  needles (Uotila 1990) at  

15 °C,  until conidiospores  were  produced.  Spores were  

collected  from  the  flask  by  rinsing  with sterile  water and  

plated on a MOS agar plate. After germinating,  single  

spore isolations were  made under  a microscope  and iso  

lates  were plated for  cultivation on MOS agar.  

Determination of  buoyant  densities 

The buoyant density of dsRNA  containing particles  was  

determined in a CsCl-gradient.  Samples for  this analysis  

were  prepared as  follows. Mycelia  (14 g) were  grown  on 

MOS agar  for 4-8 weeks  at  20 °C and  cells were  dis  

rupted  using  ULTRA-TURRAX® TP-18/10  (Janke &  

Kunkel  GmbH  &  co  KG  IKA-werk,  Staufen, Germany) 

homogenizer  at  4 °C in 25  ml of osmotic stabilizer 

(OS) buffer (0.6 M NaCl in phosphate buffer pH 6.0)  

(Phillips  1993). The  homogenized mycelia  were  pel  

leted  with Megafuge 1.0  (Kendro Laboratory Products,  

Osterode, Germany) centrifuge using  3360 rotor  and  

homogenization  was  repeated. Finally,  homogenate was  

centrifuged  for  10  minutes  at  3000  rpm. CsCl  was  added 

to supernatant (8  = 1,35 g/ml) and  stored in  -80 °C until 

used  in ultracentrifugation. Isopycnic  ultracentrifuga  

tion  (29000 rpm,  96h) was  performed with Sorvali® 

Discovery™  100 (Sorvali  products,  L.P Newtown, 

Connecticut, U.S.A.)  ultracentrifuge  using TH-641 ro  

tor  (Dupont, Sorvali products,  Newtown, Connecticut,  

U.S.  A)  at  6  °C.  Gradients  were  divided  into  10 fractions, 

and  the occurrence  of dsRNA in each  fraction was  tested  

by  dsRNA  isolation  using CF-11 column as  described  

above. In order  to test  whether  the dsRNA in fractions 

was  free or somehow encapsidated, the  fractions  were  

treated or  not treated  with phenolxhlorophorm  extrac-  
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tion prior to  the  dsRNA  isolation in  CF-1 1 column. Also  

the densities of  the fractions were  measured. 

Sequencing  of  dsRNA molecules 

cDNA  synthesis  and cloning  of different dsRNA  pattern 

types was  performed  as  described before (Hiomivirta  

and  Hantula  2003  a;  2003b).  Sequencing was  performed  

with a  4200L-2 NEN  Global IR2 using the  SequiTherm 

EXCELII sequencing kit  (Epicentre, Madison, WI,  

USA) with IRD7OO  labelled Ml  3  Forward  and  IRDBOO  

labelled  Ml  3  Reverse  oligonucleotides as  described  by  

the manufacturer. Also six  specific  primers  were  used  

(the sequences  may be requested  from the correspond  

ing  author). Sequences  were  compiled,  analysed  and 

aligned (with sequences  from Geneßank) using  Vec  

tor  NTI Suite 2 (InforMax inc., MD, U.S.A) software  

package.  BLAST (Altschul  et  al., 1997) searches  based  

on nucleic  acid (na) and complete amino acid (aa) se  

quences  were  conducted on sequences in Genßank and  

the RNAstructure  3.6  program  (Mathews et  al.,  1999)  

was  used  to predict  secondary structures.  

Results  

The RAMS fingerprint analysis of SurS4  isolate  con  

firmed that it belonged to the G. abietina  type A (data  

not shown). SurS4 contained five dsRNA molecules 

with apparent molecular weights of  5000, 2500, 1800, 

1600 and  1200 bp as  determined by electrophoresis.  

These  sizes  were similar  to those  of the  dsRNA mol  

ecules previously  reported for viruses of  G. abietina 

type A (Tuomivirta  and  Hantula, 2003  a;  2003b). Pu  

rification of  dsRNA for cloning purposes  yielded ap  

proximately  l|jg dsRNA per pattern type when  using 

40 g of  mycelia. Five  dsRNA molecules were separated 

in an ultracentrifugation  experiment  (Fig.  1) in which 

dsRNA  molecules peaked in fractions  one (2500 bp),  

seven (1800 bp,  1600 bp, 1200  bp)  and  eight (5000 bp).  

Phenol  extraction was  needed for the binding  to CF  

-11  and thus  for successful  dsRNA isolation (data not 

shown). The  buoyant densities  of fractions  seven and 

eight were  1.37 and 1.42 g/ml,  respectively.  

Fraction  one on the top of  the gradient contained 

a dsRNA  molecule  with  a sequence  length of  2587 bp  

(Genßank sequence accession  no. AY615209). The  GC  

content  of this molecule  was  31%, and  it showed  94%  

nucleotide (nt)  identity  to the previously  described G. 

abietina mitochondrial RNA  virus SI  (GaMRV-Sl) 

(Tuomivirta and Hantula, 2003b). Therefore, the new 

putative virus was designated  as Gremmeniella abi  

etina mitochonrial  RNA  virus  S  strain  2  (GaMRV-S2).  

No plausible  open reading frame (ORF) was  found in 

GaMRV-S2 when the universal  genetic code was  used. 

However,  using the mitochondrial translation table (in  

which  UGA codes  for  trytophan) a long ORF  starting  

at  nt 269 (741 aa, 85.4  kDa)  was identified. This  puta  

tive protein had a similarity  of  96% with the putative  

Rdßp of GaMRV-Sl and it shared conserved motifs 

with RNA-dependent RNA  polymerase-like  (Rdßp) 

proteins encoded  by mitochondrial viruses and related 

FIG.  1. The  occurrence of dsRNA  in  fractions  of  the  isopycnic  CsCI-gradient  made  on the  disrupted mycelia of isolate SurS4  
of Gremmeniella  abietina  type  A. The  numbers  of fractions containing dsRNA are marked  above and  the  names of dsRNA  
patterns  are marked  next to the  patterns.  The  buoyant densities of fractions seven and eight were 1.37 and 1.42 g/ml, res  

pectively. 
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FIG.2.  The  conserved  amino acid  sequence  motif domains  in  the  RNA-dependent RNA  polymerase-like  proteins encoded 

by  mitochondrial  viruses  and  related  RNAs  (Hong et  al„ 1999) GaMRV-S2, Gremmeniella  abietina  RNA virus S2  (this  study);  

GaMRV-SI, Gremmeniella  abietina  RNA virus SI (Tuomivirta and Hantula, 2003b);  OMV4, Ophiostoma mitovirus 4  (Hong et 

a/., 1999);  OMVS, Ophiostoma mitovirus  5 (Hong eta/., 1999), OMV6, Ophiostoma mitovirus  6  (Hong eta/.,  1999); OMV3a, 
Ophiostoma mitovirus  3a  (Hong et  o/., 1998); SMVI, Sclerotinia  homoeocarpa mitovirus I (Deng eta/., 2003); CMVI, Crypho  
nectria  mitovirus  I (Polashock  and  Hillman, 1994); RVM2, Rhizoctonia  virus  M  2  (Lakshman et  al„ 1998); Bn-mtDNA  0RF448, 
Brassica  napus mitochondrial  DNA  open  reading frame  (ORF)  448  (Handa, 2003); and  At-mtDNA 0RF251,  Arabidopsis tha  
liana  mitochondrial  DNA ORF 251  (Unseld eta/., 1997) .  The  alignment is  based  on Glustal  W algorithm (Thompson et al„  
1994). Conserved  amino acids  are indicated  below  the  alignment. Colons  (:)  and  points  (.)  indicate  higher and  lower  levels of 
chemical  similarity, respectively,  as  defined by  the  Multiple Sequence Alignment program.  Conserved  amino acids  between  
GaMRV-S2, GaMRV-SI, OMV4, OMVS and OMV6 are indicated  on the  top of the  alignment as described  above. Numbers  in 

parentheses indicate  the  number of amino acid  residues  between the  domains.  

RNAs  (Hong et  al., 1999) (Fig.  2).  Other highly similar 

viruses based on a BLAST search  were  Ophiostoma 

mitovirus  4 (OMV4;  Hong et  al.,  1999; aa similarity  

37%),  Ophiostoma mitovirus  5  (OMVS; Hong et al.,  

1999; 34%)  and Ophiostoma mitovirus  6  (OMV6; Hong 

et  al., 1999; 37%),  which are recognized  members  of 

genus  Mitovirus.  

Three dsRNA molecules  (AY615211-AY615213) 

occurred  in fraction 7.  The  lengths of  the dsRNA mol  

ecules  determined  by  sequencing were  1781 bp,  1586  bp 

and 1186  bp,  and  their nt sequence identities to  those of 

the  three  G. abietina RNA  virus  MSI (GaRV-MSI) seg  

ments  (Tuomivirta and  Hantula, 2003  a)  were  98%, 98% 

and  97%, respectively.  It was  therefore a  new  strain of  G.  

abietina  RNA  virus MS, designated  as  strain 2  (GaRV  

MS2). A single ORF for  putative  protein was  found on 

each  of  the  three  molecules at  nt 63  (539 aa,  62.1  kDa),  

100 (443 aa,  47.1 kDa)  and 348 (237 aa, 26.5  kDa).  The 

putative  proteins  had  similarities of 98%, 99.5%  and 

97% with the putative  Rdßp, CP and  unknown  proteins 

of GaRV-MSI,  respectively. The putative Rdßp of 

GaRV-MS2  contained the  conserved Rdßp  motifs 111, 

IV,  V and  VI (Fig.  3) found in  dsRNA viruses  infecting  

lower eukaryotes  (Bruenn, 1993). Also  two new  possible  

conserved motifs (Vila and  Villa)  unique for  partitivi  

ruses  were  identified  (Fig.  3). Other  viruses  with highly 

similar Rdßp based on a BLAST search  were  Penicil  

lium stoloniferum virus S  (PsV-S)  (Kim et.al., 2003; 

aa similarity  71%),  Discula  destructiva virus  1 (DdVl) 

(Rong et  al., 2002; 64%),  Discula destructiva virus  2 

(DdV2)  (Rong et al., 2002; 71%) and Fusarium solani 

virus  1 (FsVl)  (Nogawa et.al., 1996; 60%), of which  

FsVl  is a  recognized member  of the genus  Partitivirus.  

Fraction  8  contained a  dsRNA molecule (AY615210) 

with  the  length of 5129 bp.  The sequences  at  both ends  

were verified  with  direct sequencing. The identity  of  its  

nt sequence  was  90% to the previously  described G. 

abietina RNA  virus LI (GaRV-Ll) (Tuomivirta  and  

Hantula, 2003  a).  Therefore we designated this new  

putative  virus  as G. abietina RNA virus L,  strain  2 

(GaRV-L2). Two  partially overlapping ORFs starting  at  

nt 272 (776 aa, 80.4 kDa)  and  2599 (825 aa,  90.1  kDa)  

were found and the corresponding  putative  proteins  

had similarities of  97% with  CP and  Rdßp  proteins  of 

GaRV-Ll.  The putative Rdßp  of GaRV-L2  contained 

all  eight conserved  Rdßp motifs  (Fig.  4)  from dsRNA 

viruses infecting lower eukaryotes (Bruenn, 1993). 

Based on  comparisons  of  Rdßp by  BLAST, other highly  

similar viruses were  Sphaeropsis sapinea RNA  virus 2 

(SsRV2) (Preisig  et al., 1998; aa similarity  50%),  Coni  

othyrium  minitans  RNA  virus (CmRV) (Cheng et.al.,  

2003; 50%), Helicobasidium mompa  Totivirus 1-17 

(HmTVI-17) (Nomura et  al.,  2003;  35%), Sphaeropsis  

sapinea RNA  virus 1 (SsRVI)  (Preisig  et  al.,  1998; 35%) 

and Helminthosporium victoriae  190S virus  (HvVI9OS)  

(Huang and Ghabrial 1996; 35% ) of which HvVI9OS  

is  a  recognized  member  of  the  genus Totivirus.  A con  

served GGUUCC  motif observed  in  S'UTR of GaRV-  

Ll  (Tuomivirta  and Hantula, 2003  a)  was  found  also  in  

GaRV-L2 55 nts  downstream of  the putative  start  codon  

of  CP.  The  same motif  occurs  also  in  approximately the 

same position  in  SsRV2,  CmRV, TmTVI-17, SsRVI  and  

HvVI9OS. In HvVI9OS  the corresponding sequence  was  

GGCCUUCC.  

Conidiospore  isolations 

Single conidiospore isolations  were made  to test  the  

transmission  of  dsRNA molecules  to asexual spores.  

All  15 mycelial cultures  derived  from  single spores  

contained  the same five  dsRNA  molecules as the paren  

tal culture (Fig.  5),  indicating efficient transmission for  

all three viruses to asexual  spores.  
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FIG. 3. Four  out of the  eight conserved  Rdßp  motifs domains  (111-VI)  from dsRNA  viruses  infecting lower  eukaryotes  

(Bruenn, 1993) and  two  additional  (Vila and  Villa)  motifs  observed  during this  study.  GaRV-MS2, Gremmeniella  abietina  RNA  
virus  MS2  (this  study);  GaRV-MSI, Gremmeniella  abietina  RNA virus  MSI (Tuomivirta  and  Hantula, 2003  a);  PsV-S, Penicillium  
stoloniferum virus  S  (Kim et.al., 2003);  DdVI, Discula  destructiva  virus  I (Rong et  al.,  2002); DdV2, Discula  destruct iva  virus 2 
(Rong  et al.,  2002); FsVI,  Fusarium  solani  virus  I (Nogawa, et  al.,  1996); BVC-3,  Beet cryptic  virus  3 (Xie et al., 1993); Pp  dsR  

NAI,  dsRNAI of Pyrus  pyrifolia  (Osaki et  al., 1998); Cp L-dsRNA,  Larger dsRNA  of Cryptosporidium  parvum (Khramtsov  et  

al., 1997);  HmMV,  Helicobasidium  mompa mycovirus  (Osaki et  al., 2002); Ha-St, Heterobasdion  annosum S-type  partitivirus 

(Ihrmark  et.al., 2001);  OmIV-11, Oyster  mushroom  isometric  virus  II  (AY30880I); Ha-Pt, Heterobasdion  annosum P-type  
partitivirus (Ihrmark 2001b);  RsV-717,  Rhizoctonia  solani  virus  7/7  (Strauss  et  al.,  2000); AhV-2H, Atkinsonella  hypoxylon virus  
(isolate 2H)  (Oh and Hillman  1995); FpVIO,  Fusarium  poae virus  (Compel et  al., 1999); CpV,  Ceratocystis  polonica partitivirus 

(AY247204); SMV,  Sorghum mosaic  virus  (Yang and  Mirkov, 1997); and  SPFMV, of  Sweet potato feathery mottle  virus  (Sakai  et  al., 
1997).  The  alignment is  based  on Glustal  W  algorithm (Thompson et  al., 1994). Conserved  amino acids  are indicated  below  
the  alignment. Colons  (:)  and  points (.) indicate  higher  and  lower  levels  of  chemical  similarity,  respectively, as  defined  by  the  

Multiple  Sequence Alignment program.  Conserved  amino  acids between  GaRV-MS2, GaRV-MSI, PsV-S,  DdVI, DdV2 and  
FsVI  are indicated  on the  top of the alignment as described  above.  Numbers  in parentheses  indicate the  number of amino 

acid  residues  between the  domains. 

Discussion 

This  is the  first  report, in  which the occurrence  of three  

putative  viruses of the families Narnaviridae, Partiti  

viridae and  Totiviridae  has  been confirmed in a single 

fungal isolate. Furthermore, the data showed that these  

viruses are transmitted via conidia. Viruses of these 

families are common  in  fungi,  but mixed infections 

with them have  not been reported.  Our  data  suggests  

that these  three  viruses use  differing  mechanisms of 

replication, transcription and  translation sufficiently,  so  

that they can be  replicated in the same cells. The  high 

identity of sequences of GaMRV-S2  to GaMRV-Sl 

showed that they  are strains  of the  same virus. Equally,  

GaRV-MS2 and  GaRV-MSI would  be strains of the 

same virus  as well as  GaRV-L2 and  GaRV-Ll. 

There  were interesting similarities  and  dissimi  

larities between strains  GaMRV-S2 and  GaMRV-Sl. In 

both viruses a putative  start  codon occurred  in  an AU 

rich  context  surrounded by regions with high  GC  con  

tent  and the signatures of  length  and sequence variations 

at  the uttermost  ends  of  the genome  was  found in  direct 

sequencing  experiment (see  Tuomivirta  and Hantula, 

2003b). However,  the lengths and sequence of  uttermost  

end  of  the s'untranslated region (UTR) was  different in  

the two GaMRV-S strains. A  panhandle structure  was  

not found  in  the  5'  UTR of  GaMRV-S2. This  suggests  

that it  might  not be as important as suggested  previ  

ously  for  GaMRV-Sl (Tuomivirta and Hantula, 2003b), 

OMV4 (Hong et al., 1999) and OMV6 (Hong et al., 

1999). This conclusion is supported by  the  facts  that 

Ophiostoma mitovirus  3a  (Hong et  al., 1998 a),  OMVS 

(Hong et  al., 1999) and Sclerotinia homoeocarpa mito  

virus  1 (Deng et  al., 2003)  do  not contain predicted  pan  

handle  structures.  The  ends  of 3' UTRs of GaMRV-S2 

and GaMRV-Sl were,  on the other  hand, highly  similar  

and  a  stable  stem-loop structure was  predicted  using 300 

bp of the 3'-UTR for  analysis. 

GaRV-MSI (Tuomivirta and  Hantula, 2003  a)  and  

GaRV-MS2  (this  study)  were  highly identical in  their 

nt  sequences and  no differences were found in  the con  

served motifs of their UTR sequences.  This  suggests  

for important role  for  these  ends  for the  survival  of  the  

virus. Some of  these conserved motifs (Tuomivirta  and 

Hantula, 2003  a)  originally  found from GaRV-MSI, 

DdVI and DdV2 occur  also in the s'-UTRs of the 

recently  sequenced virus  PsV-S (Kim et.al., 2003). A 

highly  unexpected  feature was  the  highly  conserved  and  

very  long UTR sequence of  the 1186 bp long dsRNA  

molecule in  GaRV-MS2, which was  called dsRNA3 in 

GaRV-MSI (Tuomivirta  and  Hantula, 2003  a).  The  UTR 

sequences  were  over three  times more conserved than 

the nt  sequence of  the putative  ORF of  the same dsRNA. 

This  suggests  an  important  role  for  the UTR in the repli  

cation,  transcription  and/or translation  of this  molecule.  

The  role  of  this  dsRNA  molecule in the partitiviruses  of 

G. abietina is unknown.  

The  UTRs of the two totiviruses of G.  abietina 

were  highly similar, except  that 5'  UTR of GaRV-L2 

was  four  nucleotides shorter in the uttermost  end than 

that  of GaRV-Ll. In addition,  a  motif observed  in S'UTR 

of  GaRV-Ll (Tuomivirta and Hantula, 2003  a)  can  also  

be found in GaRV-L2 and  in SsRV2,  CmRV, TmTVI-17, 

SsRVI and  HvVI9OS. This  suggests  that in  GaRV-L  the  

uttermost  end of s'-UTR is not critical for the  survival  

of the virus.  On  the other hand  3'-UTR in  GaRV-L 

seems to be  very conserved and thus may have  very 

important role  in  the  virus. The  ORFs  of CP and  Rdßp 

were partially  overlapping and this  region contained  an 
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FIG.4. Conserved  Rdßp motifs  domains  from dsRNA viruses  infecting  lower  eukaryotes  (Bruenn, 1993). GaRV-L2, Grem  
meniella  abietina  RNA  virus  L 2  (this study);  GaRV-LI,  Gremmeniella  abietina  RNA  virus  LI  (Tuomivirta  and  Hantula  2003  a);  
SsRV2,  Sphaeropsis sapinea RNA  virus  2  (Preisig  et  al., 1998); CmRV,  Coniothyrium minitans  RNA  virus  (Cheng et.al., 2003); 
HmTVI-17, Helicobasidium  mompa Totivirus  1-17  (Nomura et al.,  2003); SsRVI,  Sphaeropsis sapinea RNA  virus I (Preisig  et  
al., 1998); HvVI9OS,  Helminthosporium  victoriae virus  I9OS  (Huang and  Ghabrial  1996); Eb-RVI,  Eimeria  brunetti  RNA  virus  I  

(AF356189); LRVI-4, Leishmania  RNA  virus  1-4 (Scheffter  et al., 1994); LRVI-I,  Leishmania  RNA  virus  l-l  (Stuart  et  al.,  1992); 
LRV2-I,  Leishmania  RNA  virus  2-1  (Scheffter  et  al., 1995);  TVV2, Trichomonas  vaginalis virus  II  (Bessarab et  al.,  2000); TVV3, 
Trichomonas  vaginalis virus  3 (AF325840); TVV-TI, Trichomonas  vaginalis virus-TI (Tai  and  Ip, 1995); ScV-L-A,  Saccharomyces  
cerevisiea  virus  L-A  (Icho  and  Wickner  1989); ScV-La  ,  Saccharomyces  cerevisiea  virus  La  (Bruenn 1993); and  Cy-av,  Cucurbit  

yelows-assosiated virus  (Coffin and  Coutts, 1995). The  alignment is  based  on Glustal  W algorithm  (Thompson et al.,  1994). 
Conserved  amino  acids  are indicated  below  the  alignment. Colons  (:)  and  points (.) indicate  higher  and  lower  levels  of  chemi  
cal similarity, respectively,  as defined  by  the  Multiple Sequence Alignment program. Conserved  amino acids  between GaRV-  
L  2, GaRV-LI, SsRV2,  CmRV,  HmTVI-17, SsRVI and  HvVI9OS  are indicated on the  top  of the  alignment as described  above.  
Numbers in parentheses indicate  the number  of amino acid  residues  between  the  domains.  

overlapping start/stop  tetramer  AUGA speculated  to be 

a facilitator of  the reinitiation mechanism (Soldevila  and 

Ghabrial, 2000) for the production of  Rdßp among  the  

viruses discussed above.  

It was  not possible  to collect dsRNA  from fractions 

of ultracentrifugation  gradients using CF-11  unless the  

fractions  were pretreated with  phenol:chlorophorm. 

This  suggests  that the dsRNA molecules were  enclosed 

in  some kind  of compartments. Although we do not 

have  direct evidence on  the nature of  these compart  

ments  the  following suggestions can  be  made.  The  film  

on the top  of the tube after ultracentirifugation  prob  

ably  contained mainly  GaMRV-S2 dsRNA  molecules 

entrapped or enclosed  inside lipid  vesicles  or  organelles 

(mitochondria) with a low buoyant  density.  The pellet 

probably  contained  free RNA  and DNA  from  disrupted 

compartments. The buoyant  densities of  GaRV-MS2 and  

GaRV-L2 were  typical  to members of  the families Par  

FIG.5.  dsRNA isolations  of  mycelia of  Gremmeniella  abietina  

type  A from isolate  SurS4  conidiospores. Names  of the  cor  

responding dsRNA patterns  are marked  on the  right. 

titiviriae  and Totiviridae and  suggested that these two 

particle  types  were  composed of  dsRNA and  protein.  

Partitiviruses have  been proposed to  have  originated 

from the genus Totivirus  (Ghabrial, 1998). Therefore 

comparison of conserved  motifs of Rdßps of these 

three viruses in G. abietina and their supposed rela  

tives  should  also  shed  light  on the  evolutionary origin 

of dsRNA viruses. Some studies favor  monophyletic 

origin for the  dsRNA viruses (Bruenn, 1991), whereas  

others favor polyphyletic  origin  (Koonin et al.,  1989; 

Koonin  et  al., 1991; Koonin, 1992; Koonin  and  Dolja,  

1993; Gibbs et al., 2000; Ahn  and Lee, 2001). This  

investigation  supports polyphyletic  origin  for  ssRNA  

and  dsRNA viruses GaMRV-S, GaRV-MS and  GaRV- 

L.  The  critical findings include (i)  conserved  motifs of 

Rdßps of the three viruses reported here differentiate 

considerably from each  other, (ii)  GaMRV-S2 contains 

all typical  conserved motifs of RNA  dependent RNA  

polymerase-like  (Rdßp) proteins encoded by  mito  

chondrial viruses  and related RNAs  (Hong  etal.,  1999). 

Moreover, GaMRV-S2 aa  sequence  was  more similar to 

putative ORFs  found from mitochondrial genomes of 

plants  Arabidopsis thaliana (Unseld el al., 1997) and 

Brassica  napus  L  (Handa, 2003) than to  the two other  

viruses found in the  SurS4 isolate  of  G. abietina. (iii)  In  

GaRV-L2, eight  conserved Rdßp  motifs from dsRNA  

viruses infecting lower eukaryotes  (Bruenn, 1993) were  

found. These same motifs have  also  been found from 

Cucurbit yellows-associated  virus dsRNA virus (Coffin 

and  Coutts, 1994), isolated from  plant Cucumis  sativus  

L., but  not from GaRV-MS2  as  only  motifs 111, IV,  V,  

and VI could be  identified, (iv)  Instead,  new  motifs Vila  

and  Villa  were identified in  GaRV-MS2, which could 

not be  found  in  GaRV-L2, but could be identified from 

other  putative  partitiviruses.  The  Rdßp of  GaRV-MS2  

was found  to  be  more similar  to replicases of Sweet  
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potato feathery mottle virus (Sakai et al.,  1997) and  

Sorghum  mosaic  virus  (Yang and Mirkov,  1997) of  the  

genus Potyvirus  than to Rdßp of  GaRV-L2. 
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