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Abstract  

The overall  objective  of  the thesis  was  to  study  the functioning  of  a  Norway  

spruce  seed  orchard and, in more  detail,  to  investigate  the clonal balance and 

synchrony  of  reproduction,  and aspects  of  mating patterns  and their effects  on 

genetic  diversity  and quality  of  the seed crop. 

All the data for the thesis have been collected from Norway  spruce seed 

orchard no. 170 (Heinämäki),  established in 1968 at Korpilahti  (62°13'N,  

25°24'E,  160-190 m asl). The orchard consists  of  67 clones originating  from 

latitudes 64°-67°N. The grafts in the orchard  (13.2 ha in area)  have  been 

planted  using a  clonal-row design.  

The between-year  variation in both female and male flowering  was  large,  

and during  the 13-year  study  period  there were  6  abundant flowering  years.  
Differences  among the clones were  large,  and correlations  between the clones  

in different years were usually  positive  and significant.  The average date of 

flowering varied by  three weeks,  and it was  better predicted  by  effective 

temperature sum than by the calendar day. The receptive period  started 

normally  about one day earlier than anthesis,  and it lasted from 5 to 8  days. 

In general,  the flowering  periods  of the  clones overlapped.  The differences in 

receptivity  were genetically  determined, while pollen  shedding  was more 

affected by  environmental factors.  

Temporal  and spatial  variation in airborne pollen  were large. Pollen 

densities inside and outside the orchard were about the same in the beginning  

of  flowering,  but  later on the density  was  higher  in the orchard, and showed  

strong  spatial variation. The rate  of pollen  contamination was  about 0.70 in 

all the four  years studied. The contamination between the different parts  of 

the orchard varied from 0.51 to 0.87, the  lowest rate  being  estimated for the  

middle section and the highest  rate  for the edges  of  the orchard. The rate  of 
self-fertilisation varied annually  from 0.00 to  0.06,  with no spatial  variation. 

Thus, cross-fertilisation within the orchard  clones remained very  low,  varying  
from 0.23 to 0.31. The paternal  success  among the clones,  studied using  
controlled crossings,  was  unequal.  

The  effective number of clones in the seed orchard of 67 clones was 56 

when the variation in ramet  number was  taken into  account. After adjusting  

for the variation in both  female and male flowering,  in addition to  ramet  

variation, the effective  clone number for the imaginary  seed crop was  32 on  

the average, with a large  annual variation. The pollen  contamination of 0.70 

increased the number, and thus the genetic  diversity, by  two-fold. Cone and 

seed damage  lowered the effective clone number. 

The most important  result of the thesis  was  that pollen  contamination in 

Norway  spruce seed orchards  is very  difficult to avoid, and thus its influence 

on adaptability,  genetic  diversity and genetic  gain has to be taken into 

consideration when seed orchards  are planned  or  utilised. 

Keywords:  flowering,  pollination,  reproductive  phenology,  pollen  

competition,  mating  patterns,  genetic  diversity 
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Seloste  

Kuusen  siemenviljelyksen  toimivuus  

Tämän väitöskirjatutkimuksen  tavoitteena on ollut selvittää,  kuinka hyvin  

siemenviljelyksille  asetetut  teoreettiset tavoitteet tasasuhtaisesta kukinnasta ja  

sisäisestä pölytyksestä  täyttyvät  siementuotantovaiheen saavuttaneessa  kuu  

sen siemenviljelyksessä.  Tätä varten  kuusen siemenviljelyksen  toimivuutta 

on tutkittu monipuolisesti.  Tarkasteltavana on ollut kukintarunsauden vuotui  

nen ja kloonien välinen vaihtelu sekä kukinnan ajoittuminen,  siitepölyn  

määrä  viljelyksellä  ja sen ulkopuolella  sekä  syntyneen siemenen geneettinen  

kokoonpano.  Lisäksi  on tutkittu siitepölykilpailua.  

Kaikki väitöskirjatutkimusta  varten kerätty  aineisto on peräisin  kuusen 

siemenviljelykseltä  nro 170 (Heinämäki),  joka on perustettu vuonna 1968 

Korpilahdelle  (62°13'P, 25°24'1).  Siemenviljelys  koostuu  67  kloonista,  jotka 

ovat  peräisin  Pohjois-Suomesta  (64°-67°).  Viljelys on kooltaan 13,2  haja  se 

sijaitsee  puoliksi  vanhalla mäkipellolla  (160-190  m mpy), joka  viettää loivas  

ti etelään ja jyrkästi itään ja länteen. Viljelys on perustettu istuttamalla väit  

teet  3,5 x  6,5  m:n  välein niin että saman  kloonin  vartteet  ovat  riveissä  6,5 m:n 

päässä toisistaan. Viljelystä on harvennettu kahdessa vaiheessa;  puolet 

vuonna 1987 ja loput  vuonna 1994. 

Emi- että hedekukinnan määrä arvioitiin viljelyksellä  vuosina 1984-1996. 

Kukinnan ajoittumista mitattiin siitepölymittareiden  avulla vuosina 1984- 

1995 ja sitä havainnoitiin väitteistä silmävaraisesti vuosina 1989, 1992,  1993 

ja 1995. Lisäksi  vuonna 1995 mitattiin ilmassa olevan siitepölyn määrän  

alueellista vaihtelua viljelyksellä  ja sen  lähiympäristössä.  Viljelykseltä  kerät  

tiin siementä taustapölytysanalyysejä  varten vuosina 1989, 1992, 1993 ja 

1995 sekä kloonikohtaisen siementuotannon määrän  ja laadun selvittämistä 

varten  vuosina 1989 ja 1995. Viljelyksen  kaikista  klooneista kerättiin  vuosina 

1996 ja 1998 siitepölynäytteet  siitepölyn  itämistehokkuuden selvittämistä 

varten. Lisäksi vuonna 1998 tutkittiin siitepölykilpailua valvottujen  pari  

risteytysten avulla. Siemenviljelys  myös kartoitettiin,  tehtiin maaperästä 

viljavuusanalyysit,  havainnoitiin sääoloja  fenologia-  ja pölytystutkimusten  

yhteydessä  sekä  mitattiin vuosittain kukinnan laskennassa olleiden väitteiden 
koko.  

Vuosien välinen vaihtelu kukinnan runsaudessa oli suuri: 13-vuotisen 

tutkimusjakson  aikana kukinta  oli 6  vuotena  melko runsas,  5  vuotena  heikko 

ja 2 vuotena  ei emikukintaa ollut ollenkaan. Kloonien väliset erot kukinnan 

runsaudessa olivat suuret ja vuosien välinen korrelaatio kloonien kesken  oli 

yleensä  positiivinen  ja tilastollisesti merkitsevä. Kukinnan  ajankohta  vaihteli 
kolme viikkoa,  mutta se pystyttiin ennustamaan  melko tarkasti lämpö  

summan perusteella. Emikukat  aukenivat keskimäärin päivää aikaisemmin 

kuin saman vartteen  hedekukista siitepöly  alkoi varista. Emikukat olivat 

viljelyksellä  auki  5-8  päivää.  Suurin osa  klooneista kukki ainakin osittain 

yhtäaikaisesti.  Emikukinnan ajoittuminen  oli  voimakkaammin geneettisesti  
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säädelty  kuin hedekukinnan;  siitepölyn  varisemiseen vaikuttivat ympäristö  

tekijät  enemmän.  

Ilmassa olevan siitepölyn  määrä vaihteli sekä ajallisesti  että  paikallisesti.  

Kukinnan alkuvaiheessa siemenviljelyksellä  ei  ollut sen  enempää  siitepölyä  
kuin sen ulkopuolellakaan,  mutta  pari  päivää  myöhemmin,  sen jälkeen  kun 

siitepölyn  irtoaminen väitteistä oli kunnolla alkanut,  nousi siitepölypitoisuus  

viljelyksellä  selvästi  ympäröiviä  alueita suuremmaksi. Samalla siitepölyn  
määrä  viljelyksen  eri osissa  vaihteli voimakkaasti;  ensin  pölyä oli eniten 

viljelyksen  etelärinteellä ja myöhemmin  viljelyksen pohjoisosissa  tuulen 

suunnan vaikuttaessa eroihin. Taustapölyttyneen  siemenen osuus  oli noin 70 

% kaikkina niinä 4 vuotena  kun sitä tutkittiin. Siinä oli  kuitenkin suuria 

alueellisia eroja; vähiten (51  %) taustapölyttynyttä  siementä oli viljelyksen  

keskellä  ja eniten (87  %) sen  reunoilla. Itsepölytyssiemenen  osuus  vaihteli 

viljelyksellä  vuosittain o:sta 6 %:iin. Viljelyksellä  syntyneen ristipölytys  

siemenen osuus  jäi hyvin alhaiseksi vaihdellen 23:sta 31 %:iin. Lisäksi  

todettiin,  että siitepölykilpailu voi vaikuttaa viljelyksellä  syntyneen  siemenen 

geneettiseen  kokoonpanoon.  

Siemenviljelyksen  ja sen siemensadon geneettistä  monimuotoisuutta 

arvioitiin tehoisan klooniluvun avulla. Tehoisa klooniluku vastaa  niiden,  toi  

silleen ei sukua  olevien kloonien lukumäärää,  jotka osallistuvat yhtä suurilla 

osuuksilla siemenen tuottamiseen. Viljelyksen kloonimäärän ollessa 67 

tehoisa klooniluku oli 56, kun kloonien välinen vaihtelu vartemäärässä  

otettiin huomioon. Kun tarkasteluun lisättiin emi- ja hedekukinnan vaihtelu,  

aleni siemensadolle laskettu klooniluku keskimäärin 32:een, vuosien  välisen 

vaihtelun ollessa suuri. Taustapölytys  lisää geneettistä  monimuotoisuutta; 

viljelykseltä  mitattu 70  %:n taustapölytys  kaksinkertaisti  tehoisan klooni  

luvun. Käpy-  ja siementuhot taas näyttivät alentavan siemensadon moni  

muotoisuutta. 

Tutkimuksen kohteena ollut kuusen  siemenviljelys  ei täytä  kaikkia niitä 

teoreettisia tavoitteita, joita siemenviljelyksille  on  asetettu. Kaikki  kloonit 

eivät kuki  yhtä  runsaasti;  kukinnan perusteella  laskettu tehoisa klooniluku jää 

puoleen  kloonimäärästä. Myös  kloonien välinen pölytyskilpailu  ja erot  tuho  

alttiudessa sekä  jossain  määrin kukinnan  eriaikaisuus vaikuttavat siihen,  että 

kloonit eivät osallistu samalla painolla  siemensadon muodostamiseen. Odo  

tettua runsaampi  taustapölytys  poikkesi  kuitenkin kaikkein  eniten niistä 

tavoitteista,  jotka viljelykselle  oli asetettu. Sen vaikutus siemenviljelyksen  

tuottaman siemenen sopeutumiskykyyn,  jalostushyötyyn  ja geneettiseen 

monimuotoisuuteen on otettava huomioon kun nykyisiä  viljelyksiä  hyödyn  

netään  ja  uusia suunnitellaan. 

Avainsanat: kukinta,  pölytys,  kukinnan fenologia,  siitepölykilpailu,  

pariutumistavat,  geneettinen  monimuotoisuus 
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Preface  
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that spruce  especially  needed  to  be  studied  in more detail. After  an inventory  
of the Finnish spruce seed orchards,  it was decided that  the Heinämäki 

orchard at Korpilahti,  Central Finland,  would be an excellent subject  for the 

research;  at that  time it was  already  flowering  well,  but had all  the problems  

connected with spruce  seed orchards. 
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the manuscript  has  been very  important.  

1 am grateful  to all my co-authors in the  individual studies,  Seppo  Ruotsa  

lainen,  Tuija Aronen,  Hely  Häggman,  Martti Venäläinen, Anni Harju, Heidi 

Tiimonen,  Anne Pakkanen,  Pertti  Pulkkinen and Jaakko  Heinonen for  their 
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Ruotsalainen for their valuable comments  on the manuscript  of  the thesis.  In 

addition,  I would like to  thank John Derome for checking  the language  of 
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Punkaharju,  May  2002 Teijo Nikkanen 
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Introduction  

1.1 Norway  spruce  as  a  forest  tree 

Norway  spruce, Picea abies (L.) Karst.,  belongs  to the  genus Picea,  

which includes 34 species,  all distributed in the northern hemisphere  

(Farjon  1990).  Picea is  one of  the  largest  and  most widely spread  genus 

in the family of  Pinaceae, and the genus is the most important  constituent 

of  the northern coniferous forests  (Sarvas  1964, Farjon  1990). 

Picea abies is  supposed  to  have originated  in  East  Asia in  prehistorical  

times,  and  to have subsequently  migrated  to Europe  through  Siberia  

(Schmidt-Vogt  1977).  During  the last  Ice  Age  the species  is  assumed to  

have survived in Europe  in three refugia:  the  Dinaric Alps,  the 

Carpathians  and  North-Central Russia  (Schmidt-Vogt  1977, Lagercrantz  

and  Ryman  1990). Picea abies migrated  from these refugia  into its  

present  natural distribution areas; the  northeast European  origins  migrated  

from the  Russian  refugium.  Migration  into Finland and Fennoscandia 

took  place  through  Carelia,  and it passed  through  Finland into Scandi  

navia during  the period  5500-2500 BP (Moe  1970, Tolonen 1983). 

The natural  distribution of  Picea  abies
,  ranging  from  the Atlantic  coast  

in  Norway  (12°E)  across  Fennoscandia,  North Russia  and Siberia to  the 

Sea of  Ohotsk  (154°E),  comprises  an 8000 km  long,  virtually  unbroken 

area (Sarvas  1964). The distribution area stretches from the  mouth of 

Khatanga  River  (72°N)  in the  north  to  the  Balkan Peninsula (41°N)  in the 

south. The Central and  Southeast European  distribution areas  lie  outside 

the continuous North Eurasian area (Sarvas  1964,  Schmidt-Vogt  1977),  

and they  are  clearly  found to  differ both in  quantitative  and  molecular 

traits  (Collignon  et al.  2002).  In addition,  Picea abies has  been cultivated 

in  Central Europe  more than 300 years, and it has  also been planted  

outside  its  natural range (Schmidt-Vogt  1977). 

In Europe,  Picea abies is  economically  the most  important  coniferous 

tree  species  (Consensus  document ...  1999).  It  provides  raw  material for 

both the chemical and  mechanical forest industries. In Finland,  Picea 

abies has  been considered as  the second-most important species  after 

Scots  pine, Pinus  sylvestris  (L.), but in many  respects  the importance  of 

spruce  has recently  increased;  the growing  stock  drain (29  mill, m  3  in  

2000),  as well  as  the number  of  seedlings  planted annually  (81.5 mill, in 

2000),  are  larger  than  those for pine. Seeding  and planting  were  used on 

about 70%  (117  000 ha)  of  the total forest regeneration  area  in Finland. 

The proportion  of  pine  out of this  area  was 49% (46%  planted),  and  of 

spruce 41% (97%  planted)  (Metsätilastollinen  vuosikirja  2001).  
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1 .2  Genetic  variability  

Genetic variation is  the basis  of  the maintenance and  long-term  stability  

of  forest  ecosystems  since  the amount and pattern  of  genetic variation 

determine the ability  of forest  tree  species  to adapt  to  variable environ  

mental conditions (Hamrick  et al. 1992, Miiller-Starck et al. 1992). The 

wide genetic  variation found in  natural forests  is  also  the basis  for forest 

tree  breeding,  and adequate  genetic  diversity  in forest regeneration  

material is  the basic  requirement  for guaranteeing  the adaptability  of 

cultivated future forests.  Genetic variation here  means genetically  deter  

mined phenotypic  variation,  and  genetic  diversity  the  genetic  variability  

at  the genotypic  level  (Ruotsalainen  2002).  

Genetic variation is  affected  by several,  partly counteracting,  evolu  

tionary  factors  (see  Eriksson  and Ekberg  2001). Natural selection,  genetic  

drift  and mutations increase differentiation among populations,  while 

gene flow reduces it.  The effect  of these factors  within a population  is  

differing;  gene flow is  now the  main factor increasing  the variation, while 

inbreeding  and genetic  drift reduce it.  In  addition, mutations also  increase 

the  variation and  natural selection  reduces  it. In  Picea abies,  as  well as  in 

other  species  with a large  population  size  and  clinal variation,  genetic  

drift  is  negligible.  Gene flow,  on  the  other  hand,  is  an important  factor  in 

reducing  differentiation among populations  while, at the same time, 

bringing  new gene material into a population.  Mutations also tend to 

increase  genetic  variability  but,  because  mutation rates  in trees are  very 

low, their immediate contribution to  the variation is  small. 

The role of  phenotypic  plasticity  in genetic  differentiation is  ambig  

uous.  It  is  generally  accepted  that phenotypic  plasticity  may  contribute to 

the fitness of  a  genotype,  and it could  therefore be favoured by natural 

selection. Phenotypic  plasticity in Picea abies is expected  to be large 

(Eriksson  and Ekberg  2001).  

The genetic  variation of forest  trees  can be  considered at different 

levels;  variation within species,  among  populations,  and among individ  

uals within a  population.  Because the concept of a population  is often 

difficult to define,  particularly  in wind-pollinated  trees, the units  of  prov  

enance,  stand, and tree  are  sometimes used instead. At  the species  level 

genetic  variation in  most of  the  adaptive  traits of forest trees  is  clinal,  i.e. 

the population  means change  gradually  with geographic  distance. This 

variation is  caused by effective gene flow and gradually  changing  

selection pressure  (Eriksson  and Ekberg  2001).  The specific  evolutionary  

history  of  each species  plays  an important  role  in determining  the patterns  

of  genetic  variation (Lagercrantz  and Ryman  1990,  Hamrick  et al. 1992, 

Collignon  et al. 2002).  
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Trees maintain more variation within species  and  within populations  

than  other plants,  but have less  variation among populations  (Hamrick  et 

al.  1992). It  is  also  known  that the largest  proportion  of  genetic  variation in 

most  forest  trees  within a geographically  limited area  is  among  trees  within 

stands  (Eriksson  et al. 1987, Simpson  1998, Ruotsalainen et al. 2002).  

Most boreal-temperate  conifer  populations  are highly  variable at 

isozyme loci,  but there is  little differentiation among populations  due to 

efficient  gene flow  caused by  pollen dispersal  (Tigerstedt  1973, Muona 

1990). Instead,  populations  are much more differentiated in adaptive  

quantitative  traits, showing clinal  geographic  variation, due  to selection 

pressure,  while isozyme variability  indicates that  isozyme  loci  are  not  

subject  to  the  same selection pressures  (Muona  1990).  Picea abies  and 

Pinus sylvestris  are  good  examples  of  species  that are  highly  differenti  

ated  between latitudes and  altitudes with respect  to quantitative  traits 

related to  climatic  constraints.  In  Picea abies  the clinal variation in growth 

rhythm,  as  well as  in growth  and survival,  has been extensively  investi  

gated  (Heikinheimo  1949, Hagman 1980, Koski  1989, Beuker 1994 a,  

1994b,  Danusevicius and Persson 1998, Hannerz 1999),  and in forest  

cultivation this is  a widely  utilised character of  the species  (Pitkän  

tähtäyksen  metsänjalostusohjelma...  1988,  Karlsson and Rosvall  1993,  

Rosvall et al.  1998). 

Picea abies is morphologically  one of  the most variable tree species  

(Schmidt-Vogt  1977).  Its  large  genetic  variation in  various  quantitative  

and  qualitative  traits can  be divided into variation among provenances, 

and  variation among individuals within a provenance or  population.  In 

spite  of  the wide-ranging  natural distribution of  the species,  Lagercrantz  

and  Ryman  (1990)  found in an isozyme  study  that  only  5% of  the total 

genetic  diversity was  explained  by  differences among provenances. 

Differentiation among populations  was  even smaller  than that among 

provenances,  the  most part  of  the variation being among individuals. The 

great  genetic  variation in Picea abies forests  is  affected by  a large  number 

of  factors:  the ancient origin  and immigration  history  of  the species,  

natural selection,  and an extensive gene flow caused by effective pollen 

distribution  and,  probably  to a lesser  extent, by  human activities and 

genetic  drift  in small populations  (Lagercrantz  and  Ryman  1990).  

For  estimating  genetic  diversity  in natural populations  (Wright  1931)  

introduced the  concept  of effective population  size. Since then the 

concept  has  been developed  and  applied  by  many population  geneticists  

and plant  breeders,  with the main focus on two alternative aspects:  the 

inbreeding  effective  population  number  and the variance effective popu  

lation number  (Crow  and Kimura 1970, Crow  and Denniston 1988, 

Muona and Harju  1989, Caballero 1994, Burczyk  1996, Kjasr  1996).  

Because effective  population  size describes the rate of change  in a 
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population,  Lindgren  et ai.  (1996,  1997)  developed  the concept  of  status  

number  (effective  clone number),  which is  a  more functional measure  for 

the state of  a non-changing  population,  e.g.  a  seed orchard crop. The 

application  of  status  number  for  estimating  the genetic diversity  of  seed 

orchards  or  seed orchard  crops  has been discussed by Kjaer  and Wellen  

dorf (1996,  1997), Lindgren  and Mullin (1998),  Kang  and Lindgren  

(1998),  Ruotsalainen et ai.  (2000),  and it will be continued in this  thesis. 

1.3 Reproduction  

Picea abies is  a  typical  coniferous tree  species,  monoecious and  wind  

pollinated.  Its female flowers  are  generally  located at the top of the  shoot 

in the upper part  of  the crown, and  male flowers at the  base of  the 

preceding  year's  shoot in the lower part  of  the  crown.  In this  thesis  and in 

the individual studies  the  reproductive  organs  are  generally  called flowers 

although  their organological  status  is  somewhat debatable (Sedgley  and 

Griffin  1989).  

Picea abies has  a  2-year-long  reproductive  cycle,  which is  the shortest 

cycle  found in  boreal and  temperate forest  trees  (Owens  and Blake 1985).  

The other common type  of  cycle,  found for instance in Pinus sylvestris,  

takes  three  years. In the 2-year  cycle the initiation and development  of  

male and  female buds  occur  during  the  growing  season  prior  to  flowering  

and pollination.  Pollination occurs  in the  spring  or  early  summer  of  the 

second year, and fertilisation a few weeks after  pollination.  Following  

fertilisation,  embryo  and  seed development  are  rapid  and  continuous. The 

seeds  are  mature  and ready  to  be  released in  the late  summer or autumn  of  

the pollination  year. The different stages of  the reproductive  cycle  are  

affected and regulated by climatic  factors (Owens  and Blake 1985). 

Reproductive  buds are  formed through  the transition of  an indetermi  

nant vegetative  apex into a determinant floral apex (Owens  and  Blake 

1985).  Floral initiation and development  of  reproductive  buds  are  favour  

ed by  high  temperatures  during  the growing season  in many species  in 

different climatic  conditions,  as  is  the case  for Picea abies in our condi  

tions (Lindgren  et ai.  1977, Pukkala  1987).  The timing  of  bud determi  

nation has  been found to be very similar  for  many  Picea species  (Owens  

and Blake 1985), and it occurs  at a  time close  to the  termination of  lateral 

shoot elongation.  Following  differentiation, the development of  repro  

ductive buds  is  completed  well  before winter dormancy,  the male flower 

buds usually  terminating  earlier  than the female flower buds. In  all  

boreal-temperate  conifers,  pollen sacs  are  initiated within the  male flower 

buds before  winter dormancy  (Owens  and Blake 1985). 
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Male  meiosis  and  pollen development  take place  in spring,  and are  

regulated  by the day  length  and temperature  sum (Luomajoki  1986).  In 

Picea  abies,  as  in other  Picea species,  meiosis  starts  soon  after  the  end  of 

winter dormancy  (Sarvas 1972, 1974),  which in the  climate of  southern 

Finland means  early  May  (Luomajoki  1982).  Meiosis and pollen  develop  

ment  take only  a  few  weeks,  and  end at anthesis.  Female meiosis  usually  

starts  just  before the female strobili become receptive  (Sarvas  1968).  

Pollination,  excluding  floral  initiation,  is  probably  the most decisive  

part of  the reproductive  cycle  in many  forest trees  (Owens  and Blake 

1985).  In wind-pollinated  conifers  it  can  be divided into pollen  shedding,  

pollen  distribution,  and pollen  capture.  The timing  of  pollen  shedding  is  

regulated  by  weather conditions,  the effective  temperature  sum being  the  

main factor  in Picea abies (Sarvas  1968).  Pollen shedding  in an individ  

ual tree  usually  takes  place slightly  later than when the  female strobili 

become receptive  (Sarvas  1962,  1968).  This feature,  called metandry,  is  a  

strategy  of  many wind-pollinated  conifers  to avoid self-pollination.  

However,  the rate of  self-pollination  in natural stands  of  Picea abies and  

Pinus sylvestris  usually  ranges from 10 to 20%,  and in extensive  forested 

areas,  one half of  the pollen comes from trees  growing  less  than 50 m 

away  (Koski  1970).  Gene flow  through  pollen  distribution from neighbour  

ing  stands  or  even  further way  is  of  crucial  importance,  and  in some years 

it  can  account  for  a  significant  proportion  of  the total pollination  (Koski  

1970, Wheeler et  al. 1993).  Although  distribution of  pollen  is a  widely  

studied issue  (Lanner  1966,  Koski 1970,  Sorensen 1972, Di-Giovanni  and  

Kevan 1991, Wheeler et al.  1993),  more information is needed. 

The mechanism of pollen capture and entrance  of  pollen  into the 

ovules of  conifers  has been investigated  extensively  in many species  

(Doyle  1945,  Sarvas 1962,  Singh  1978,  Owens 1980),  including  Picea 

abies (Sarvas  1968). In Picea a  pollen  grain  is  transferred from the mouth 

of  the micropyle  into the pollen chamber with the  aid of  a  pollination  

drop (Sarvas  1968,  Owens  1993,  Owens  et  al. 1998).  Sarvas  (1968)  found 

that the average capacity  of  a pollen  chamber  in Picea abies  is  5  pollen  

grains  but,  even  after abundant pollination,  the chambers  are  not always  

full. Of the  factors preventing  complete  pollination,  Sarvas (1968)  

reported  that wind that frequently  blows from the  same direction during  

flowering  is  the worst.  The rain,  if it does not continue for  days,  is not  as  

harmful. Spring  frosts,  which disturb the pollination  drop  mechanism,  can  

considerably  decrease the  success  of  pollination  (Sarvas  1968). 

Fertilisation  in Picea abies occurs  3-4 weeks  after pollination  (Sarvas  

1968,  Christiansen 1972).  During  the  stage from pollination  to fertili  

sation,  the  pollen  grains  germinate  and pollen  tubes penetrate  through  the 

nucellus into  the  ovule.  The germination  capacity  of  Picea abies pollen  in 

its natural environment,  i.e. at the tip of  the  nucellus,  varies from 86 to  
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99% (Sarvas 1968).  It is  essential  for the  reproductive  strategy of the 

species  that there  is  usually  more  than one  archeogonium  per  ovule,  three 

being  the average in  natural stands in  southern Finland (Sarvas  1968).  In 

addition,  the  fact  that the  number  of  pollen  grains  in a  pollen  chamber 

might be larger  than the  number of  archeogonium  per  ovule provides  an 

opportunity  for male gametophyte competition  already  before fertili  

sation. During  or  soon after  fertilisation,  embryo  abortion eliminates the 

genotypes  that are homozygous  for lethal or  sublethal genes. Koski 

(1973)  has  estimated an individual Picea abies tree  contains  an  average of  

10 (from 2  to  20)  embryonic  lethals.  Later on,  the competition  between 

developing  zygotes  reduces the number of  embryos  to one per ovule. 

According  to Sarvas  (1968),  embryo  abortion occurs  in  20  to 40% of  all  

fertilisations,  and  competition  between the  vigorous  embryos  continues in 

about 70% of  the ovules.  In Picea abies this  pattern,  called polyzygotic  

polyembryony,  reduces  the rate of  inbreeding,  and in many conifers  it  is  

equivalent  to the  self-incompatibility  pattern  common in  angiosperms  

(Hagman  1975).  Koski  (1973)  has estimated,  using  embryonic  lethals,  

that  nearly  90% of  the inbred embryos  are  destroyed  before the  seed is  

mature, thus  reducing  the rate  of  self-fertilisation  by  5  to 10%. 

In southern Finland fertilised ovules  of  Picea abies develop  into ana  

tomically  mature seeds within about two months (Mikkola  1969).  Seed 

maturation is  a  problem  only  in northern Finland,  where the temperature  

sum required  for  the  complete  maturation of  seed is  not  reached every  

year (Kujala  1927,  Henttonen et ai. 1986).  A much greater  problem  in 

southern Finland is  cone  and seed damage,  caused by  several  rust  and 

insect pest  species  (Rummukainen  1960). 

Seeds of  Picea abies are  usually  shed early  in the spring  and,  because  

of  the snow  cover  that  is  often still  present  at  that time of  the year, the 

seeds may  be dispersed by  wind over  long  distances (Heikinheimo  1932). 

However,  most of  the  seeds remain close to  the mother tree, and  gene 

flow through  seed dispersal  cannot  be regarded  as  very efficient. 

Although  Picea abies is  a  shade-tolerant and competitive  species  and  thus 

occupies  new areas  rather  easily,  the most productive  spruce  forests  with 

dense ground  vegetation  pose problems  for natural regeneration.  

In natural forests  of  Picea abies the  between-year  variation in the 

abundance of flowering  and seed crop is large (Blomqvist  1876, 

Heikinheimo 1932, 1948,  Tiren 1935, Koski  and  Tallqvist  1978). The 

periodicity  of  abundant flowering  is  irregular,  and  the  occurrence  of  good  

flowering  years is the more seldom,  the more northern is  the region  in 

question  (Koski  and Tallqvist  1978).  The variation in flowering  is  also 

large between trees  within a stand (Sarvas  1968, Koski  and Tallqvist  

1978).  
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1.4  Production  of  genetically  improved  seed  

The genetic  improvement  of forest  trees is  based on exploitation  of  the 

genetic  variation,  occurring  in natural forests,  in economically  important  

traits  (Wright  1976). Phenotypic  selection of  superior  trees,  so  called  plus  

trees,  has generally  been the  first  phase  of  forest  tree  breeding,  followed 

at a  later  stage by  the progeny testing  of  plus  trees  and establishment of 

clonal seed orchards.  In  many countries the first  seed orchards  have been 

established soon after the start of plus  tree  selection,  while  large-scale  

progeny testing  has  started  at a  later  stage,  often on  the basis  of  the  seed 

collected from the seed orchards  (Zobel  and Talbert 1984).  Establishing  

the  first  seed orchards  soon after  enough  plus  tree  material has become 

available has made it  possible  to  produce  improved  seed,  although  not  yet  

genetically  tested,  within a  reasonable time. 

In Finland  forest  tree breeding  focused during  the first  two  decades (it  

started  in  1947)  almost solely  on the phenotypic  selection of plus  trees 

(Oskarsson  1995). A total of 770 Norway  spruce  plus trees  were selected 

during  1947-1971;  the number of  Scots  pine  plus  trees  selected during  the 

same period  was,  however,  6526 (Nikkanen  et ai. 1999).  Although  the 

first  seed orchards were established in the early  1950'5,  and have 

continued on  a small scale  ever since,  the  major  activities in this field did  

not  start until more than a decade later. In 1963 an official  report 

(Lausunto  maamme... 1963) was issued about the total area of  seed 

orchards  required  for  the production  of  genetically  improved  reforestation 

seed in Finland. The large-scale  realization of  seed orchards  started  some 

years later,  and  was  completed  by  the mid 1970's (Nikkanen  et  ai.  1999).  

Large-scale  progeny testing  started in the  late 1960'5,  and continued 

through  the 1970's and  1980's  up until  the  mid 1990's (Häggman  and  

Oksa 1999,  Yrjänä  et ai. 2000). The number of  Scots  pine  progeny  tests 

planted  so  far  is  much greater  (1394  trials totalling  2100 ha)  than that of 

Norway  spruce (246  trials,  280 ha).  The spruce progeny  tests  are  also  

much younger as  they  were  mainly  planted  in  the 1980's and  early  1990'5. 

Since 1967 the forest  tree  breeding  activities  have been based on 10- 

year programs (Mikola  1992).  In addition,  a  new seed orchard  program 

for 1990-2025 (Metsäpuiden  siemenviljelysohjelma...  1989)  was carried 

out simultaneously  with the revision of  the  most recent  tree-breeding  

program (Pitkäntähtäyksen  metsänjalostusohjelma...  1988). The seed 

orchard  program was  revised  in 1997 (Männyn,  kuusen  ja 
...
 1997).  

The aim  of  an ideal seed orchard is  to  produce  genetically  superior,  

frequent,  abundant and easily  harvested seed crops,  and an  orchard  has  to  
fulfil certain requirements  with respect  to flowering  and  pollination  

(Zobel  et al. 1958, Sarvas 1970, Faulkner 1975, Werner 1975). These 
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requirements,  reproductive  synchronisation,  balanced flower production,  

random mating,  minimal selfing and  isolation from non-orchard pollen  

sources,  are  the basic factors  affecting  the functioning  of  wind-pollinated  

seed orchards  (Sweet  1975, Koski  1980, Blush et al. 1993). The function  

ing  of  seed orchards  is,  however,  often far from ideal. There are  large  

clonal and annual differences in flowering  abundance in several species  

(Sweet  1975, Jonsson et  al.  1976, Bhumibhamon 1978),  including  Picea 

abies (Skrappa  and  Tutturen 1985, Ruotsalainen and Nikkanen 1989,  

Kjaer  and Wellendorf 1997).  The variation in reproductive  phenology  

also  has  an effect  on  the genetic  composition  of  the seed produced  in seed 

orchards  (Chung  1981b, Blush et  al. 1993, Harju and  Nikkanen 1996).  

Owing  to  the  abundance of  the same species  in adjacent  forests  and 

effective pollen  distribution (Koski  1970, Lindgren  et al. 1995),  high  

pollen contamination has proved  to  be  a  serious problem  in both Scots  

pine  and  Norway  spruce seed orchards  (El-Kassaby  et  al.  1989, Harju  and 

Muona 1989, Pakkanen and  Pulkkinen 1991, Savolainen 1991, Paule et 

al. 1993).  In addition, the genetic  composition  of  the seed-orchard crops 

may be  affected  by  competition  among pollen  grains.  

In Finland the seed orchards  have been established using  clones 

originating  from geographically  and climatically  limited areas (Sarvas  

1970, Koski  1980,  Nikkanen et al. 1999).  This was done in order to  

ensure the adaptability  of  the  seed orchard  material to its utilisation area, 

which  was usually  planned  to  be  the  same  as  that  of  the clone origins.  The 

aim of limiting  the  origin  was also  to ensure  simultaneous flowering  of 

the  seed orchard  clones. Another measure  directed at  the reproductive  syn  
chronisation of  the seed orchards  was  to locate the orchards of northern 

origin  in the southern parts  of the country.  In addition to enhanced 

flowering  and  better seed maturation, this was  done in order to  achieve 

phenological  isolation between the seed orchard  clones and surrounding  
forests  (Sarvas  1970). The hypothesis  was  that the temperature  sum 

required  for  the onset of  flowering  in  trees  adapted  to  northern conditions 

would be  smaller than that in trees  adapted  to more southern conditions 

(Sarvas  1962, 1968, 1970). However,  no phenological  isolation has  been 

found in Scots pine  (Pakkanen  and  Pulkkinen 1991,  Pulkkinen 1994b),  and 

no results  from this  have been reported  for  Norway  spruce seed orchards.  

The Norway  spruce seed orchards,  which are now in the seed  

producing  phase  in  Finland,  were established during 1965-1972. The 

number of such  orchards  is 23, and  their total area is 276 hectares 

(Nikkanen  et  al. 1999).  All of  them have been established by grafting,  and 

they  consist  of  601 plus  tree clones. The average number of  clones per  

seed orchard  is  76  (35  to 196 clones),  and the  average size  of  the  orchards  

is  12 hectares (2.8  to 30 ha).  The orchards  have been established using 

two spacing  alternatives: 5  x 5 m or  3.5 x  7  m (400  grafts/ha  in both 
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cases).  The spruce  seed orchards  in  Finland have one  feature lacking  from 

the  pine  seed orchards;  the grafts  in two-thirds of  the orchards  have been 

planted using  a  clonal-row design  instead of  a  randomised design.  

The long  juvenile  phase,  typical  for a  climax  species  like Picea abies 

(Chalupka  and Cecich 1997,  Almqvist  2001),  has caused delays  in the 

onset of  seed production  and  effective  utilisation of  the spruce seed 

orchards.  However,  most of  the seed used nowadays  in Finland for  the 

artificial  regeneration  of  spruce  is produced  in seed orchards.  The propor  

tion of  spruce seed-orchard seed used in nurseries increased  rapidly  

during the  1990'5;  in 1991 it was only  10%, but in 2000 as  much as  70% 

(Metsätilastollinen  vuosikirja  2001).  At  the same time,  the proportion  of 

pine  seed-orchard seed has  remained at a level of  about 60%. However, 

seed-orchard seed has  not  been used in the same  quantities  in all parts of 

the  country;  while almost  all  the nursery  seed for  southern Finland has, in 

recent  years, been of  seed orchard  origin,  very  little seed-orchard seed has 

been available for northern Finland. 

The reasons  for  the lack  of  pine  seed-orchard seed in northern Finland 

have been the pollination  of south-transferred seed orchards  by  non  

orchard southern pollen  (Pakkanen  and Pulkkinen 1991), and the  poor 

adaptability  of  this  kind  of provenance hybrid  seed in the locations of  the 

mother clones (Nikkanen  1982, Mikola 1993b,  Pulkkinen  et ai. 1995). 

The progeny test  results  of  spruce in  northern Finland,  based on seed 

collected from  young seed  orchards  with a low pollen production,  indi  

cate that pollination  from southern sources  is not  as harmful to  the  adapta  

bility  of  spruce as  it is  for pine  seedlings  (Ruotsalainen  and Nikkanen 

1998).  Only  a  few studies  have been  carried out in  Norway  spruce seed 

orchards,  in the conditions similar to  ours,  on flowering  and pollination  

(Skrappa  and  Tutturen 1985,  Paule et  al. 1993,  Kjaer  and Wellendorf 1997).  

In Finland,  the studies of  this  thesis  provide  the first  results  dealing  with 

the  reproductive  biology  of  spruce seed orchards,  apart  from the prelimi  

nary study  on flowering  (Ruotsalainen  and Nikkanen 1989) performed  

using  the same data (from 1984 to  1988)  as in the  thesis. Earlier studies  in 

this  field dealt with natural forests (Sarvas  1955, 1968, Koski 1970, 1971, 

1973, Koski and Tallqvist  1978, Luomajoki  1993).  In contrast, several 

comprehensive  studies  have  been carried out  in Scots  pine  seed orchards 

in Finland (Bhumibhamon  1978,  Pulkkinen 1994 a,  Harju  1995).  

The purpose of  this  thesis was  to investigate  how well the require  

ments  of  the functioning  of  an ideal seed  orchard  are  fulfilled.  In order to 

investigate  this,  various observations  and measurements  were  performed  

in an operational  seed orchard during  the 15-year  long  study  period.  In 

addition,  the purpose of the thesis  was to estimate  how the expected  

deviations from the  ideal functioning  affect  the genetic  composition  of 

the seed produced  in the orchard. 
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1 .5  The  objective  of  the thesis  

The overall objective  of  the thesis  was  to study  the functioning  of  a 

Norway  spruce  seed orchard  and, in more detail,  to investigate  the clonal 

balance  and synchrony  of  reproduction,  and aspects  of  mating patterns  

and  their effects  on  genetic  diversity  and  quality  of  the  seed crop. 

The aims of the individual studies were: 

I To describe the annual and  clonal variation in flowering  abundance,  

and  to try  to explain  this  variation on the  basis  of  clonal and environ  

mental  factors.  An additional aim was  to estimate the  genetic  diversity  of 

imaginary  seed crops  when clonal variation in female and  male flowering  

and  pollen  contamination were considered. 

II To determine the annual variation in the timing  of  flowering,  and  to 

describe the  phenological  variation in female receptivity  and pollen  

dispersal.  The aim  was also  to  determine the extent  to  which genetic  and 

environmental factors affect flowering  phenology,  and  to discuss the 

consequences of  reproductive  phenology  for  the seed crop. 

11l To determine whether there is  variation in  pollen-tube  growth  

among  the seed orchard  clones and,  if such  variation is  found,  whether it 

is  connected with the characteristics  of  the pollen  donors or  any  exog  

enous factors.  The effect  of  different  pollen  germination  conditions was  

also  investigated.  

IV To study  pollen  competition  using  controlled crossings  with pollen  

mixtures including pairs  of  pollen  lots with fast  and  slowly  elongating  

pollen-tubes.  Paternity  analysis  was performed  in order to  study  whether 

the  in vitro pollen  germination  vigour  corresponds  to  the proportion  of 

seeds  sired by  the  pollen  donor. 

V To estimate the rate  of  pollen contamination and outcrossing  in 

three  different  years, and in addition,  in the thinned and unthinned parts  

of  the orchard. 

VI To investigate  temporal  and spatial  variation in airborne pollen  in 

the  seed orchard  and its  immediate surroundings,  and  to  estimate pollen  

contamination  and self-fertilisation in different parts  of  the orchard. One 

specific  aim was  to  analyse  how the  variation in  airborne pollen  affects  

mating  patterns  and  quality  characteristics  of  the seed. 
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Material  and Methods  

2. 1 Basic  information  and  management 

of  the seed  orchard 

All  the  data for  the studies  of  this thesis  have been collected  from Norway  

spruce seed orchard no. 170 (Heinämäki),  established in 1968 at Korpi  

lahti (62°  13'N, 25°24'E).  The seed orchard consists  of 67 clones 

originating  from latitudes 64°-67° N (Fig.  1, Nikkanen et ai.  1999).  

Information about the seed orchard  clones was obtained from the 

National Register  of  Forest  Genetics.  

The seed orchard  is  13.2 ha in area,  and is  partly  located on abandoned 

agricultural  land (6.0 ha)  and partly  on  forest  land (7.2  ha)  on a  hill (160- 

190 m asl)  sloping  gently to the south and steeply  to  the east and west  

(Fig.  2, Fig.  2  in study  I).  The grafts  were  planted  in the orchard  using  a  

clonal-row design with ramets  of  each  clone in two  or more  rows 

distributed in different  parts  of  the orchard.  The spacing  of  the grafts  was 

3.5 x  6.5 m, the ramets  of  the same clone being located at a  distance  of 

6.5 m  from  each other. In 1987 one half of  the orchard  was thinned 

systematically  by  removing  every third graft,  and in 1994 the other  half of  

the orchard  in  the same  way  (Fig.  2  in I).  The average number  of  ramets  

per clone was 56  before the first  thinning,  47 after it,  and 39 after  the 

second thinning.  The seed orchard  was surrounded by spruce  forest up 

until March 1994 when the  closest  part of  the forest  was  felled (Fig.  2,  

Fig.  in  VI). Norway  spruce  is  the predominant  tree  species  in the region  

of the  orchard.  

The topography  of  the seed orchard  and its  immediate surroundings,  

and the  position  of  the pollen  samplers  and the grafts, were mapped  in 

1993 by  means of  a tachymeter  (Nikon  A2O) and  a field computer 

(Geonic  1000).  The  equipment  was  used  to create  a three-dimensional 

coordinate system  covering  the whole study  area  (Lähde  et  ai. 1992).  

The nutrient concentrations and  pH of  the seed orchard soil were 

determined in 1993 (Hämäläinen  1994).  In  order  to  estimate  the variation 

in the nutrient status,  the seed orchard was  divided into 20 plots.  Plant  

available phosphorus,  potassium,  calcium and magnesium  were deter  

mined by  extraction with IN ammonium acetate  (pH  4.65), and pH  was  

measured on a  soil  sample/water  suspension.  The results  of  the soil  

analyses  grouped  into agricultural  and forest  land are  shown  in  Table 1 in 

I. 
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Figure  I. Location of the Heinämäki seed orchard and the origin  of its  

clones, and the  basic  information about the seed orchard (Nikkanen  et  

ai.  1999). 
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Figure  2. Aerial view of the  Heinämäki seed orchard. Photographed  in  March,  
1995. 

The height and diameter of  the sample  grafts  (the  same grafts  used for 

measuring  flowering  abundance,  see  Chapter  2.3)  were measured every  

year during  1984-1996 (except  in 1994),  and the width of  the crown  only  

once in 1993. The average height  of the  grafts  in 1984 when the 

flowering  study  started was  4.9 m, the  clonal means  varying from  3.0 to 

7.2  m.  Twelve growing  periods  later  in 1996 the  average height was  10.4 

m,  varying  from 6.5  to 13.4 m.  Thus the average annual height  growth  of  

the grafts  during  the study  period  was  42 cm.  

The seed orchard in  many  ways  represents  a typical  or an average  

Norway  spruce  seed orchard in Finland. Its  size and  clone number are  

close to the average, and it has  been planted  using  a rectangular  spacing  

and  clonal-row design,  which is  typical  of  two-thirds of  all  the orchards.  

In addition,  this seed orchard  also  represents  the five  orchards  (22%),  

with a total size of  87 ha  (32%), established with northern origin  and 

located in central parts  Finland. 
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2.2  Weather data  

The weather data were  obtained both from the Jyväskylä  weather station 

of  the Finnish  Meteorological  Institute  (62°24'N,  25°40'E, 140 m  asl), 

located  25 km  north-east from the  seed orchard,  and  from the weather 

station  (Datataker  610)  set  up in the orchard  (Fig.  3).  The weather data 

from Jyväskylä  weather station  consisted of  annual,  monthly  and daily 

mean temperatures  (including  effective  temperature sum, d.d., >+s°C)  

from 1982 to 1996 (Table  2  in I),  as  well  as  cloudiness  and precipitation  

during  the flowering  period  in some years  (Table  1 in  II).  The data  from 

our own weather station consisted of continuous temperature,  

illuminance,  humidity,  precipitation  and wind speed  and direction during  

the flowering  period  in 1995 (Table  1 in  VI). 

Figure  3. The observation tower with the  weather station and pollen  

samplers  in the Heinämäki seed orchard. 
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2.3  Measuring  the  abundance  and  phenology 

of  flowering 

Both female and male flowering  were studied. The number of  flowers 

was recorded on 66 of  the  67 clones (one  clone with two  grafts  was  

omitted from all  the measurements)  every  year during  1984-1996 (I). In 

1984 when the  study  was  started,  10 sample  grafts  per clone were  

selected systematically  to represent  the  whole seed orchard.  After  the 

thinning  in 1987 the  number  of  sample  grafts  was 5,  but  in 1988 it  was  

returned to  10. No  new sample  grafts  were subsequently  selected. 

However,  the thinning  in 1994 and natural mortality had decreased the 

number of  sample  grafts  to a  minimum of 4 and average of  7 by  1996. 

The total  number of  grafts  on  which flowering  abundance was measured 

varied from 650 to 478.  

Pollen production  was estimated on the basis  of  the number of  male 

flowers  on  a graft. The amount of  pollen  produced  by  one male strobilus  

(0.009  g /  strobilus,  counted from 7041 strobili  of 8  grafts  in 1992)  was  

used to  calculate the amount  of  pollen  produced  by  a graft. 

The phenological  stage  of  the female and male flowers was observed 

on seed orchard grafts  in 1989,  1992,  1993 and  1995 (II). In 1989 the 

observations  were made on 7 randomly  chosen clones, in 1992 and 1993 

on 21 randomly  chosen clones with sufficient flowering  abundance,  and 

in 1995 on 65 of the  67 seed orchard clones. Observations on the 

phenological  stage  of  the  flowers  were made on  3  grafts  per clone. 

2.4  Measuring  the  variation in  airborne  pollen  

Temporal  variation in airborne pollen  was  studied during  a  twelve-year  

period  by  means of  a recording  pollen sampler (Fig.  4,  Sarvas 1962, 

1968).  The pollen catch  was  measured in the seed orchard from 1984  to 

1995, and at a distance of 1 km  to the southeast from  the orchard from 

1987 to 1995. The results  obtained with the  recording  pollen  sampler  

provided  information  about the actual timing  of  flowering  in different 

years and about the daily  fluctuation in airborne pollen during  flowering 

(II and  VI). 

Spatial  variation in airborne pollen  was  studied in  1995 using  a rotorod 

type of  sampler  (Fig.  4,  Edmonds 1972).  A total of 70 samplers were  

situated on 48 masts,  1-3 samplers  on each  mast;  48 samplers  at the 

height  of  4.5 m, 16 at the height  of  9.0  m, and  6 at the height  of  13.0 m 

(Fig. 2 in VI). 37 samplers  were located in the seed orchard  and  33  
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outside it.  A total of  24 ten-minute sampling  periods  were achieved 

during  a seven-day  period  (Table 1 in  VI). The rotorod-sampler  gave an 

estimate of  pollen density  in  the air.  The pollen  density  values were 

interpolated  for the  whole study  area by applying  the spatial  analysis  

methods described in study  VI. Spatial  variation in airborne pollen  was  

described by means of  density  maps. 

Figure  4. The pollen  samplers  used in the  study:  a) the  Sarvas-Wilska  type of  

recording  pollen  sampler,  and b)  rotorod type of  pollen  sampler.  

2.5  Cone  and  seed  sampling  

Cones were collected in the seed orchard in 1989, 1992, 1993 and 1995,  

and  on a smaller scale in 1998. The purpose of  cone collection was  to  

obtain  material to investigate  the variation in  the  quantity  and  quality  of 

the  seed crops  in 1989 (Nikkanen  1992)  and in 1995 (VI), and to obtain  

seed for  isozyme  studies on  mating  patterns  in 1989,  1992,  1993 (V)  and 

1995 (VI), and  for  isozyme  studies  on  pollen  competition  from controlled 

crossings  in 1998 (IV). 

The cone and  seed crops were determined separately  for each graft. 

After  extracting  the seeds,  the  weight  of  the seed crop, 1 000-seed weight,  

and  the number of  seeds per cone were determined for each graft. In 

addition,  the  percentage  of  full seed  was  determined by  x-ray  analysis  

(Simak  1980).  
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2.6  Studying  pollen  competition  in  vitro and in vivo  

Pollen samples  were  collected from  66  of  the clones in the seed orchard  

in 1996 and 1998 in order to  estimate pollen-tube  growth  rate in in vitro 

(III). One graft  from each  clone was  selected as  pollen donor (Fig. 1  in 

III). The same grafts  were used in both years.  In  addition to the seed 

orchard  clones,  five trees  from surrounding  areas  were used as  pollen  

donors. More details  about treatment  of  the pollen are  given  in study  111 

and in Häggman  et ai. (1997).  Germinated suspensions  of pollen  were 

photographed,  and pollen-tube  lengths  were measured from the enlarged  

negatives.  About 50 pollen  grains  were  measured per  replication,  the total 

number of  measurements being  about 73  800. 

Five  pollen  mixtures,  based on  differences in  vitro germination  vigour  

and with distinguishable  isoentzyme  genotypes  (Table  1 in IV), were 

used to pollinate  five seed parents  (Table  2 in IV)  in 1998. Each of  the  

mixtures  consisted  of  an equal mass  of  pollen from two  clones,  one  

assumed to have poor and the other good  germination  vigour.  The  

selected pairs  of  pollen  mixtures were used  in  controlled crossings  to  

study  pollen  competition  and  seed-siring  success.  

2.7  Estimation  of  mating  patterns  

Seed for the isozyme  studies was  collected in 1989, 1992 and  1993 (V),  

and in  1995 (VI). Cones were collected from  all the  seed-producing  

clones of grafts representing  different parts  of  the seed orchard.  The  

multilocus genotypes  of the  embryos  and haploid megagametophytes  

were  assessed at 11 allozyme  loci. More details about these loci and the  

technique  used are given  in studies V  and VI,  and  in  Muona et ai.  (1987).  

The pollen  contamination, and outcrossing  and self-fertilisation  rates  

were estimated for  the  whole seed orchard, and separately  for the  

different parts  of  the  seed orchard. In addition,  the  rates  of cross  

fertilisation  within the seed-orchard clones were estimated by  summing  

up the estimates  of  pollen  contamination and  self-fertilisation  

Paternity  analysis,  described by  Smith  and  Adams (1983),  was  used in 

estimating  pollen  contamination. The multilocus  genotypes  of  the pollen  

gametes were deduced by  comparing  the allozyme patterns in the  

megagamethophytes  and in the corresponding  embryos.  Pollen  genotypes 

that could  not  have been produced  by  any of  the seed orchard  clones  were  

regarded  as  observed contamination (b ). Because part  of  the  contami  

nating  pollen  could  not  be distinguished  from pollen  produced  in the 

orchard,  the observed contamination had to  be  corrected by  an  estimate  of 
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the  detection probability  of  alien pollen  (d), which was calculated using  

the  gene frequencies  of  a  local  spruce stand and the gametes  produced  by  

orchard clones. The estimates of  pollen  contamination (m) were 

calculated as m = b/d. The formula for the  variance estimate of  

contamination is  given  in Friedman and  Adams (1985). 

The multilocus method of Shaw  et al.  (1981)  was  used to estimate the 

rates  of  outcrossing  (/),  and  selfing  (= 1-t). Pollen gametes  not  matching  

the mother tree genotype  were regarded  as  outcrossings.  The estimated 

outcrossing  rate  was obtained by adjusting  the detected outcrossing  rate  

by  the probability  to  detect the  self-fertilisations,  which was  estimated by  

means  of  the gene frequencies  of  the seed orchard.  

2.8  Estimation  of  genetic  diversity  

Genetic diversity  of  the seed orchard and the  seed crops was  described 

using  the concept  of  effective number of  clones (Kang  and Lindgren  

1999,  Kang  2001, Kang  et al. 2001),  which was estimated using  the 

method of  status  (effective)  number  (Lindgren  et  al.  1996,  1997,  Lindgren  

and Mullin 1998).  The effective  number  of  clones (Nc) for  the seed crop 

was  calculated according  to Lindgren and  Mullin (1998)  using  the 

formula 

where /?, can  be  any  clonal proportion  measured in the seed orchard.  It is  
assumed  that  seed orchard  clones  are  not related and  have no  inbreeding.  

When the effect of pollen  contamination was examined,  the  effective  

clone number was  calculated according  to  Lindgren  and Mullin (1998),  

and Ruotsalainen et al.  (2000)  

where  f  is  the proportion  of  clone i  of  the female contribution (seed  yield  

in this  study)  and m, is  the corresponding  value for male contribution  

(pollen  production).  Both f  and m, sum up to 0.5. Mis the proportion  of 

migrating  genes in the seed crop. 

The effective  number of  clones was  estimated for  the  seed orchard  and 

for the imaginary  seed crop, predicted  on the basis  of flowering,  by  

adjusting stepwise  for several  sources  of  variation as  described in I. In 
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addition,  the effective  clone numbers concerning  the real seed crops  of  

1989 and  1995 were also  estimated  and  presented  in  this  thesis. 

2.9  Statistical  analyses  

A  non-parametric  Kruskall-Wallis (I, II) test  was  used to  determine the 

statistical  differences between the clones,  and the  Spearman rank 

correlation procedure  to calculate the strength  of the linear association  

between different variables. A non-parametric  test  and rank  correlation 

procedures  were  used,  because  the  number  of flowers  had a  skewed  and 

non-normal distribution (I),  and because the  day  scale  used in the pheno  

logical  observations  was  coarse  (II). 

When the restrictions  mentioned above did not  exist,  analyses  of 

variance were used  to determine the statistical differences (11,  HI and 

VI), and the  Pearson correlation procedure  to determine the  linear 

association  (111  and VI). The Tukey  (II and VI) and Student-Newman- 

Keuls (III)  post-hoc  tests  were  performed  for multiple  comparisons  of  

means.  

Broad-sense heritabilities (h R

2

) were  estimated  on  the basis  of  a  single  

graft  using  the formula of  Sokal  and Rohlf  (1995),  as  described in study  I 

(and  used also  in II). 

The Pearson %
2
-test was  used  to  determine the differences in pollen  

contamination and outcrossing  or selfing  between years  (V),  and between 

different parts  of  the  orchard  (V  and  VI),  as  well  as  the  significance  of the 

paternal  contribution (IV). 

Linear stepwise  regression  analysis  was  used to obtain models to  

explain  the variation in flowering  abundance (I), and non-linear 

regression  analysis  to  obtain a  model to  identify  the  parameters explain  

ing  the  diurnal variation in the amount  of  airborne pollen  (VI). 
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Results  

3.1  Flowering  abundance  (I) 

The between-year  variation in both female and  male flowering  was  large  

(Fig.  3 and Table 3  in I). In female flowering  during  the 13-year  study  

period  (from 1984 to 1996),  there  were 6  fairly abundant,  5  poor and 2  

years  with no  flowering.  Male flowering  followed a  similar pattern  (Table  

3 in I), and the estimates for pollen  production  in 1989,  1992,  1993 and 

1995 were 11.2, 5.3,  4.8 and 23.4 kg/ha,  respectively.  Differences  in 

flowering  abundance among the clones were large and  statistically  

significant.  The average broad-sense heritability values for female and  

male flowering  were  0.37 and  0.38,  respectively,  but varied considerably  

from year to year (Table  3 in I). The correlations  between the  flowering  

abundance of the clones in different  years  were usually  positive  and  

significant  (Table  4 in I).  However,  there was  also  a  strong tendency  that,  

in two pairs  of  successive  good  flowering  years,  the  same clones usually  

flowered well  in the first  year in  both pairs  of  years,  and the other  clones 

in the second year (Fig.  4 in I).  The clonal differences in flowering  could  

not be explained  by  geographic  origin,  but  were, excluding  the second 

years  (1993  and  1996),  dependent  on the graft  size  (Table  5  in  I). 

3.2  Reproductive  phenology  (II)  

During  the years examined (1985,  1986, 1987, 1989, 1992, 1993 and 

1995),  there  were large  differences in the onset of spring and in the 

weather during  flowering  (Table  1 and Fig.  2 in II). The duration of  the 

receptive  period  of  the seed orchard  varied (in  1992,  1993 and 1995)  from 

5  to  8  days,  and anthesis determined on the basis  of  airborne pollen (in 

the seven  years  above)  from 5  to 10 days.  The receptive  period  started 

normally  about one day  earlier  than anthesis.  In general,  the  flowering 

periods  of  the different clones  overlapped  (Fig. 3 in II). The clonal 

differences in the phenology  of  receptivity  were in most cases statistically 

significant,  but not in pollen  shedding  (Table  2  in II). The broad-sense 

heritability  estimates were higher  for female  than for male phenology.  

Environmental factors, conversely,  had a stronger effect  on male 

phenology  (Tables  4, 5  and 6 in II). Wide graft  spacing  and a graft 

position  that favoured solar radiation on the lower parts of  the crown  

promoted  early  pollen  shedding.  
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3.3  Temporal  and  spatial  variation 

in airborne  pollen  (11,  VI)  

The between-year  variation in the timing  of  flowering  was  more than 

three weeks  during  the 7  years studied (Fig.  2 in II). The mean date  of 

anthesis  varied from May  15 to  June 6,  the average being May  28.  The 
effective  temperature  sum of  these dates varied from 122 to  159 d.d.,  the 

average  being  141 d.d.  Temporal  variation in the  amount of airborne 

pollen  was large  (Fig.  2  in  11,  Fig.  4 in VI). 

In  1995 the duration of anthesis  was  5  days  (Fig.  3 in 11,  Fig.  4 in VI). 

The amount  of  airborne pollen  increased during  the first  four days,  and 

then decreased rapidly.  Diurnal  variation was  high;  the  lowest  amounts  of  

pollen  were measured at  night  and  in  early  morning  when,  in general,  the 

air  humidity  was  high  and  wind speed  low. During  the first  two  days  of  

anthesis,  the pollen  densities inside  and outside  the seed orchard were 

approximately  the same, but  from the third day  onwards the  densities in 

the  orchard  were  higher  (Fig.  5  and  6  in  VI). On  the third  day  the highest  

densities were measured on the southern slope,  but one day  later in the 

northern part of  the orchard,  indicating  phenological  differences in  pollen  

shedding.  In addition  to  phenology,  spatial  variation was  affected by  the 

wind;  the highest  pollen  densities were measured on the downwind side 

of  the orchard.  The highest  pollen  density  measured in  the orchard  was 

about 9000 pollen  grains/m
3
 of  air  (June 1, 4 p.m.), while the  highest 

density  outside  and  upwind  side  of  the  orchard  was  3000  grains/m
3

.  

3.4  Pollen  competition  (111,  IV)  

Significant  variation was  found among the  clones in the  in vitro pollen  

tube growth  rate,  the differences in  the average pollen-tube  lengths  being  

7-  and 10- fold in different years  (III). No correlation was  found between 
the pollen-tube  length  and the phenology,  growth  or  growing  site charac  

teristics  of  the  pollen  donors. However,  there  appeared  to  be pollen  lots 

that either benefited from a  higher  germination  temperature  or  germinated  
faster  at lower temperatures (Fig.  2  in  III). 

When  paternal  success  was  studied  using  controlled crossings  (IV),  the 

success  was  found to be  unequal:  15 of  23 crossings  producing  progeny 
differed significantly  from the hypothetical  ratio  of  1:1  (Table  3  and 4 in 

IV).  The paternal  contribution in the  majority  of the crossings  was  as  

expected:  the pollen  parent with a more-vigorous  in vitro germination  

sired more seeds than  the parent  with less-vigorous  pollen (Table  3 in 
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IV).  Despite  aberrations in  two of  the pollen  mixtures,  the results  support  

the hypothesis  that pollen-tube  competition  is one  of the factors  

contributing  to  male fitness in Picea abies. 

3.5  Mating patterns  (V,  VI) 

The mating patterns found in the seed orchard  were far from the ideal. 

The estimated  rates  of pollen  contamination in 1989, 1992 and 1993 were  

0.69,  0.69 and 0.71,  respectively  (Table  1 in  V). The contamination rate 
in the thinned parts  of  the orchard  was significantly  lower than that  in the 

unthinned parts in two of  the  three years  studied  (Table  2  in V). The 

estimated outcrossing  rate  for the  whole seed orchard was 0.96 in  1992 

and  1.00  in 1989 and 1993 (Table 1 in V),  indicating  that the rate  of  self  

fertilised seed produced  in the  orchard  was negligible.  

In 1995 the estimated rate  of  pollen  contamination for  the whole  seed 

orchard was 0.71,  varying  from  0.60 to 0.87 for the different altitude 

zones, and from  0.51  to 0.80 for  the different sections of  the  orchard  (Fig.  

1 and Table 4 in VI). The differences in  the  rate  of  contamination were 

significant  between both the zones  and  the sections.  The highest rate of 

contamination was  estimated for the lowermost altitude zone and the 

lowest  rate for the middle section  of the orchard  (Table  4 in  VI). There 

were no significant  differences in self-fertilisation between the zones  or  

the sections,  and the estimated rate of  selfing  in 1995 for  the whole seed 
orchard  was  0.06 (Table  4 in  VI), which was  clearly  higher  than that  in 

1989,  1992 and 1993 (in V).  Significant  negative  correlation was  found 

between the contamination and the  accumulated amount  of airborne 

pollen  (Table  3  in  VI). 

The rate  of cross-fertilisation within the orchard clones,  after the rates  

of  pollen  contamination and self-fertilisation were  summed up, was  low. 

The cross-fertilisation rates  in 1989, 1992, 1993 and 1995 were 0.31,  

0.27,  0.29 and  0.23,  respectively  (V  and VI). On  the  edges,  in the  lowest 

altitude zone of  the orchard,  the cross-fertilisation rate  was  only  0.06,  and 

even  in  the middle section  of  the  orchard it  was  not  more  than 0.45 (Fig.  1  

and Table 4 in VI). 

3.6  Genetic  diversity  and  quality  of  the  seed  crop  (I,  VI)  

The effective  number of  clones (status  number)  in  the seed orchard  was  

56 when the  variation in  ramet  number  was considered. This is  equivalent  

to  84% of  the  clone number (census  number)  of  the  orchard. The effective  
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clone numbers for imaginary  seed crops  after  adjusting  for the variation 

in both female and male flowering,  and assuming  equal ramet  numbers 

for  the clones,  varied  in different years from 23 to 55,  the  average being  

39 (Table  7 in I). When the variation in ramet number was also 

considered the genetic  diversity  was  lower,  the  effective clone number 

being  on the  average 32. Pollen contamination increased the effective 

clone number  by about two-fold when the  contamination rate (0.70)  

estimated in the  orchard (V  and VI) was  considered (I). 

The effective clone numbers for  the imaginary  seed crops  in  1989  and 

1995,  after adjusting  for the variation in ramet number  and female 

flowering,  were 30 and  25,  respectively.  The difference between the years  

was much larger after  adjusting  for cone production,  and seed yield  

(Table 1) because of  the cone  and seed damage in 1995. In  1995 the 

average number of  seeds extracted  per cone and the proportion  of  full  

seed were low with high clonal variation  (VI), while in 1989,  when the 

quality  of  the  seed crop was good,  no lowering  in the effective clone 

number was found (Table  1). Adjusting  for the estimated pollen 

contamination together  with the variation in  pollen production  increased 

the  effective  clone number,  and thus the  genetic  diversity,  considerably  

(Table  1).  

Table I.  Estimated effective  clone numbers (Nc) of the seed  crop of  the 
Heinämäki seed  orchard in  1989 and 1995 after adjusting  for different 

sources  of variation in the genetic  contribution of the clones and for 

pollen  contamination. 

1 0.69 in 1989 and 0.71 in 1995 

Sources of variation Effective clone  number, Nc 

1989 1995 

Ramet number 56 56 

Cone production  30 17 

Cone production  and  seed yield 29 1 1 

Above with pollen production  and  
76 35 

pollen  contamination 1 
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Discussion  

4.1  Balance  and  synchrony  of  reproduction  

Abundance  of  flowering  

In Picea abies  the annual variation in flowering  abundance and cone crop 

is  large  (Blomqvist  1876, Heikinheimo 1932, 1948, Tiren 1935,  Koski  

and Tallqvist  1978).  During  the  13-year  study  period  the year-to-year 

variation in both female and male flowering  in the seed orchard  was large  

from year to year (Fig.  3 and Table 3 in I). The variation in female  

flowering  could be  explained  reasonably  well using  Pukkala's (1987)  

model for predicting  the  seed crop on  the  basis  of  the temperature  data of 

the two previous  summers.  The greatest incongruity  between the 

prediction  and  the  number of  flowers in the seed orchard  was  observed 

when there  was  good  flowering  in two  successive  years  (Fig.  3  in I). 

The statistically  significant  and  genetically  determined variation in 

flowering  abundance between the seed orchard clones in Heinämäki 

(Table  3 in I)  is  in accordance  with earlier results  for  Picea abies in both 

natural stands and seed orchards  (Sarvas 1968, Eriksson  et al. 1973,  

Koski  and  Tallqvist  1978, Skroppa and Tutturen 1985, Kjasr  1996),  as  

well  as  for other coniferous species  (Varnell  et al.  1967,  Jonsson et al. 

1976,  Bhumibhamon 1978,  Koski  and Tallqvist  1978, Schoen et al. 1986,  

Matziris 1993).  The correlations between the clones in  different years  

were  usually  positive  and significant  (Table  4 in I). The finding  that the 

correlation in female flowering  between two  successive  good  flowering  

years was  poor (Table  4 in I) is  in accordance  with the results for  Picea 

abies (Kjasr 1996),  Picea  glauca  (Schoen  et  al.  1986)  and Pinus nigra 

(Matziris  1993). In the  case  of  male flowering,  the changes  between 

successive  years  were not  as  great  as  those in female flowering,  as  also  

observed by  Kjasr  (1996).  The correlations for two  pairs of  successive  

good  flowering  years showed that there  are  genotypes  with a different 

response  to  climatic factors:  some clones flowered well in the first  year, 

and other clones in the second year (Fig.  4 in  I). 

Differences  in the origin  of  the clones  did not  explain  the variation in 

flowering.  The origins  of  the  clones in the seed  orchard may not  have 

represented  a  sufficiently  large  area to show any  clear  differences in 

response  to climatic adaptation.  Instead,  the clonal variation in flowering 

abundance was  explained  by  the graft  size, except  in the  case  of  female 

flowering for the  latter years of  the two successive  good  flowering  years  

(Table  6 in I). 
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Reproductive  phenology  

The average  date of  flowering,  measured as the mean date  of  anthesis,  

varied from May  15 to  June 6  (Fig.  2  in II). The average temperature  sum  

that had accumulated by these days  was 141 d.d.  (Table  1 in II),  which 

was  exactly  the  same temperature sum  as  Sarvas  (1968)  obtained for a 

natural stand in southern Finland,  and close  to the figure  of  134 d.d. 

reported  by  Luomajoki  (1993)  for  a natural stand located near  the seed 

orchard.  The timing  of  flowering  was  better determined by  the tempera  

ture sum than the calendar day.  The range of  37 d.d. (Table 1 in II) 
between the lowest  and highest  temperature  sum  values for the  midpoint  

dates of anthesis  corresponds  to 6-7  days  when calculated using  the 

average daily  temperatures during  the flowering  period.  This  is  much 

smaller than the difference of 23 days  observed in study  11. The result  is  

in accordance  with the findings  and  conclusions  of  Sarvas  (1968,  1972)  

and Koski (1991).  

The duration of  the receptive  period  in different years  (1992,  1993 and 

1995)  varied  in the studied seed orchard  from 5 to 8 days, and  that of  

anthesis  (in  1985, 1986,  1987,  1989,  1992,  1993 and  1995)  from  5  to  10 

days  (II). The receptive  period  started,  at both the graft  and  clone level,  

slightly  earlier  than anthesis.  In  1995 the receptive  period and pollen  

shedding  in the orchard  occurred  almost simultaneously,  but  in 1992 and 

1993 pollen  shedding  was  somewhat delayed  (Fig.  3 in II). The short  and 

rather  simultaneous  flowering  period  observed in this  Norway  spruce 

seed orchard is  different from that reported  for many other coniferous 

species  especially  in  the temperate  region  (El-Kassaby  et  al.  1984,  Griffin  

1984, Askew  1988,  El-Kassaby  et al.  1988,  Askew  and  Blush 1990,  El-  

Kassaby  and Reynolds  1990, El-Kassaby  and Askew  1991, Matziris 

1994).  In a  colder climate, shorter and  more  simultaneous flowering  has 

been reported  in  seed orchards  of  Pinus sylvestris  (Jonsson  et al. 1976,  

Pulkkinen 1994b,  Burczyk  and Chalupka  1997) and Picea mariana 

(O'Reilly  etal.  1982).  

Although  clonal differences in  female and  male  flowering  phenology  

were rather small, the ranking  of the clones was in most cases  similar  

from year to year (Table 3 in II). The correlation coefficients between 

female and male phenology  were positive,  but statistically  significant  

only  in one year. No  results  for Picea abies trees  or  clones showing 

correlation of  flowering  phenology  between years  or  between female and 

male phenology  within the same year have earlier been presented,  but  the 

phenomenon  is  well known in other coniferous species.  In Pinus 

sylvestris  the correlation in year-to-year flowering  phenology  among 

clones is  positive  and  significant  (Jonsson  et al. 1976,  Chung 1981  a,  

Pulkkinen  1994b,  Burczyk  and  Chalupka  1997).  The order of  the onset  of 

receptivity  and pollen shedding  among  clones also  remains unchanged  in 
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Pseudotsuga  menziesii (El-Kassaby  et  ai. 1984),  Pinus  radiata (Griffin 

1984),  Pinus taeda (Askew  1988),  and  Pinus nigra  (Matziris  1994). 

Female phenology  was  genetically  more strongly  determined than 

male phenology  (Table  2 in II). The clonal differences at the start of  

receptivity  were,  in most cases,  statistically  significant  but not  in pollen  

shedding,  and the broad-sense heritability  estimates  were higher  for 

female than for male  phenology.  This can also  be looked at in the 

opposite  way:  the environmental factors  had a stronger  effect  on male 

than on female phenology.  Very  little attention has been paid  to environ  

mental factors  in studies  on reproductive  phenology.  The reason  for  this 

has  been the  relatively  small variation between ramets compared  to that 

between clones in  many species  and seed orchards  (Jonsson  et al.  1976, 

Wheeler 1983, El-Kassaby  et  al. 1984,  Griffin 1984,  Matziris  1994).  

Airborne  pollen  

Temporal  variation in the amount of  airborne pollen  (Fig.  2  in  II and  Fig.  

4 in VI)  could  be explained  on  the basis  of  temperature  sum, air  humidity  

and wind  speed  (VI). The regular  diurnal  variation,  i.e.  a  large  amount  of  

pollen  during  the day  and  a  small amount  at night,  and  its  relationship  

with air  humidity,  has been observed among others  by  Sarvas  (1955).  

However,  if  air  humidity  is  relatively  low  at night,  the amount of  pollen  

in the  air  might  be high  even  at  that  time. A good  example  of  this  is  the 

night  of  May  31 /June 1 in 1995 (Fig.  4 in VI) when the air  humidity  was 

lower  than during the other  nights,  and  there was  sufficient  wind. Sarvas  

(1962)  reported  a similar case in a natural Pinus sylvestris stand. 

When the spatial  variation in pollen  density  was  investigated  in  detail 

in 1995 (Fig.  5  in VI), there was  only  slight  variation during  the  first  two  

days  of  anthesis,  but the variation on the third  and fourth day  was much 

larger. The variation in pollen  density  in the seed orchard implies  the 

effect  of  wind, and phenological  differences in pollen  shedding  between 

the southern slope  and  the  northern part of  the orchard  (II). The average 

pollen  density  increased in the seed orchard  to  a much higher  level than 

outside  it on the third day  of  anthesis  (Fig.  6 in VI). This seems  to 

indicate that  the pollen  caught  in the  orchard  during the  first  two  days  was  

mainly  derived from outside,  but on  the  third day, because of  the higher  

pollen  densities,  from the orchard.  This is  in accordance  with the results  

(II)  that abundant pollen  shedding  from the seed orchard  grafts  started on 

the third day  of  flowering, and was  over  within two  days. 

In 1995,  as  a  result  of  the very  warm weather (Table  1 in VI),  the 

duration of  flowering  was short,  and  the time differences between the 

clones were small. However,  the reproductive  synchronisation  was not  

complete  even  at that time.  When pollen  shedding  in the orchard  was  at 
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its  most  abundant on the third and  fourth day  of  flowering  (Fig.  4 and  5  in 

VI), most of  the female  flowers  in  the orchard  had been receptive  for  one 

to  two  days  (Fig.  3 in II). In  1993, when flowering  lasted  longer,  some  of  

the  21 clones had passed  their receptivity  before the latest  clones had 

started to shed pollen  (II). This means  that,  in some  years, some of  the 

clones do not  participate  in  the pollination  of  all  the clones in  the orchard. 

The weight  of  one pollen  grain  of  Picea  abies is  three  times and its  

volume eight  times greater  than that  of  Pinus sylvestris  (Lindgren  et ai. 

1991).  However,  the pollen  of  both species  has  been found  to  be able to  

travel  over  long  distances  (Koski  1970,  Lindgren  et ai. 1991).  In addition  

to  an  ability  to  be  distributed over  long  distances,  pollen  has  to  stay  viable 

during  the  flight  in order to be able to transfer genes.  Pollen collected 

from  the Heinämäki seed orchard  remained  viable in  open paper bags  in a  

greenhouse  for two  weeks (Fig.  3 in III). In another experiment,  pollen  

exposed  to  direct ultraviolet radiation in an  outdoor roof,  stayed  viable for 

several  days  (Lindgren  and  Lindgren  1996).  Because  pollen  can travel for 

several  hundreds of  kilometres already  during  one day with a moderate 

wind speed,  long-distance  migration  of functional pollen  seems  to be 

possible.  

Pollen competition  

In addition to  clonal imbalance in flowering  and seed production,  and 

incomplete  reproductive  synchronisation,  it has been suggested  that 

pollen  competition  might  be one  of the reasons  for  unequal  reproductive  

success  also in conifers (Schoen  and Cheliak  1987, Nakamura and 

Wheeler 1992,  Skrappa  and Lindgren  1994). In study  111,  significant  

variation in pollen  viability  was  found in  vitro among the  seed orchard  

clones. In addition,  the pollen parent  that germinated  more  vigorously  in 

vitro sired more seeds  than the  less  vigorous  pollen  when controlled 

crossings  were  performed with pollen lot  mixtures  that  included fast-  and 

slowly-elongating  pollen  tubes (IV). A similar  connection  between the 

pollen  tube growth  rate and  parental  success  has  previously  been  reported  

in a  number of  angiosperm  species  (Snow  and Spira  1991,  1996, Pasonen 

et al.  1999).  

The results presented  here are  in accordance with the reproductive  

biology  of  Picea abies,  which provides  an opportunity  for male gameto  

phyte  competition.  Sarvas  (1968)  calculated that the  average  capacity  of  a  

pollen  chamber in  Picea abies  is  5  pollen  grains.  The significant  variation 

in pollen  viability,  together  with the observed genotype-environment  

interactions  in  pollen  performance,  may  contribute to  the  variable genetic  

composition  of  the seed produced  in  the  orchard.  However,  the influence 

of pollen  competition  among seed-orchard clones is not  essential  in 
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conditions where the  rate  of  cross-fertilisation  within an orchard is  less  

than 0.30. On  the  other  hand,  if competition  mainly  takes place  between 

orchard  and non-orchard pollen, its  effect  on  the genetic  composition  of 

the seed crop might  be  crucial. 

Mating  patterns  

The basic  factors in the mating  patterns  of  seed orchards  are  cross  

fertilisation within seed-orchard clones, self-fertilisation and pollen  

contamination (Adams  and Birkes  1989). The primary  aim of seed 

orchards  is  to ensure  that all the  mating  occurs  among the clones planted  

in  the orchard, and that self-fertilisation  and pollen  contamination should 

be  negligible  (Sarvas  1970,  Feilberg  and  Soegaard  1975).  However,  the  

estimated rates  of  cross-fertilisation  in the  Heinämäki seed orchard  varied 

from  0.23  to 0.31 in the years studied (1989,  1992,  1993 and 1995).  In 

1995, when the mating  patterns  were estimated  for  the different  parts  of  

the orchard,  the rate of  cross-fertilisation  was at  its  highest  (0.45) in the  

middle,  and at  its  lowest  (0.06)  on  the edges  of  the  orchard.  

The estimated  rates  of  self-fertilisation varied from year to year. In 

1989 and  1993 the estimated rate of outcrossing  was 1.00, and  thus the  

rate  of  selfing,  by  definition (e.g. Brown  et  al.  1985),  was  0.00. In 1992 

when the rate  of  outcrossing  was 0.96,  the  rate  of  selfing  was  0.04 (V).  In 

1995 the selfing rate  was 0.06 (VI). In  1989 and 1993,  when no selfing  

was  found in  the orchard,  the weather during  flowering  was  colder and  

wetter  than in 1992 and 1995 (Table 1 in  II),  and therefore the difference 

between  the  onset  of  the receptive  period  and pollen  shedding  was  longer  

in 1989 and  1993 than in  1992 and  1995 (II). However,  the selfing  

estimates  for Heinämäki in 1992 and 1995 were lower than those  

estimated  by  Xie and  Knowles (1994)  for a  Norway  spruce  seed orchard  

in  Canada,  but  higher than the estimate  of  Paule et  al.  (1993)  for  two  seed 

orchards  in Sweden. The selfing  rates  estimated  for  Norway  spruce  stands  

have been higher  than those for seed orchards (Muller 1977, Lundkvist  

1979, Muona et al.  1990).  Thus,  the fear  of  injuriously  high  selfing  rates  

in the clonal-row seed orchards,  common in Norway  spruce  seed orchards  

in Finland,  has been unnecessary. 

The estimated rates  of  pollen  contamination in  the orchard were 

surprisingly  similar,  from 0.69 to 0.71 from year to  year, in  spite  of  the  

annual differences in weather conditions and  timing  of  flowering  (Table  1 

and Fig.  2  in  II), and in pollen  production  (from 5  to  23  kg  /  ha).  The 

rates were also  high when  they  are  compared to  the rates,  0.43  and  0.59,  

estimated by  Paule et al.  (1993)  for two  different  seed orchards  in 

Sweden. Although  no differences were found in Heinämäki in the rate  of 
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contamination between years,  there  were  large  and  significant  differences 

between different parts of  the orchard  (Table  2 in V  and  Table 4 in VI). 

The high  rates  of  pollen  contamination,  together  with the results  of  

temporal  and spatial  variation in  airborne pollen,  indicate  that there is  no 

phenological  isolation between the  seed orchard and the surrounding  

forests,  as  has been assumed (Sarvas  1970).  However,  when detailed 

sampling  of  airborne  pollen  was carried out  inside and  outside  the orchard  

(VI), it  was  found that the  pollen  density  inside the  orchard increased 

considerably  from the second to  the third day  of  anthesis,  but  outside  the 

orchard  the greatest  increase occurred  one day  later. This may  indicate 

that there  is  some phenological  difference in pollen  shedding  between 

seed orchard  grafts  and surrounding  forests  which,  however,  is  too  small  

to cause  any  phenological  isolation. The possible  effect of  this  phenolo  

gical  difference is, however, hidden under metandry (II), which is  

characteristic  for both Picea  abies  and Pinus sylvestris  (Sarvas 1968).  

According  to Pulkkinen (1994b),  this  is  pronounced  in south-transferred 

Scots  pine  seed orchards,  and one of  the reasons  for the high rates  of  

contamination. Harju  and Nikkanen (1996)  have shown that, when 

pollination  in Scots  pine  seed orchard  is  restricted  to  the pollination  peak,  

pollen  contamination is  lower than that  during  the period  of  less  abundant 

pollen shedding  at  the  beginning  of female  receptivity.  This  also  indicates 

that delayed  pollen  shedding  from the  seed orchard  grafts  could be one  

reason  for  the high  pollen  contamination. 

One reason  for  the  high  rates  of  contamination may also  be competi  

tion and selection  during  pollen  tube growth  or embryo  development.  In 

study  111 no  difference in in vitro pollen-tube  growth  was found between 

seed orchard  pollen  and pollen  from five trees  outside  the orchard. How  

ever,  in a  study  on  Pinus sylvestris  using  similar methods (Venäläinen  et 

ai.  1999),  the  pollen  tube growth  of  clones from  northern Finland was  

significantly  slower  than of  those from southern Finland. Pulkkinen (un  

published  data)  has  obtained similar  results  in Scots  pine  seed orchards.  

4.2  Genetic  diversity  and  quality  of  the seed  crop  

Genetic  diversity  

Study  I  demonstrated that the genetic  diversity  of  the seed crop cannot  be 
determined solely  on the  basis  of  the clone  number of  the seed orchard,  

but  that  variation in ramet number and flowering  abundance,  as  well as  

pollen  contamination,  must be considered in order to estimate the 

effective  number of  clones for  the seed-orchard crop (Table  7  in I). The 

relative effective  clone number of  the  Heinämäki seed orchard,  after  
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adjusting  for  the variation in ramet number,  was  0.84,  which is  higher  

than the  average (0.74) for Norway  spruce seed orchards  in  Finland 

(Kang  et al.  2001).  When adjusting  for the  fertility  variation of the 

orchard  clones,  the relative  numbers  obtained were on the  average about 

0.5,  with large  annual variation (Table  7  in I).  The result  that  the  fertility  

variation was smallest when flowering  was  the most abundant is  in 

accordance  with the  findings  of earlier studies  on Norway  spruce 

(Skrappa  and Tutturen 1985, Ruotsalainen and Nikkanen 1989). In 

addition,  there are  several stages  during  flowering  to  the  seed crop that 

may affect  the  clonal  contribution,  and thus the genetic  diversity  of  the 

seed crop (Sarvas 1968, Sweet 1975, Schoen et al. 1986,  Schoen and 

Cheliak 1987).  A considerable drop  in  the effective  clone number due  to 

variation in flowering  and  seed yield  has been found in many  conifer  seed 

orchards  (I, Kjaer and  Wellendorf 1997, 1998, Gömöry  et al. 2000).  

According  to the  theory  developed  by Lindgren  and Mullin (1998),  

and Ruotsalainen et al. (2000),  pollen  contamination will considerably  

increase  the effective  number of  clones (Table  7  in I).  The estimated rate  

of  pollen  contamination in the  Heinämäki seed orchard  in four  different 

years (1989,  1992,  1993 and  1995)  was  about 0.7  (V  and VI). With this  

rate  of  contamination the effective clone number  of  the  seed crop, after 

adjusting  for all  the existing  variation,  would be  about the same as  the 

clone number of  the orchard,  and double the effective  clone number 

without pollen  contamination. The results  show that the  level  of pollen  

contamination has a great  effect on the genetic  diversity  of the seed 

orchard crop. In the calculations,  pollen contamination was  assumed to 
derive from an  infinite population  of  unrelated trees. If  the  fertilising  

pollen  grains  are  related to  each  other or  to  the  seed orchard  clones,  then 

the effect  of  pollen contamination on  the effective clone number will be 

smaller  although  still  considerable (Lindgren  and Mullin 1998). 

In addition to clonal variation in flowering  and  cone production,  

variation in  the  ability  to produce full  seed may considerably  lower  the 

genetic  diversity  of  the seed crop in years  with  poor crop quality.  When 

the effective  clone numbers in  1989 and 1995, after  adjusting  for the 

variation in cone production  and  seed yield,  were  examined (Table 1), it 

was  found that the number was  considerably  lowered in 1995 (from 25  to  

11) but not in 1989 (from 30 to 29). There were two reasons  for the 

difference. After adjusting  for the  variation in female flowering  (and  

ramet  number),  the difference in  the numbers (30  and 25)  was  rather 

small,  indicating  higher  fertility  variation in 1995, but  after  adjusting  for 

the variation in cone  production,  the number of  1995 decreased  to  17. The 

reason  for this decrease was  underestimation of  the number of  flowers in 

abundantly  flowering  grafts  in  1995 (data  from I  and VI). The number for 

the seed yield decreased even more to  11, which was  due  in  this  case  to 
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cone and seed damage.  Poor  quality  of  the seed crop was  reflected as  the 

low average number of  seeds extracted  per  cone (Table  2  in VI), but the 

low genetic  diversity  was  caused by the large clonal variation  in these 

traits. 

In addition to  differences in clonal contribution and pollen  contami  

nation,  which gave rise  to  differences in effective clone numbers between 

years, there are  sources  of  variation that do not necessarily  appear in  the  

number,  but may considerably  affect  the gene frequencies  of  the seed 

crop. Even if the  rate of  pollen  contamination would remain at the  same 

level from year to year, the  origin  of migrating  pollen  may  vary 

considerably  between years in accordance  with the prevailing  weather 

and wind conditions. In years such as 1989 and 1993, when pollen  

shedding  in the seed orchard,  and probably  also  in surrounding  forests,  

was  more delayed  compared to female receptivity  in  1995 (II), the  

proportion  of  long-distance  pollen  might  have been higher  than that in 

1995,  even  though  the rate  of  contamination in the orchard  was  the same. 

The patterns  of  pollination  affect  the quantity  and  quality  of  the seed  

orchard  crop. Poor  pollination  may lead to  a  decreased seed crop (Sarvas  

1968,  Harju  and Nikkanen 1996)  but, in addition,  at least in Picea abies, 

to decreased genetic  quality  of  seed crop, resulting  from  both increased 

inbreeding  (Sarvas  1968, Koski 1970,  1973) and decreased genetic  

diversity  due to more unbalanced flowering (I, Matziris 1993, Kjser  

1996).  

Quality of  the  seed  crop 

The quantity  and quality  of  the seed crop can  be decreased by  a  high  rate  

of self-pollination  or  by insufficient  pollination,  or by  damage that 

prevents  normal development  of  flowers,  or  by  rust  and insect damage.  

Cone production in  the Heinämäki seed orchard in 1995 was  rather 

abundant,  but the  quality  of the crop was  poor;  more than 90% of  the 

cones  had resin flow and  other forms of  damage,  while in 1989 damage  

was found in only  14% of  the  cones  (Nikkanen  1992). The number of 

seeds extracted  per  cone was  22 in 1995, but 87 in 1989 (Nikkanen,  

unpublished  data). In addition,  the  proportion  of  full  seed was  lower in 

1995 than  in 1989. One reason  for  the  low number  of  seeds  per  cone and 

for  the low proportion  of  full  seed may have been,  in  addition to  rust and 

insect damage,  a high rate  of  self-pollination,  as  indicated by  the higher  

selfmg  rate  of  germinated  seed in  1995 (Table  4 in  VI)  than in  1989,  1992 

and 1993 (Table  1 in V). 

In addition to large  differences in  the  quantity  and quality  of  the  seed 

among the clones (VI), there  were also  large  and  significant  differences 

between different parts  of  the orchard  (Table  2  in VI). For  instance,  cone 
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production  and  1000-seed weight  were higher  in the central  and upper  

most  parts  than in  the  other  parts  of  the  orchard,  probably  because of  the 

more fertile soil (abandoned  agricultural  land)  in  this  part  (I). Clear 

spatial  variation was also  found in the number of  seeds per  cone and in 

the  proportion  of  full seed. Because the proportion  of  full seed was  

strongly  correlated with  the  accumulated amount  of  pollen  (Table  3 in 

VI),  differences in the abundance of pollen  may have affected this  

parameter. 

4.3  Options  to improve  the  functioning  of  seed  

orchards  

Options in seed orchards  at the seed-producing  phase  

The Heinämäki seed orchard, and  the  other  Norway  spruce seed orchards  

that  are  now at the seed-producing  phase,  are  more  than 30 years  old. In  

1989, after the long juvenile  period,  the  orchards  produced  the first  

abundant seed crop (Nikkanen  1992), and since then there has been 

several  abundant or  moderate flowering years (I, Männyn,  kuusen  ja ...  

1997).  Although  the  spruce  orchards  have produced  more  seed  than had  

been  expected  10-15 years ago (Metsänjalostus-  ja siemenhuolto-... 

1992), there  have also  been problems,  especially  related  to cone and seed 

damage,  and irregular  flowering.  Evidently  the  irregularity  of  flowering  

has  to  be accepted,  but the prevention  of  cone and seed damage is  of  

crucial  importance.  

The management  of Norway  spruce  seed orchards  is limited to  weed  

control and  coppice  cuttings  and,  in some of  the  orchards,  fertilisation  and  

cutting  off  the top of  the  crown of  the grafts  (topping)  have also  been 

carried  out.  So  far, the Heinämäki seed orchard  is the only  spruce  orchard  

that  has  been thinned. Thinning  the spruce seed orchards has not been an  

urgent  measure, because spruce  grafts  can  tolerate shade without loosing  

the  vitality  of  their  lower branches,  and because  not  enough  progeny test  

results  have been available for genetic  thinning  (Venäläinen  1993). 

An ideal seed orchard  has many targets and requirements,  which are  
difficult  to fulfil in an operational  seed orchard. Deviations  from the 

targets  affect  the genetic  efficiency  of  the seed orchard.  The studies of 

this  thesis  have confirmed  that  functioning  of  seed orchards  is  often far 
from  ideal. There were  large differences in flowering  and  seed production  

among the clones,  and that  pollen  contamination was  at a  much  higher  

level  than expected  when  the orchard  was  established while,  on  the  other 

hand,  self-fertilisation  was  at a lower  level. The assumption  of  random 
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mating  between the clones was violated in Heinämäki by  many factors:  

large fertility  variation among the clones,  incomplete  reproductive  

synchronisation,  and pollen  competition.  

The genetic  efficiency  of the seed orchards can be improved by  

adjusting  for  the mating  patterns  and  clonal contribution.  In seed orchards  

at the seed-producing  phase, the most important  management  technique  

that can  be  used to  affect  both mating  patterns  (to  minimise selfing  and 

pollen  contamination)  and  clonal contribution (to  increase seed produc  

tion and improve  genetic  gain)  is  thinning.  Topping  the grafts  may have 

similar  effects  as  thinning  on  mating  patterns  by  increasing  the amount  of  

direct solar radiation reaching  the  lower parts of  the crown.  A number of 

other methods for  decreasing  pollen  contamination in seed orchards  in the 

open field have been tested,  of  which the most successful  have been 

delaying the flowering  of  the grafts  by  cooling  the flowers with water  

(Fashler  and  El-Kassaby  1987) and supplemental  mass pollination  

(Wheeler  1983, El-Kassaby  and Ritland 1986, Wheeler and Jech 1992, 

Eriksson et al. 1994). In addition,  Lowe and Wheeler (1993)  have 

suggested  increasing  pollen  production  by means  of  flower stimulation,  and 

the creation of  phenologically  synchronous  neighbourhoods  within an 

orchard,  as methods of decreasing  the contamination. The only  experience  

of  these management  methods in  Finland concerns  thinning  and  topping. 

Thinning  seed orchards  has  two  different aims:  to  improve  the growing  

conditions of  the  grafts,  and to  adjust  for the  contribution of  clones 

(Werner  1975,  Ilstedt 1982, Nikkanen and Pukkala 1986).  Thinning  can 

create  more  space,  and  subsequently  result in  more  direct solar radiation 

to  the grafts  left  in the orchard.  In  study II  it  was demonstrated that  a  

wide graft  spacing  promotes  early  pollen  shedding,  which shortens the 

time difference between female receptivity  and pollen shedding.  It was 

also  found (V)  that, in some cases, pollen  contamination in the thinned 

parts of  the  seed orchard  was  lower  than that in the  unthinned parts.  All 

this advocates for keeping  the orchard  open enough  to ensure  more solar 

radiation and better ventilation for  the lower parts  of  the  crown.  This  then 

promotes  early  pollen  shedding  which,  through  the  better reproductive  

synchronisation,  will decrease pollen  contamination. 

The basic  aim  of  thinning  the Heinämäki seed orchard  was  to  decrease 

the assumed probability  of  selfing.  Because the orchard has been estab  

lished using  a clonal-row design,  it  was  thinned systematically  by  remov  

ing  every  third graft  from  the clone row  (Fig.  1  in II). However, as  has 

been demonstrated in study  V, thinning  had  no effect on the  rate  of 

selfing  and,  as  has been already  mentioned,  the selfing  rate  remained at a 

reasonably  low level compared to  the results  for other seed  orchards  and 

natural stands. However, the rate of  0.06 estimated in the orchard in 1995 

(VI) can  be considered as rather high  for  a seed orchard  crop, because 
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every  seed from the  seed orchard  is  meant  to  be utilised  (in  forest  culti  

vation).  In  natural  forests,  on the  other hand,  there  is  more room for 

natural selection.  

When thinning  is  used to adjust  clonal contribution  it may have two, 

partly counteracting  aims: to  improve  the genetic  gain  of  the orchard  by  

removing  the clones with  the worst  breeding  value,  or  to  increase seed 

production by  removing  the clones with poor flowering  and cone 

production.  There are  now results  available from 15-year-old  progeny 

tests  for the genetic  thinning  of  the Heinämäki seed orchard  (Ruotsa  

lainen and Nikkanen 1998),  and  there  will  soon also be results  from 

10-year-old  tests for the other spruce  orchards  from the majority  of  the 

clones (Venäläinen  1993).  In addition,  clonal data from cone and seed 

production  collected in 1989 (Nikkanen  1992) and 1995 (Nikkanen,  

unpublished  data)  from 12 seed orchards,  including  Heinämäki,  are  also  

available for use  in genetic  thinning.  

A high  level of  pollen  contamination is  generally  regarded  as  one  of  

the greatest problems  in  conifer seed orchards  (Lindgren  1991,  Buchert  

1992,  Di-Giovanni and Joyce  1992,  Wheeler and Jech 1992, Lowe and 

Wheeler 1993).  Pollen contamination reduces  the  genetic  gain  obtained 

from seed orchards,  and may reduce the  adaptability  of  the seedlings  

(Lowe  and  Wheeler 1993).  No results indicating  a  loss  of  genetic  gain,  

due to  contamination,  are  yet  available from Norway  spruce.  In the  case  

of  Scots  pine, non-orchard local  pollination  in south-transferred seed 

orchards has caused poor adaptability  of  seedlings  when planted  in the 

northern reforestation  areas  in Finland (Nikkanen  1982,  Pulkkinen et  ai. 

1995).  The adaptability  of Norway  spruce  seedlings  has  been  found to  be 

better in  similar  situations (Ruotsalainen  and  Nikkanen 1998). 

Because the  reduction of  pollen contamination through seed orchard 

management methods has  proved  to be limited,  other methods,  applied  

outside the orchard,  have also  been tested. The nearest  part  of  the  spruce  

stand that closely  surrounded the Heinämäki seed orchard in all 

directions,  except  in  the  northwest,  was  felled in  1994. After the  felling,  

the nearest  trees  were  about 40 meters  from the orchard  (Fig.  2  and  Fig.  2 

in VI). This clear-cutting  was  carried out in order to decrease the high  

level of  pollen  contamination estimated for  the orchard  (V).  However,  as  

was  demonstrated in study  VI,  this had  no effect;  the  contamination 

remained at the same level. Prior to  felling,  the trees  around the  orchard  

probably  acted as  a filter, and not  only as  pollinators.  Ho (1992)  has 

observed that the vegetation  in  the  isolation zone  will modify  pollen  flight  

and filter some pollen  grains  out  before they  reach the  orchard. As  the 

seed orchard stands on a hill without any  shelter,  it is  now open and 

receptive  to  pollen  clouds  from every  direction. 
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The genetic  composition  of  the  seed crop can  still  be  adjusted  during  

the cone collection and seed handling  phases.  Skrappa  and Tutturen 

(1985)  suggested  combining annual seed crops in order  to equalise  the 

clonal contribution of  different  years.  The case  of  two  pairs  of  successive  

good  flowering  years (I), when partly  different clones flowered well in 

different years,  is  an  example  of  the  case  where combining  the  crops will  

equalise  the otherwise different  crops.  Annually  similar or genetically  

desired seed crops can  also  be achieved by collecting  cones  clone-wise 
and mixing  them at a later stage.  The clone-wise  collection of  cones  can 

also  be used for adjusting  the  rate  of  selfing  and  pollen contamination,  

since large  clonal differences in these traits  have been found in many 

studies  (Harju  and  Muona 1989,  Savolainen and Kärkkäinen 1992,  Savo  

lainen et  ai. 1992, Xie and Knowles 1994).  In  clone-wise collection, or  in 

thinning,  the clones with a high  rate of  selfing  or contamination can  be 

left out. 

Selective  cone  collection can  also  be  directed spatially,  for  instance,  by  

omitting the  fringes  of  the orchard  in collection. Since there were large  

differences in pollen  contamination between different parts of  the orchard 

(VI), this is  one  way of  decreasing  the rate  of  contamination in  the  crop. 

However,  a  relatively  large  part  of  the  orchard  (about  one-third)  had to be 

omitted  from  the collection in Heinämäki in order to decrease the rate  of 

contamination by  10 or 20%,  and even then the contamination still  

remained at the  level of  50%. 

Options  in  planning  new  seed orchards  

There are more  options  to improve the genetic  efficiency  of  seed orchards  

when new orchards  are  being planned  than when old orchards  are  to be  

improved.  In  the  late 1990'5,  after  a  break  of  25  years, two (total  area  12 

ha) new Norway  spruce seed orchards were established (National  

Register  of  Forest  Genetics),  and  at  least  100 hectares  of  new spruce  seed 

orchards  are  planned  to  be  established before 2020  (Männyn,  kuusen  ja ...  

1997). All  the information available about the breeding  value and 

production  ability of  the clones, as  well as  knowledge  of the factors  

influencing  their  functioning,  have to be taken into  consideration  when 

planning  new orchards.  

The studies of  this thesis  have raised some ideas about the general  

structure  and  genetic  composition  of  an  effective  seed orchard. The basic  

question  is,  shall  we try  to avoid  pollen  contamination or shall we  accept  

it. This will affect  many  of  the traits of  a new generation  seed orchard. If  

the  option  of  avoiding  contamination is  selected,  there  are  several  factors  

that  need to be  considered. First  of  all  the  orchard  has  to  be  large  enough  

(at  least  20 ha in  area),  and it  has to  be located in  areas where spruce 

forests  are  rare.  However, because Norway  spruce is  rather common 
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throughout  Finland, and because its pollen  is  able to fly over  long  

distances,  it is  impossible  to completely  avoid contamination anywhere  in 

the  country.  In order to minimise contamination other methods,  like  

increasing  pollen production  and promoting  early  pollen  shedding,  have  

also  to  be  utilised  to  promote  cross-fertilisation  within the orchard  clones.  

However,  probably  the only effective methods of  avoiding  contamination 

are  to  establish the  seed orchard  in areas  with phenological  or  geographi  

cal  isolation (Koski  1987, Lowe and Wheeler 1993)  or to establish it 

under a plastic  cover (Mikola  1993  a). When applying  these methods,  

which drastically  change  the  conditions during  the  flowering  period,  we 

may,  however, be faced with physiological  after-effects  that affect  the 

growth  rhythm  of  seedlings  originating  from the  orchards  (Johnsen  1988,  

1989, Skrappa  et al. 1994, Johnsen et al. 1995,  Skrappa  and  Johnsen 

2000).  

In the case  of  the other option,  when pollen  contamination is  accepted  

and,  more over,  when it is  opted for the part of  the strategy  to produce  

genetically  improved  seed,  the optimum structure,  and also  the genetic  

composition  of  the  seed orchard  will be different from the one described 

above. On  the  contrary  to  the first  option,  in this  one  the orchard  has  to be 

located close  to spruce  forests,  and it  can  be small  in size  or  of  such a 

shape  that background  pollination  is promoted.  When the aim  is  not  to  

promote  pollen production  or  early  pollen  shedding,  the orchards  can  be 

established using  a  denser spacing  than was  used  in  the old  orchards,  also  

in order to  utilise them effectively  at  young age.  In  addition,  the clones 

producing  a lot  of  female flowers but  not as  many  male flowers can  be 

favoured. 

When new effective seed orchards  are  planned,  genetic  diversity  and  

genetic  gain have to  be combined. According  to  the theory,  the complete  

pollination  with non-orchard  pollen increases  4-fold  the effective  number 

of  clones compared  to the situation for complete  panmictic  cross  

fertilisation within the orchard  clones (Lindgren  and Mullin 1998).  Thus,  

in order  to  achieve  the  same genetic  diversity  in the  seed crop as  in the 

ideal traditional seed orchard,  only  one-fourth of  the number  of  clones  is  

needed. The lower clone number enables more effective selection of 

clones  with a higher  breeding  value,  and this  will  probably  compensate 

for the  loss  of  genetic  gain  due to pollen contamination. In this  option,  

several  orchards  with a small size  and low clone number are  established,  

instead of  one of  the traditional type of  seed orchard.  
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Erratum  

Explanations  for  formula I  on  page 209  should be:  

where K t  and K2  are  the mean  temperature  indices (the mean temperatures  
are  compared  to  corresponding  long term  averages  and  expressed  as  

percentages)  of  June one  and  two years  before flowering,  respectively,  

and Hj  and  H2 are  the  respective  mean temperature indices of  July.  
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Variation  in  Flowering  Abundance  and  
Its  Impact on  the Genetic  Diversity  of 

the  Seed  Crop in  a  Norway  Spruce 
Seed Orchard  

Teijo  Nikkanen  and  Seppo  Ruotsalainen  

Nikkanen,  T.  &  Ruotsalainen,  S.  2000. Variation in  flowering abundance  and its  impact  on 

the  genetic diversity  of the  seed  crop  in  a Norway spruce  seed  orchard.  Silva  Fennica 
34(3): 205-222. 

The  variation  in  flowering abundance  was  studied  in  a Norway  spruce  seed  orchard, 

located in  southern  Finland  (62°13'N, 25°24'E), consisting  of  67  clones  from northern 

Finland  (64°-67°N). The  flowering variation in  1984-1996 was  studied at  the  annual, 

clonal  and  graft  level.  In addition, the  genetic  diversity  of  an imaginary seed crop  was 

estimated  using a concept of status  number.  

The  between-year variation  was large in  both  female and  male  flowering. Differences 

in  flowering abundance  among the  clones  were large and  statistically  significant  in  all  

the  years  studied.  The average  broad-sense  heritability  values  for female and  male  

flowering were 0.37  and  0.38, respectively, but  varied  considerably from year  to  year.  

The  correlations  between  the  flowering  abundance  of the  clones in  different  years  were  

usually  positive  and  significant. However, the  correlations  for  two  pairs  of successive  

good flowering years  showed  that  the  same clones  usually  flowered  well  in  the  first  year  

in  both  pairs  of  years,  and  the  other  clones in  the  second  year.  The  clonal  differences in  

flowering could  not  be  explained by  geographic origin, but  were  more  dependent on the  

graft  size.  Our results  demonstrate  that  the  variation  in  the  ramet number, flowering 

abundance  and  pollen contamination  must  be  included  when  estimating  the  genetic 

diversity  of the  seed  crop  in  a seed  orchard.  The  relative  status  number  of the  seed  

orchard  was 84% of the  number  of clones  when  the  variation  in the  ramet  number  was  

included.  The relative  status numbers  after  adjusting for  the  variation  in  female  and  male  

flowering were on the  average  46 and  55%, respectively,  and  59%  when  adjusting for  
both  genders together. Pollen  contamination  increased  the  status  number  considerably.  
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1 Introduction  

The results of forest tree breeding  are utilised 

through  artificial regeneration.  Most of  the  seed 
for artificial regeneration  in Finland is  nowadays  

produced  in clonal seed orchards  consisting  of 

genetically superior  trees.  Because  the number 
of seed  orchards,  number of clones per seed 

orchard and total number of clones are  rather 

limited in Norway  spruce (Picea abies (L) Karst.)  

seed  orchards  (Nikkanen et  ai. 1999) especially,  
it  is important to  pay  attention to the genetic  

diversity  of the regeneration  material produced  

in seed orchards. 

Variation in flowering  affects  the genetic di  

versity  of  the seed crop. The  between-year  varia  

tion in the abundance of flowering  and  seed crop 
of Norway  spruce is  large (Blomqvist  1876, 

Heikinheimo 1932, 1948,Tiren 1935, Koski  and  

Tallqvist  1978). The periodicity  of  abundant flow  

ering is  irregular,  and the occurrence  of good  

flowering  years is  the more infrequent,  the more  
northern is the region  in question  (Koski  and  

Tallqvist  1978). The  annual  variation in flower  

ing  can primarily  be explained  by  climatic fac  

tors.  High temperatures during the differentia  

tion of  flower buds  promote abundant flowering  

(Lindgren  et ai.  1977, Pukkala 1987).  The  weather  
in early  and mid-summer is  crucial,  because the  

differentiation of flower primordia  takes place  
not later than  July. The seed crop of Norway  

spruce can be predicted  rather well on the basis  

of the June and July temperatures in the two 

preceding  summers  (Pukkala 1987). 
The variation in flowering  abundance is also 

large  between  trees  within a stand (Sarvas  1968, 

Koski  and Tallqvist  1978),  and between clones 
within a seed  orchard (Skroppa and Tutturen 

1985, Ruotsalainen and Nikkanen 1989, Kjaer  

1996). When Norway  spruce is  planted  in a lo  

cality  where the summer  temperatures are  higher 

than those to which it is  genetically  adapted,  it 

responds  by  enhancing  female flowering  (Stop  

pa and Tutturen 1985).  In  Finland, as  well as  in 
the other Nordic countries,  Norway spruce  and 

Scots  pine  (Pinus sylvestris  (L.))  seed orchards 

have often been established at sites  with a warm  

er  climate than that from which the selected plus  

trees  originate,  and where the orchard seed is  to 

be used (Sarvas 1970, Werner 1975, Ilstedt and 

Eriksson  1982, Skroppa and Tutturen 1985). 
For  estimating  genetic  diversity  in natural pop  

ulations, Wright (1931) introduced the concept 

of effective population size.  Since  then, the con  

cept  has been developed  and applied  by  many 

population  geneticists  and plant  breeders, main  

ly focusing on two alternative aspects;  the in  

breeding  effective population  number and the 

variance effective population  number (Crow  and 

Kimura 1970, Crow and  Denniston 1988, Muo  

na and Harju 1989, Caballero 1994, Burczyk  

1996, Kjser  1996). Because  effective population  
size  describes  the  rate  of  change  in a  population,  

Lindgren  et  ai. (1996, 1997) developed the con  

cept  of  status  number,  which is  a  more function  
al  measure  of  the state  for a  non-changing  popu  

lation, like a seed orchard crop. The application  
of  status number for estimating  the genetic  di  

versity of seed  orchards  or  seed orchard crops 
has  been discussed by Kjfer and Wellendorf 

(1997. 1998),  Lindgren  and Mullin (1998), Kang  

and Lindgren  (1998) and Ruotsalainen et ai. 

(2000),  and is  continued in the present work. 
Various aspects  of flowering and seed crop 

have been intensively  studied in a  Norway  spruce  
seed  orchard. Heinämäki, in southern Finland 

(Ruotsalainen  and  Nikkanen 1989, Nikkanen  

1993, 1995, 2000. Puhakka 1993, Hämäläinen 

1994, Pakkanen et ai. 2000).  This seed orchard  

was  selected  for the study  in 1983 because it was  

one of  the first  Norway  spruce seed orchards  to 

start reasonable flowering. It also well  repre  

sents  the specific  problems  encountered in Finn  

ish Norway  spruce seed orchards: clonal-row 

design, pollen  contamination and transfer of 
clones from north to south.  Due to the long  time 
series  of  flowering  this  seed orchard offered ex  

cellent material for the present  study.  
The aim of this study  was  to determine the 

magnitude  and characteristics of flowering  vari  

ation in a  Norway  spruce seed orchard,  and to  try  

to explain  the variation on the basis  of clonal and 
environmental factors. The variation in flower  

ing  abundance and pollen  contamination was  used 
to estimate their effect on the genetic  diversity  of 
the seed  crop produced  in the seed orchard. 
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2  Material  and  Methods  

2.1  Basic  Information and Management  
of the Seed Orchard 

The  variation in flowering  abundance was stud  
ied in Norway  spruce seed orchard  no. 170 

(Heinämäki)  established in 1968 at Korpilahti, 
southern Finland (62°13'N, 25°24'E). The seed 

orchard consists of 67 clones  originating  from 

latitudes 64°-67° N  in northern Finland (Fig. 1). 
The effective  temperature sum  (+5  °C threshold) 
of the seed orchard  location was  1100 d.d., and 

that of the plus  tree  locations  varied from 820 to 
1070 d.d. (Nikkanen et ai. 1999). 

Information about the geographic  origin  of  the 
clones was obtained from the National Register  

of forest genetics. The geographic  data were  used 

to calculate predicted  climatic variables for the 

original growing  sites  of  the plus trees.  This was  
done by  a  program (ILMA) that interpolates  cli  
matic variables to any  location in Finland using 

the measurements  made at  weather stations (Ojan  

suu and Henttonen 1983).  The  original  geograph  

ic data and climatic variables derived from it 

were  used to explain  the clonal variation in flow  

ering.  

The  seed orchard is  13.2 ha in area,  and is  partly  
located on  abandoned agricultural  land (6.0  ha) 
and partly  on  forest land (7.2 ha) on  a hill (160—  

190 m asl)  sloping  gently  to the south and steep  

ly  to the  east  and west  (Fig.  2). The grafts were 

planted  in the orchard  using  a clonal-row design  

with ramets of each clone in two or more rows  

distributed in different parts  of  the orchard. The 

spacing  of  the grafts  was  3.5 x  6.5 m. the ramets  

of the same clone being  located  6.5 metres  from 
each other. In 1987 one half of the orchard was  

thinned systematically  by  removing  every  third 

graft, and  in 1994 the other half of  the orchard in 
the same way  (Fig. 2).  The average number of 

ramets  per  clone was  56 before the first  thinning, 

47 after it,  and 39 after the second thinning.  In  the 

early part of  the study  period  the seed orchard  was  
surrounded by  old Norway  spruce forest which 

was  cut down in winter 1994. 

Fig.  I. Location of  the  Heinämäki  seed  orchard  and  the  

origin  of its  clones,  and  the  monitoring stands  for 

flowering  abundance.  

2.2 Soil and  Weather Data of the Seed 

Orchard 

The  nutrient concentrations and pH of  the seed  

orchard  soil were  determined in 1993 (Hämäläi  

nen  1994). In order to estimate  the variation in 

the nutrient status, the  seed orchard  was  divided 

into  20 plots  and soil samples  were taken down 

to a  depth  of 5-15 cm at 20 points  on each  plot.  
The samples  were  bulked to give one composite  

sample  per  plot. Plant-available phosphorus,  po  
tassium. calcium and magnesium  were deter  
mined by  extraction with  IN ammonium acetate  

(pH  4.65), and pH on a soil  sample/water  sus  

pension.  The  results  were used as  independent  
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• graft observed border  line  between  
°  graft not  observed agricultural and  forest  land  

Fig.  2.  The  Heinämäki  seed  orchard  in  1993. The  or  

chard  is situated  on a  hill  and  divided  into  four  

sections  (NW. NE, SW and  SE).  Two of the  sec  

tions  (NE  and  SW) were thinned  systematically  in  

1987. and the rest  of the orchard  in 1994. The  

border  line  between  the  abandoned  agricultural  

(in the  middle) and  forest land, and  the  altitude  

contours  are marked  on the  map.  The  sample grafts 

observed  after 1988 are also marked. 

variables to describe the differences in flowering  

abundance or  graft size.  The results  of the soil 

analyses  grouped  into agricultural  and forest land 

are  shown in Table 1. 

The weather data for the study  period  were 

obtained from the Jyväskylä  weather station of 
the  Finnish Meteorological  Institute, located 25 

km north-east  from the seed orchard. The weath  

er  data consisted of annual, monthly  and daily 

Table 1. The  concentrations  of  plant  available  phos  

phorus  (P).  potassium  (K),  calcium  (Ca)  and  mag  

nesium  (Mg) and  pH (soil/water)  in  the  soil  of  the  

Heinämäki  seed  orchard  in  1993. 

Table 2.  The  annual  effective temperature sums and 

mean temperatures of the  study  period recorded at 

the  Jyväskylä  Weather  Station  of  the  Finnish  Me  

teorological Institute.  

mean  temperatures (including  effective temper  
ature sum. d.d.)  from 1982 to 1996. The  annual  

mean temperatures and  temperature sums, and 

some important  monthly  mean temperatures are  

shown  in Table  2. 

Nutrient Agricultural  land Forest  land Total 

X CV 9c X cv % X  cv%  

P  mg/l  1.9 49.1 1.7 50.1 1.8 50.2 

K  mg/l 64.0 19.4 60.3 26.7 62.3  23.1 

Ca mg/l  680.9  23.4 360.3 42.4 527.6 42.4 

Mg mg/l  34.6 27.4  34.4 50.6 34.5 40.1 

PH  5.8 2.8 5.4 1.9 5.6 4.3 

Year  Temperature  

sum 

(>  +5 °C) 

Annual 

Mean temperature  
May June July August  

d.d.  °C  

1982 999 2.9 8.1  10.0 16.5 14.2  

1983 1220 3.4 10.6 13.4 16.6 13.5 

1984 1211 3.6 12.3 12.8 15.0 13.2 

1985 1141 0.8 7.7 13.3 15.3 14.8 

1986 1154 2.5 10.2 16.4 16.3 12.1 

1987 892 0.6 7.0 12.7 14.2 10.5 

1988 1331 3.0 9.5 15.8 19.2 13.2 

1989 1254 4.7  9.9 15.6 15.8 13.4 

1990 1059 3.9 8.4 13.1 14.7 14.2 

1991 1086 3.7 6.0 12.5 16.5 15.0 

1992 1176 3.6 10.4 15.2 13.3 12.7 

1993 994 2.9 11.6 10.6 15.1 12.5 

1994 1143  2.8 6.6 12.5 18.2 14.1 

1995 1263 3.7  8.2 16.5 14.7 14.2 

1996 1070 2.6  7.7 13.0 13.8 16.1 

Average 

in 1982- 96 1133 3.0  9.0 13.6  15.7 13.6 

Average 
in 1961- 90 1129  2.6  8.7 14.1  15.7 13.6 
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2.3  Measuring  Flowering  Abundance and 

Size of the Grafts 

Both female and male flowering were  studied. 
The number of  flowers was  recorded every  year 

during  1984-1996, the observations  being  made 

during flowering  in May  and June. The number 
of  male flowers on sample  branches was  count  
ed and used to evaluate the total  number of male 

flowers on a graft. In 1984 when the study  was  
started,  10 sample  grafts per  clone  were selected 

systematically  to  cover  representatively  the whole 

seed  orchard. After the first  thinning  in 1987 the 
number of sample  grafts was  5, but in 1988 it 

was  returned to 10 using  systematic  selection. 

No changes  in the number of  sample  grafts were 

subsequently  made. However, the second thin  

ning  in 1994 and natural mortality  decreased the 
number of  sample  grafts to a minimum of 4 and 

average of  7  in 1996. The total  number of  grafts 

on which flowering abundance was  measured 
varied from 650 to 478.  

The height  and diameter of the sample  grafts 

were measured in all years except 1994. The 
width of the crown was  measured in 1993. The 

average height  of the  grafts in 1984 when the  

flowering study  started was  4.9 m,  the clonal 

means varying from 3.0 to 7.2 m. Twelve grow  

ing periods  later in 1996 the  average  height  was  

10.4 m, varying from 6.5 to 13.4 m. Thus  the  

average annual height  growth of the  grafts dur  

ing the study  period  was  42  cm. The size  of the  

graft was  used as  one of the independent  varia  

bles to describe flowering  abundance. 

The flowering abundance in natural stands,  
used as  comparisons  when the annual variation 

in flowering  was  studied, was  obtained from 6 

monitoring  stands  in different parts  of southern  
and central Finland (Fig. 1) (Hokkanen, unpub  

lished data). 

2.4 Data Analysis  

The  annual variation in female flowering  was 

explained using  the  model for predicting  a seed 

crop developed  by  Pukkala (1987).  The formula 

predicting  the seed  crop (SI)  in southern Finland 

(Pukkala 1987, p. 138; corrected for a printing 

error)  is  

where K) and K2 are the mean temperatures of 

June one and  two years before flowering,  re  

spectively,  and H
t and H: are the respective 

mean temperatures of  July. 

The variables measured on the grafts in the  

seed orchard were used in the statistical analyses  

as such,  as  well as  after some transformations. In 

order to  describe the  changes  in flowering be  

tween  successive  years new variables were cre  

ated  by  subtracting  the number of  flowers in one 

year from that in the  following  year. 

Because the number of flowers had a skewed 

and  non-normal distribution, a non-parametric  
Kruskall-Wallis test  was  used to test the  statisti  

cal differences between the clones. For the  same 

reason  the Spearman  rank correlation procedure  

was  used to calculate the  strength of the linear 

association between different variables. Stepwise  

regression  analysis  was  used to obtain models 
that  best  explained  the variation in flowering.  

The  variance components for estimating  herita  

bility values  were obtained by  analysis  of vari  

ance. All these analyses  were performed  by 

SPSS®  Base 8.0  statistical  software (SPSS  Inc. 

1998). 

Broad-sense heritabilities (hB
2
) (= clonal re  

peatability)  were determined on a single-graft  

basis  for each study  year separately  using for  

mula (2)  (Sokal  and Rohlf 1995).  The  procedure  

is  similar to that  described in Matziris (1993). 

Standard errors for the estimates were determined 

using  the approximate  formula given by  Becker  

(1984). 

where sc

2  is  the variance component for clonal 
differences, and  s e

2 is  the environmental variance. 
Genetic diversity  of  the seed  orchard  and the 

seed crops was  described using  the status number 

(Ar s),  which  is derived from group coancestry  

(0) (Lindgren  et ai. 1996, 1997, Lindgren  and 

5/  =  175.35  +  0.05144f y'* tf

'  j  
_3.,B6o(£iip] 

">
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Mullin 1998). The status number for the seed 

orchard crop was  calculated according  to Lind  

gren and Mullin (1998) using  formula (3),  which 

assumes  that the seed orchard  clones are not 

related to each other and  have no inbreeding.  

where p;  can be any  clonal proportion  measured 
in the seed  orchard (female  or  male flowering,  

graft proportion).  
When the effect of pollen contamination was  

considered, the  status  number was calculated ac  

cording  to Lindgren  and Mullin (1998), and Ruot  
salainen et ai. (2000)  

to study  the effect  of  variation in flowering  abun  

dance on  status  number. This was  done separate  

ly for female and male flowering,  and also for 

the combined flower contribution. When the var  

iation in female or  male flowering  was  studied 

separately,  it was  assumed that the contribution 

of the other sex was the same as that  of the  

studied  one. The  study  was  brought  closer to the  

real situation when both the variation in ramet  

numbers and flowering abundance were com  
bined using  formulae (5)  and (3).  Finally  the  

status  numbers  for the seed crop were estimated 

by considering  the variation in ramet  numbers 

and flowering  abundance, and  assuming differ  

ent levels of pollen contamination (formula 4).  
The  rationale in this kind of  stepwise  approach  is 
that it shows the possibilities  of  utilising differ  

ent levels of  information about the  genetic  con  
tribution of the clones  in estimating  the genetic 

diversity  of  the seed crop. 

where/  is  the proportion of clone i of  the female 
flowers and m, is the corresponding  value for 

male flowering.  Both f and m, sum up to 0.5. M 

is  the proportion of  migrating genes in the seed 

crop. Here also  the clones were assumed  to have 

no relatedness and no inbreeding.  A further as  

sumption  was  that the contaminating  pollen  is 
not related to itself or  to the seed  orchard  clones.  

The status  number  for combined proportion  of 

female and male flowering  (c,-  =f + rrij)  was  also 

weighted  with the graft proportions  (g,). The 

weighted  proportions  were  calculated using  for  

mula (5)  

The status numbers were estimated for the seed 

orchard and the  seed crops adjusting  for several  

sources  of variation. The first factor  to be con  

sidered was the variation in ramet number. In  

this adjustment  the  clonal ramet contributions 

(Pi)  were inserted in formula (3), it being  as  

sumed that there are no clonal differences in 

flowering  abundance. The next  step was  to as  

sume an equal  number of  ramets  per  clone, and  

3 Results  

3.1 Annual Variation in Flowering  

The  year-to-year  variation in flowering  was  large  
in both female and male flowering (Table  3). 

During the  13-year  study  period  there were six  

years  (1987, 1989, 1992, 1993, 1995 and 1996) 
when  flowering  was  fairly abundant, five years 

(1984.  1985, 1986, 1990 and 1991) when it was  

poor, and two years (1988  and 1994)  when there 

was  no flowering  in the  orchard. 

Flowering was the most abundant in 1996, 
when  the average number of  female flowers per 

graft was  87  and male flowers 17 300.  The max  

imum number of  female flowers  per  single  graft 

was  680 and of  male  flowers 100 000.  However, 

the  percentages of  flowering  grafts were greater 
in 1989 and 1993 than in 1996 (Table 3).  

The  model predicting  the annual seed crop 

(formula  1) on the basis of the temperature data 

of  two previous summers  gave a rather good  fit 

(r  =  0.71, p  = 0.007) when the formula for south  

ern  Finland was  used  (Fig.  3).  The formula for 

northern Finland (Pukkala  1987) gave a poorer 

prediction  (r  = 0.41,  p  = 0.163). 

Ns=-~~ 

I  Pf (3) 
I=l 

Ms=~   

i(f+(\-2M)rm)
2

 (4)  
/'=! 

giCi  
Pi 

=

 v (5) 
LSiCi  
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Fig.  3.  Annual  variation  in  the  number  of  female  flowers  in  the Heinämäki  seed  

orchard  and  in  6 natural  stands in  southern  and  central Finland, and the 

predicted  seed  crop  using Pukkala's (1987)  model.  

Table 3. The  percentages of flowering grafts,  clonal  mean, minimum  and  maximum  values  for  the  number  of 

flowers, and  the  broad-sense  heritability  values  for  the  number  of  flowers  in  the Heinämäki  seed  orchard  in 

different  years.  

3.2 Clonal Differences  in Flowering  

Abundance 

Differences in flowering  abundance among the 
clones were  large  (Table 3)  and statistically sig  

nificant (p 0.000)  in all the years studied. The 

proportion of clones  that did not flower at  all 

was largest when flowering  was poor. In  the  

years of  abundant flowering  all  the clones in the 
seed  orchard flowered.  For  female flowering  such  

years were 1989, 1992, 1993 and  1996, and for 

male flowering  1987,1989, 1990,1993 and 1996. 

Broad-sense  heritability  estimates for flowering  

abundance  varied considerably  from year  to year 

(Table 3).  The average  heritability  estimates for 
female and  male  flowering were slightly  higher  

Year Percentage  of Number of female Number of male  Broad sense  heritability  

flowering grafts flowers  /  graft flowers  /  graft  

Female Male Mean  Min Max Mean Min Max Female Male 

1984 36 59 6 0 33 310  0 1770 0.19  0.30 

1985 31 48 4 0 39 530  0 6390  0.44  0.41 

1986 44 88 10 0 127 1080 0 4950 0.37  0.33  

1987 77 91 57 0 196 1700 10 7300  0.42  0.49  

1988 0 0 0 0 1 90 0 980 

1989 96 99 80 0 454 4900 73 16950  0.27  0.35  

1990 54 91 5 0 18 550  4 2010 0.17  0.46  

1991 31 66 5 0 20 620  0 2570 0.36  0.39  

1992 90 83 43 0 278 2190 0 6880  0.39  0.39  

1993 95 99 62 0 202 2080 184  5230 0.42  0.40 

1994 0 0 0 0 0 0 0 1 

1995 82 83 65 0 396 12500  0 47200  0.46  0.40 

1996 79 98 87 0 496 17300  1207 65000  0.63  0.30 

Average 55 70 33 3373  0.37  0.38  

sd 33 33 32 5158 0.12  0.06  



Silva  Fennica 34(3)  research articles 

212 

Table  4. The  Spearman  rank correlation  coefficients  of  the  clones  (sig  

nificance  in parentheses) between  female  and  male  flowering in  

different years  (diagonal), and  between  years  in  female  (above  

diagonal) and  male  flowering (below diagonal) in  the  Heinämäki 

seed  orchard. 

Table 5. The  Spearman rank correlation  coefficients (significance  in  parentheses) 

between  female and  male  flowering, and  origin (latitude) of the  clones and  size 

(height, breast  height diameter and  crown volume) of  the  grafts  in  the  Heinämäki  

seed  orchard. 

Year 1987 1989 1992  1993 1995 1996 

Female  

1987 0.58 . 0.49 0.48 0.55 0.32  0.44  

(0.000) |  (0.000) (0.000) (0.000) (0.009) (0.000) 

1989 0.72 0.39 : 0.74 0.51  0.38  0.39  

(0.00) O ö o (0.000) (0.000) (0.002) (0.001) 

1992 M 0.70 0.85 0.56 0.30 0.64 0.23  

a 

1 
(0.000) (0.000) (0.000) | (0.013) (0.000) (0.068) 

1993 
e 

0.52 0.65 0.55 1 0.17  -0.01 0.73  

(0.000) (0.000) (0.000) (0.182) (0.962) (0.000) 

1995 0.60 0.79  0.84 0.56 0-56  |  -0.17 

(0.000) (0.000) (0.000) (0.000) (o.ooo): (0.161) 

1996 0.18 0.27 0.21  0.47 0.08  1 0.38 ! 
(0.148) (0.030) (0.092) (0.000) (0.530) |  (0.001)  j 

Year Latitude Height  Diameter Crown volume 

Female Male Female Male Female Male Female Male 

flowering flowering  flowering  flowering 

1987 0.21  -0.11 0.37 0.57 0.33  0.60 0.36 0.46 

(0.097) (0.361) (0.002) (0.000) (0.007) (0.000) (0.003) (0.000) 

1989  0.07 -0.26 0.59 0.50 0.60 0.55  0.64  0.49 

(0.577) (0.037) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

1992 -0.13 -0.21 0.55 0.56 0.50 0.63 0.54  0.56 

(0.308) (0.095) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

1993 0.12  -0.28 0.19 0.42 0.16 0.47  0.34  0.27 

(0.358) (0.022) (0.130) (0.001)  (0.197) (0.000) (0.006) (0.026) 

1995 -0.16 -0.33 0.38 0.48 0.39 0.51  0.32  0.42 

(0.199) (0.006) (0.002) (0.000) (0.001) (0.000) (0.009) (0.000) 

1996 0.17 -0.07  0.001  0.17 -0.09 0.33  0.10  0.19 

(0.176) (0.598) (0.994) (0.180) (0.478) (0.006) (0.422) (0.124) 
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Fig.  4. Stability  in  the  change  of  flowering abundance  between  two different  pairs  of 

years  in  the  Heinämäki  seed  orchard.  Some  extreme  clones  are  labelled.  

than those for the height  (0.30)  and diameter 

(0.32) of the grafts. 

Only  the six  fairly good  flowering  years (1987,  

1989,1992, 1993. 1995 and 1996)  were  included 

in a more detailed examination of clonal differ  

ences.  The  correlation coefficients between fe  

male and male flowering  of the same years were  

always  positive  and statistically  significant, with 

the exception  of  1993 (Table  4).  Also the correla  
tion coefficients from year to year were usually 

positive  and significant,  and in general  slightly  

higher  in male than  in female flowering  (Table 4).  

However, in some cases  the correlations between 

years were  complex.  In female flowering  the cor  

relation coefficients of  successive  years  (1992 and 

1993; 1995 and 1996)  were  rather low,  0.30 and 

-0.17, respectively,  and  in the latter case  negative  
and not significant.  On the  other hand, when the 
first  years of these two pairs  of  years (1992 and 

1995), and  correspondingly  the second  years 

(1993 and 1996) were compared,  the correlation 
coefficients were  significant  and high,  0.64 and 

0.73, respectively.  The changes  in flowering 

abundance between two successive good  flower  

ing  years showed  a persistent  pattern for the two 

pairs  of  years (Fig. 4).  
When  the clonal differences in flowering  were 

studied on the basis  of  geographic  origin  using 

correlation analysis,  no correlation was  found 

between female flowering and latitude, while 
there was  a significant  negative  correlation be  

tween  male flowering  and  latitude in 1989, 1993 

and 1995 (Table 5).  Male flowering  decreased 
with increasing  latitude of  origin.  The correlation 
coefficients between the average height of the 

grafts and  flowering  were significant  in the stud  
ied years,  except  for 1993 and 1996 in female 

flowering, and  for 1996 in male flowering. The 
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correlation coefficients between flowering  and  the 
other variables describing  the graft size  (diameter 

at breast height  and crown volume) were very  
similar to those with height  (Table 5).  Clones with  

larger  grafts had more abundant flowering.  

3.3 Factors  Affecting  Flowering  

Abundance 

The average number of female flowers per  graft 

was 40% higher  on the  agricultural  land than on 
the forest land, and the average  number  of male 

flowers 8% higher.  For  female flowering  the dif  
ference was statistically significant  (p 0.05) in 

1987, 1989, 1992 and 1993 (when six  years of 
abundant flowering  were analysed),  but for male 

flowering  only  in 1996. The average  height  of 

the grafts  in 1995 was  10.7 m (±0.11)  on the ag  
ricultural  land and 9.5 m  (±0.13) on  the  forest 

land. The  correlation between the  height and 

flowering  of  the grafts was  statistically  signifi  

cant  (p 0.005)  for both female and male flow  

ering  in every  year,  the average  Spearman  rank  
correlation coefficient of six  years for female 

flowering  being  0.36  and for male flowering  0.44.  
Differences in flowering  abundance between 

the clones were investigated  using  stepwise  re  

gression  analysis.  The variables analysed  were 

geographical  latitude (lat)  and longitude  (Ion)  of  

the plus  tree,  average height (h).  breast height  
diameter (dbh),  crown width (wid)  and crown 

volume (vol)  of  the grafts of  each clone.  The re  

sults  for both  female and male flowering in six  

separate years are  shown in Table 6.  The  regres  

sion model for female flowering  in 1992 includ  
ed three statistically  significant  independent  var  

iables (dbh, in addition to vol and wid,  R2  =  0.61), 

while in the other cases there were  two or less  

(Table 6). In  general,  female flowering  was best  

Table 6. Statistically  significant regression equations with  one and  two independent variables  for 

female  and  male flowering  at  the  clonal  level  in  the  Heinämäki  seed  orchard.  

Note: wid = crown width, vol =  crown  volume, dbh = breast  height  diameter, h = graft height. lon  = longitude of  the clone origin  

Year Intercept First term Second term 

Variable Coefficient  p Variable Coefficient p R- 

Female  

1987 -44.13 wid  2.67 0.001 0.15 

1989 —4.04 vol  2.27 0.000 0.51  

1989 175.13 vol  5.00 0.000 wid  -7.32 0.007  0.56 

1992 -4.54 vol  1.31 0.000 0.51  

1992 118.68 vol  3.19 0.000  wid  -5.04 0.001 0.59 

1993 No  significant  regression 
1995  4.74 vol  1.65 0.000 0.23 

1995  201.76 vol  4.65 0.001 wid  -8.05 0.029 0.29 

1996 No  significant regression 

Male 

1987 -1230  dbh  258.4  0.000 0.32 

1989 -5255 dbh 707.6  0.000 0.31 

1992 -3819  dbh 346.0  0.000 0.40 

1992 -2520  dbh 213.6 0.011 vol  27.4 0.042  0.44 

1993 -1150  dbh 172.6 0.000 0.21  

1993 -784  dbh 294.4 0.000 wid -69.0 0.013  0.29 

1995 -36000  h 483.6 0.000 0.26 

1995 -43652  h 372.0 0.001  Ion 39.6 0.028  0.31  

1996 -10287  dbh 1347.3 0.001  0.15 

1996 -22790  dbh 2406.9 0.000 vol  -263.8 0.015  0.23 



Nikkanen  and  Ruotsalainen Variation in Flowering  Abundance and  Its  Impact  on  the Genetic  Diversity  of  the  Seed  Crop ...

 

215 

explained  by  crown  volume, and male flowering 

by  breast  height  diameter. The geographical  ori  

gin of the clone was  included in  the  model only 

in the case  of  male flowering  in 1995. 

3.4  Genetic Diversity  in Seed Orchard 

Crops  

The status number of the seed orchard  was 56 

when the variation in the number of ramets  per 

clone was  considered. This was  equivalent to 

84% of  the number of  clones (census  number) in 

the orchard. The  variation in female flowering 

had  a considerable influence on the status number 

of the seed crop when the ramet  number was 

assumed to be the same for all the  clones, and 

male flowering was  assumed  to follow female 

flowering.  The average  status number after ad  

justing  the variation in female flowering  was  31 

(46% of the census  number), the variation be  

tween  different years ranging  from 12 to 48 

(Table  7).  The  status  number after adjusting  for 

the variation in male flowering  in the same way 

Table  7.  Estimated absolute  (Ns )  and  relative  (Nr)  status  numbers  of the  seed  crop  

of the  Heinämäki  seed orchard after  adjusting  for  different variation sources 

in  the genetic contribution  of  the  clones  and  for  pollen contamination. 

Year Equal  ramet  number Weighted with ramet number 

Flowering  of Flowering  of both genders  
female male both 

genders  Percentage of pollen  contamination 

0 25  50 75 100 

Absolute  status  number, N
s
 

1984 22 28 31 32 40 50 61 75  

1985 14 16 24 19 25 33 43 52 

1986 12 33 23 17 21  25 31 37 

1987 37 42  44 36 47 61  83 116 

1989 41 43 48 37 48 63 87 121  

1990 37 40 46 37 48 64  87 121  

1991 24 31  37 31 39 49 62 76 

1992 39 41  44 33 42 56  78 113 

1993 48 49 55 42  55 75 105 153 

1995 32 33 38 29 39 51  70 98 

1996 31 44 44 36 44 56  73 95 

Average 31 36  39 32 41 53 71 96 

sd 11 9 9 7 10 14 21 34 

Relative  status number, Nr (%) 

1984 33 43 46 49 61 75 93 113 

1985 21  24 36 29 38 51  65 79 

1986 18 50 35 26  32 38 46 56 

1987 56 63 64 55 70 92 125 176  

1989 62 65 72 56  73 96 131 183  

1990 56 60 70 56  73' 97 132 183 

1991  37 48 56 47 59 75 94 115 

1992  59 62 66 50 64 85  118 171 

1993 73 74 83 64 84 113 159 232 

1995 49 50 57  44 58 77 106 148 

1996 47 67 66 55 67 85 110 144 

Average 46 55 59 48 62 81 107 145 
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as  for female flowering  was  36 (55%),  ranging  

from 16 to 49. It was always  higher  than the 

status number adjusted  for  female flowering.  

When female and male flowering  were  consid  
ered together,  the average status number  was  39 

(59%). When the status number of the seed crop  

was  adjusted  for  all  these three sources  of  varia  

tion, i.e. ramet number, female flowering and  
male flowering,  it  decreased to  32 (48%) on the 

average (Table 7).  
The estimated effect  of  pollen  contamination 

on the status number of the seed crop was  large 

(Table 7).  Even moderate pollen  contamination 

(25%) increased the average status  number from 

32 to 41.  The status number increased with in  

creasing  pollen  contamination. With  total back  

ground  pollination  it was  96, which is  45%  high  

er  than the census number of the seed orchard 

(Table 7). 

The status number for the seed crop adjusted 

for  variation in female flowering  increased with 

increasing  number of female flowers  (r  = 0.65, 

p  = 0.032). For male flowering  the correspond  

ing  dependence  was weaker (r  =  0.29, p  = 0.394).  

4  Discussion  

In Norway  spruce the between-year  variation in 

flowering abundance and cone crop is large  

(Blomqvist  1876, Heikinheimo 1932, 1948, Tiren 

1935, Koski  and Tallqvist  1978). Many  attempts  
have been made to explain  this variation (e.g.  

Lindgren  et  al. 1977, Pukkala  1987). In  our  study  

the variation in female flowering  could be ex  

plained  reasonably  well using  Pukkala's  (1987) 
model for predicting  the seed crop index for 

southern Finland on  the basis  of  the temperature 
data of the two  previous  summers.  The greatest 

incompatibility  between the prediction  and the 
number of flowers in the seed orchard was  ob  

served in the two cases  where there was  good  

flowering  in two  successive  years (Fig.  3).  The 
model predicted  a decreasing  seed crop index 

for the latter years, but  in these cases  the flower  

ing  in the  seed orchard actually  increased. In the  
natural stands the abundance of flowering  better 

followed the predicted  value. The reason  for  the  
different behaviour of the seed orchard grafts 

was either their northern origin  or the special  

conditions prevailing  in the  seed orchard.  

The large,  statistically significant  variation be  

tween the clones in flowering  abundance (Table 

3)  is  in accordance with earlier results  from Nor  

way spruce in both natural stands and  seed 
orchards  (Sarvas  1968, Eriksson  et  al. 1973, Kos  

ki  and Tallqvist  1978, Skroppa  and Tutturen 

1985, Kjasr  1996), as  well as  with other conifer 

species  (Varnell  et al. 1967, Jonsson et al. 1976, 
Bhumibhamon 1978, Koski  and Tallqvist  1978, 
Schoen et al. 1986, Matziris 1993). 

The broad-sense heritability  estimates (Table  3)  
for female flowering were about the same or  

lower than those reported  for the  cone crop of  
other conifers (Varnell  etal. 1967, Matziris 1993, 
Savolainen et al. 1993).  Unfortunately,  results  for  

male flowering  are  scarce.  The only  comparable 
result  concerns  the heritability  of pollen produc  
tion in Scots  pine (Savolainen  et al. 1993),  which 

was  about the same  as  that  for male flowering  in 

our  study.  It is noteworthy  that in our  study  with 

Norway  spruce, as  well as  in the study  of Savolai  

nen et al. (1993)  with Scots  pine,  the flowering 
characteristics  had higher broad-sense heritabili  
ties than height  growth.  The considerable amount 

of  genetic  variation in flowering  characteristics is 
in contrast with  the hypothesis  of low variation 

in fitness-related characteristics (Falconer  and 

Mackay  1996). This  is  not.  however, the first  time 
that this  has  been observed. Large  genetic  varia  
tion  has  been reported  in other studies on  flower  

ing  (see references above),  as well as  in other fit  
ness-related characters (Harju  et al. 1996).  This  

apparent contradiction is discussed in other stud  

ies (Harju  et al. 1996, Kjaer  1996, Ruotsalainen 

1998). 

The  broad-sense  heritability  estimates obtained 

in this  study  can be considered to be overesti  

mates, because the  seed orchard was  not estab  

lished using  a  random  design. In the clonal-row 

design used here the ramets  of a single  clone 

were usually  growing  in two to four rows in 
different parts  of  the seed orchard.  The effect of 

non-random distribution of the ramets on the 

heritability was  examined by re-analysing  the 
data after removing  12 clones with the most 
concentrated distribution. In most  cases  this data 

screening  had no marked effect on the heritabili  

ty  estimates,  but in the years with the  highest  
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heritabilities the estimates decreased somewhat 

in both female and male flowering.  Therefore 

the broad-sense heritability  estimates can be re  

garded  as  rather reliable. 

The finding  that  the correlation in female flow  

ering between two successive  good  flowering  

years was  poor (Table 4) is  in  accordance with 
the results  for Norway  spruce (Kjaer  1996), white 

spruce (Picea glauca  (Moench)  Voss) (Schoen  

et al. 1986)  and black  pine  ( Pinus nigra Arnold) 

(Matziris  1993).  In male flowering  the changes  
in flowering  abundance between successive  years 

were not  as  great  as  those in female flowering,  as 
also shown by  Kjaer  (1996).  The correlations for 

two  pairs of successive  good flowering  years 
showed that there exist  genotypes that have a 
different response to  climatic factors:  some clones 

flowered well in the first  year, and other clones 
in second year. This tendency  was  especially  

clear in female flowering. 

Our result that the same clones tend to  have a  

large  number of  both female and  male flowers 

(Table 4)  is  in  accordance  with earlier results  for  

Norway  spruce  (Skroppa  and Tutturen 1985, Kjaer  

1996, Kjaer and Wellendorf 1997),  black  spruce 

( Picea mariana (Mill)  8.5.P.)  (O'Reilly  et al. 

1982, Caron and Powell 1989)  and white spruce 

(  Schoen et al.  1986). Kang  and Lindgren  (1998) 
did not  find any  statistically  significant  correla  

tion between female and male flowering  in three 

pine  species  ( Pinus  densiflora  Sieb. &  Zucc.,  P. 

thunbergii  Pari,  and P. koraiensis  Sieb.  &  Zucc.),  

but Nikkanen and  Veiling  (1987) reported low  

positive  correlation between female and male 

flowering  in Scots  pine. It  should be kept in 

mind, however,  that our  results,  as  well as most  

of the other results  cited above (with the excep  

tion  of  Kjasr  1996), are  based on phenotypic  or  
clonal (genotype)  means.  In Scots  pine  the phe  

notypic  and environmental correlations between 

female and  male flowering  are usually positive,  

but genetic  correlation negative (Savolainen et 
al.  1993). However, the correlation between gen  

otypic  means gives a  rather good  approximation  

of  the real genetic  correlations if the  genotypes 

are represented  by  a sufficient number of ran  
domised ramets. Kjaer  (1996)  also obtained from 

moderate to high  genetic  correlations between 
female and male flowering  in a Norway  spruce 

seed orchard. Thus there seem to be some  differ  

ences  in the mode of sexual allocation between 

spruces  and pines,  spruces  having  a more equal  

contribution to female and male flowering.  One 

explanation  for the differing correlations between 
female and male flowering  could be that the  
correlation tends to be positive  at a  young age, 

but turns  more negative  with  increasing  sexual 

maturity  (Savolainen et ai. 1993). However, in 

our  material there were no signs  that the clones 

were specialising  into different sexes  with in  

creasing  age. 

The  differing  land-use history of the  central 
and outer  parts  of the seed orchard  (agricultural  

vs.  forest land)  was reflected in many of the 

characteristics measured  on the grafts. The  grafts 

growing  in the more fertile soil  on  the  agricultur  

al  land (Table  1)  were  taller. The flowering  abun  
dance correlated in most  cases with the  size of 

the graft, and  therefore the flowering  abundance 

was affected by  both environmental and clonal 
factors.  The clonal variation in flowering  was  

usually  explained  better by  size  characteristics 
of the grafts other than height;  female flowering  

by  crown volume and male flowering  by  breast 

height diameter (Table 5).  The result that tall 

grafts with a wide crown had more flowers than 
small ones  has  also been obtained for grafts in a 

Scots  pine  clone bank (Nikkanen and Veiling 

1987). 

Differences in the origin of  the clones did not 

explain  the variation in flowering  (Table  5). This 

was  contrary to expectations  (Eriksson  et al. 1973, 

Skroppa  and Tutturen 1985). In  our study the 

origin of the clones may not  have covered a  

sufficiently  large  area  to show  any  clear differ  

ences  in response to climatic adaptation.  In the 
above studies the  material covered large  areas,  

consisting  of provenances from Central Europe  
to Scandinavia. 

When the factors  affecting the  clonal  variation 

in flowering  were examined by  regression  anal  

ysis,  the  overall result was  that  there was  great 

year-to-year  variation in the coefficient of  deter  
mination (Table 6). When two  pairs  of succes  

sive  good  flowering  years  were studied, the co  
efficients of determination were  smaller in the 

latter years.  However, the  heritability estimates 

for  both  female and male flowering  were,  on the 

average, slightly  larger  in the latter years of  these 

pairs of years (Table 3).  This could be due to 
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clonal variation unrelated to the  size  of the ram  

ets  or  the origin  of the  clone.  This,  again,  indi  

cates  differing genetic  responses  to factors regu  

lating flower  induction. 

Our results  demonstrate that the genetic diver  

sity  of the  seed crop cannot be estimated only  on 
the basis of the census  number of the seed or  

chard, but  that variation in the ramet  number and 

flowering  abundance as  well as pollen contami  

nation must also be considered (Table  7).  When 

the variation in the number of ramets per  clone 

was included, the status  number of the seed or  

chard decreased to 84% of the census number. 

This decrease in the genetic  diversity  of a seed  

orchard is  mainly  caused by technical difficul  

ties  caused by lack  of material,  mortality etc.,  
which prevent equal  numbers of ramets being  

obtained for each clone. The decrease  in status 

number caused by  the variation in ramet  number 

was smaller than that in Norway  spruce seed  

orchards  in Finland on the  average  (Kang et al. 

2000), and within the range of  variation observed 

in seed orchards  of  several  other species  (Kjaer  et 

al. 1995, Kang  et  al.  2000). 
The variation in the abundance of female flow  

ering  decreased the status number more than the 

variation in male flowering  (Table 7). The  varia  
tion among years was  also greater after adjusting  
female flowering  than after adjusting  male flow  

ering. In Norway  spruce, Sitka spruce ( Picea 
sitchensis (Bong.)  Carr.)  and noble fir (Abies 

procera Rehder) the relative status  number of 

seed orchard crops after adjusting  for the varia  
tion in female flowering varies  considerably,  but 

has usually  been below 50% (Kjaer  et al. 1995, 

Kjaer  and Wellendorf 1998) which is  in accord  

ance with  our  results.  In pines  the relative status 
number has  usually  been higher than that  for 

Norway  spruce in our  study  (Kang  and Lindgren  

1998, Kjaer and Barner 1998). The  only  availa  
ble results  concerning  the effect of  male flower  

ing on  genetic  diversity indicated a lower de  

crease  in status number in mature seed  orchards 

of two pine  species  ( Pinus densiflora and P. 

thunbergii) than in our study  (Kang  and Lind  

gren 1998).  Our  observation  of  the  greater influ  

ence of  variation in female than in male flower  

ing was not unambiguously  supported  by the 

results  for these pine  seed orchards. Whether 
these results  indicate systematic  differences be  

tween  pines  and spruces  is  too early  to say.  

When both female and male contributions were 

adjusted  together,  the relative status number was  

slightly  larger  than that obtained after adjusting  

only for female or  for  male flowering  (Table 7).  

In Norway  spruce seed orchards  in Denmark,  the 

relative status  numbers after adjusting  for  fertili  

ty  variation in both genders  was  about the same 

as  in our study  (Kjaer  and Wellendorf 1998). 

According  to Kjaer  et al. (1995),  the effective 
clone numbers (equal  to  status number)  of  the 

seed crops of seed orchards of Norway spruce 

and noble fir always  increase when both male 

and female flowering  are adjusted.  An increase 

in the status number of  the seed crop after ad  

justing  for both genders  instead of  only  one,  can 

be expected  if there is sexual asymmetry be  

tween clones (Savolainen et al. 1993).  

The  status numbers,  obtained after adjusting  

the fertility  variation and  weighted  with the vari  
ation in the ramet  number, were  about half of the  

census  number, with large  annual variation. When 

pollen  contamination was  also  taken  into  ac  

count, the status  numbers clearly  increased.  The 
estimated level of pollen contamination in the  

studied seed orchard in three different years 

(1989, 1992 and 1993) is about 70% (Pakkanen 

et al. 2000). With this contamination level the  

status  number  of  the seed crop after adjusting  for 

all the existing  variation would be the same as  

the census number of the orchard,  and double 

the status  number without pollen  contamination. 

These results  cannot be compared  with those 
obtained in other studies because,  as  far as  we 

know,  the effect of  pollen  contamination on the  

genetic  diversity  of  the seed orchard  crop has not  
earlier been considered quantitatively.  The re  

sults  show that the level of  pollen contamination 

has  a  great effect  on  the genetic  diversity  of  the  
seed orchard crop. In our calculations pollen  

contamination was  assumed to be  derived from 

an  infinite population  of unrelated trees.  If the  

fertilising pollen grains are  related to each  other 

or  to the seed orchard clones, then the effect of 

pollen  contamination will be  smaller although  
still considerable (Lindgren  and Mullin 1998). 

In our study  the differences between years 

with minimum and maximum status  number were 

twofold when pollen  contamination was  not ad  

justed (Table  7). The genetic  diversity of the 



Nikkanen and  Ruotsalainen Variation in  Flowering  Abundance and  Its  Impact  on the  Genetic  Diversity  of  the  Seed  Crop ...  

219  

seed crop was  the  higher,  the  more abundant was  

the  flowering.  A similar result  has  been reported  

in other studies using  either status  number (Kjaer  

and Wellendorf 1998)  or  other measures of ge  
netic  diversity  (Ruotsalainen  and Nikkanen 1989, 

Matziris  1993, Kjsr  1996). In Scots pine  the 

status number of the seed  crop increases along  
with the seed crop with increasing  age (Kjaer  and 

Wellendorf 1998),  but in Norway  spruce  the de  

velopment  seems to be more erratic. According  

to our  results,  at an older age even a rather low 

flowering  abundancy  gives  a  more balanced seed 

crop than at a younger age (cf.  years 1990-91 

with 1984-86). 

The results  presented  here do not  concern  the 

real seed crops, but have been predicted  on the 

basis  of flowering.  However,  there are  several  

stages from flowering  to seed crop that can af  

fect  the clonal contribution and thus the  diversi  

ty of the seed crop (Sarvas 1968, Sweet 1975, 
Schoen et al. 1986, Schoen and  Cheliak 1987). 

In a  Norway  spruce seed orchard the  actual seed 

crop gave almost  the same status number as  the 

prediction  based on the variation in flowering  

(Kjaer and Wellendorf 1997). In a Sitka spruce 
seed orchard the relative effective clone num  

bers based on the number of cones and seeds 

differed considerably  (Kjaer  et al. 1995). How  

ever,  as also  suggested  by  Kjaer  and Wellendorf 

(1998),  monitoring  the flowering  abundance is  a 

feasible means  of obtaining  a picture  of  the ge  
netic diversity of  seed crop. Differences between 

species  can  influence the feasibility  of  the meth  
od, and more comprehensive  studies should be 
carried out  on Norway  spruce.  Especially,  the  

effect of male flowering  and  pollen  contamina  
tion on genetic  diversity  should be clarified. 

This study  has demonstrated the  large  annual 

and clonal variation in female and male  flower  

ing  in a Norway  spruce  seed orchard.  On the 
basis  of  the differences in flowering  abundance, 

the genetic  diversity  and the  genetic  composi  
tion of  the  seed crop varied from year to  year. 

The estimate for the status number after adjust  

ing  for the  variation in both female and male 

flowering  was  on the average 59%, and after 

adjusting  for  the variation in ramet  number and 
estimated pollen  contamination the same as  the 

census number. The status  number proved  to  be 

a feasible measure for describing  the genetic  

diversity  of  the seed  orchard crop. However, in 

order  to be able to relate  the level of genetic  

diversity  of  a  seed orchard crop to the situation 

after natural regeneration,  similar studies  should 
also  be conducted in natural stands.  
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Reproductive  Phenology  in  a  Norway 

Spruce  Seed  Orchard  

Teijo  Nikkanen  

Nikkanen,  T.  2001.  Reproductive  phenology in  a  Norway spruce  seed orchard.  Silva  
Fennica 35(  1):  39-53.  

Reproductive phenology was  studied  in a  Norway  spruce  seed  orchard, located  in  

southern  Finland  (62°13'N, 25°24'E). consisting of  67  clones  from northern  Finland  

(64°-67°N). Timing  of flowering was determined on the  basis  of data  recorded  by  a 

pollen catch  meter during 1984-1995, and  visual  observations  made  on  grafts in  1989, 

1992, 1993  and  1995.  The  genetic and  environmental  factors  affecting  female  and  male  

phenology, and reproductive synchronisation were  studied.  

The  between-year variation  in  the  timing of  flowering was more than  three  weeks.  

However, when  it  was defined  on the  basis  of the  effective temperature sum, the  

variation  was smaller.  No  phenological reproductive  isolation  was found  between  the  

seed  orchard  and  surrounding  natural  forests.  The  duration of the  receptive  period of the  

seed  orchard  varied  from  5 to  8 days,  and  anthesis  determined  on the  basis  of airborne  

pollen from 5 to 10 days. The receptive  period started about  one day earlier  than  

anthesis, except  in  one abnormally warm  flowering period when  female  and  male  

flowering started simultaneously. In general, the  flowering periods of the  different 

clones overlapped. The  clonal  differences  in  the  phenology  of  receptivity  were in  most  

cases statistically  significant,  but  in  pollen shedding they were  not.  The  broad-sense  

heritability  estimates  were higher for female  than  for  male  phenology. Environmental  

factors,  conversely,  had  a stronger effect on male  phenology. A  wide  graft  spacing  and  a 

graft position  that  favoured  solar  radiation  on the  lower parts  of the  crown promoted 

early  pollen shedding and,  subsequently,  better  reproductive synchronisation between  

female  and  male  flowering. 
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sation 
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1 Introduction  

Reproductive  synchronisation,  together  with a 
balanced production  of  female and male strobili,  

random mating, minimal selfing  and isolation 

from non-orchard pollen  sources,  are the  basic  

biological assumptions  when determining  the  

genetic  efficiency  of wind pollinated  seed or  

chards (Blush et al. 1993). However, many of 
these requirements  are  difficult to fulfil. In  order  

to determine the  degree  of flowering  synchrony  

of seed orchard  clones,  the  reproductive  phenol  

ogy of a seed orchard has  to be characterised. 

Data on  the timing  and duration of  female recep  

tivity and  pollen  release are  needed for this pur  

pose. Several different techniques  have been de  

veloped for collecting  and presenting data on 

reproductive  phenology,  the method applied  de  

pending  on the species,  conditions and accuracy  

requirements  (Jonsson  et  al. 1976, Wheeler 1983, 

El-Kassaby  et al. 1984, Griffin 1984, Erickson 
and Adams 1989, El-Kassaby and Reynolds  

1990). In addition to knowing  the variation in 

flowering  phenology  in the  seed orchard, it is 
also important to be aware  of the timing  of pol  

len shedding  outside the seed orchard  compared  

to pollen  shedding  and female receptivity  inside 
the  orchard. 

Numerous studies  have shown that non-syn  

chronous flowering  is a serious problem  in  seed 
orchards  of many  coniferous species  in the  tem  

perate region:  Douglas-fir (Pseudotsuga  men  

ziesii (Mirb.)  Franco)  (El-Kassaby  et al.  1984, 
1988. El-Kassaby  and Askew  1991), S  itka  spruce 

( Picea sitchensis (Bong.)  Carr.)  (El-Kassaby  and 

Reynolds  1990), radiata pine  (Pinus radiota D. 

Don) (Griffin 1984), loblolly  pine  (Pinus taedci 

L.)  (Askew 1988, Askew  and Blush 1990), and 

black  pine  ( Pinus nigra Arnold) (Matziris  1994). 

In a colder climate, more simultaneous flower  

ing  has been reported  in seed  orchards  of Scots 

pine ( Pinus sylvestris  L.)  (Jonsson et al. 1976, 

Pulkkinen 1994, Burczyk  and Chalupka  1997) 

and black  spruce (Picea mariana (Mill)  8.5.P.)  

(O'Reilly  et al. 1982), but no  information is 
available about Norway  spruce  ( Picea abies (L.)  

Karst.)  seed orchards. The only  studies on the 

reproductive  phenology  of Norway  spruce  are  
the work  carried out on flowering  and the seed 

crop in natural stands by Sarvas  (1968),  the flow  

ering  study  in a  four-year-old  clone trial by  Eriks  

son et al. (1973),  and the study on  the climatic 

adaptation  of Norway spruce in Finland by 

Luomajoki  (1993).  

The  seed orchards in Finland have been estab  

lished using  clones  originating  from geographi  

cally  and climatically  limited areas  (Sarvas  1970, 

Koski 1980, Nikkanen et al. 1999). This was  

done in order to ensure  the adaptability  of the 
seed orchard material to its utilisation area, which  

has usually  been planned  to be the same as  that 
of  the clone origins.  Simultaneous flowering  of 
the seed  orchard was  also aimed at  by  limiting 

the clone origin.  Another measure  directed at the 

phenology  of  the seed orchards  was  to locate  the 

seed orchards  of northern  origin  (like  the studied 

one) in the southern parts  of the country.  In 
addition to enhanced flowering  and better seed  

ripening,  this was  done in order to achieve pheno  

logical  isolation between the seed orchard  clones 
and surrounding  forests (Sarvas  1970). The hypo  
thesis  was  that the temperature sum required  for 

the onset  of flowering  would  be  smaller  in trees 

adapted  to northern conditions than in those 

adapted  to more southern conditions (Sarvas  

1962, 1968, 1970). No phenological  isolation 

has  been  found in Scots pine  (Pakkanen and 
Pulkkinen 1991. Pulkkinen 1994), and no results  

from this or  from any  other measures  directed at 

reproductive  phenology  in seed orchards have 
been reported  for Norway  spruce. 

The aim of this study  was  to determine the  

phenological  variation in female and male flow  

ering  in a Norway spruce seed orchard,  and to 
describe  the  timing of  the shedding  of  pollen.  An 
additional aim was  to determine the extent to 

which genetic  and environmental factors affect  

flowering  phenology,  and to discuss  the possible  

consequences  of  variation in reproductive  pheno  

logy  for the seed crop  produced  in  the seed or  

chard. 

2  Material  and  Methods  

2.1 The Seed Orchard 

The variation in  flowering  phenology  was  stud  

ied in Norway  spruce seed  orchard no. 170, 

Heinämäki, established in 1968 at  Korpilahti,  
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Fig.  1.  The  Heinämäki  seed  orchard  before  (a)  and  after  (b)  thinning in  1994. Grafts on which  

the  phenological stage of  the  female  and  male  flowers were observed  are marked.  

southern  Finland (62°13'N,  25°24'E).  The seed 

orchard consists  of 67 clones originating  from 

latitudes 64°-67°N in northern Finland (for  more  

detailed information see Nikkanen and Ruot  

salainen 2000). 

The  seed orchard is 13.2 ha in area, and is  

located on a hill (160-190  m asl)  sloping  gently 

to the south  and steeply  to the east  and  west  (Fig. 

1).  The grafts were  planted  in the orchard using  a 

clonal-row design  with ramets  of each clone in 

two  or  more rows.  The spacing  of  the grafts was  

3.5 x  6.5 m, the ramets  of the same clone being  
located 6.5 m from each other. In 1987 half  of 

the orchard was  thinned systematically  by  re  

moving  every third graft,  and in 1994 the other  
half of the  orchard thinned in the same way. The 

different sections of the seed orchard  before the 

thinning  in 1994 were:  north-western unthinned 
section (NW),  north-eastern thinned section (NE),  

south-eastern unthinned section (SE), and south  

western  thinned section (SW) (Fig. 1). 
The position of the grafts were determined in  

1993 by  means of  a  tachymeter  (Nikon A2O)  and 

a field computer (Geonic 1000).  The equipment  

was  used to create a  three-dimensional coordi  

nate system  covering  the studied area  (Lähde et. 

ai. 1992). 

The spacing  of the  grafts was calculated by 

counting  the number  of  grafts within  a radius of 

12.62 m (i.e.  500 m 2)  around each  graft.  In addi  

tion, a slope index  for  the position  of  each graft 

was  calculated for a circle of the same size. The 

slope  index was  calculated from the  direction 
and gradient  of  the slope  using  formula (1).  
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where a is  the slope  angle  (if  a < 5°  then a  -  5° 
and if a > 20° then a = 20°),  s is the slope  

direction (deviation from north, degrees).  The 

slope index has values  ranging  from 0 (north  

with 20°)  to 2  (south with 20°).  The spacing  and  

the  slope  index were  used as  environmental fac  

tors  to explain  the differences in flowering  pheno  

logy. 

The measurements  and results  concerning  the  
abundance of  flowering  and the growth  charac  
teristics of the grafts,  e.g. height,  diameter, and 

crown width, are  given  in Nikkanen and Ruot  

salainen (2000). 

The weather data for the study  period  were  
obtained from the Jyväskylä  weather station (lo  

cated 25 km  north-east from the seed orchard)  of  

the Finnish Meteorological Institute,  where the  

temperature conditions were very  close to those  
in the seed orchard. The  weather data consisted 

of daily mean temperatures (including  effective 

temperature sum,  d.d., > +5° C)  from 1984 to  

1995, as well as cloudiness and precipitation  

during  the flowering period.  

2.2  Observations of Flowering  Phenology  

The  timing  and amount of airborne pollen  were 
studied by means of  a recording pollen  catch 

meter (Sarvas  1962).  The  pollen catch was  meas  
ured in the seed orchard from 1984 to 1995, and 

on  a hill, where the environmental conditions 

were similar to those in the  orchard,  located 

about 1 km to the south-east from it from 1987 to 

1995. The  results  obtained with the pollen  catch 

meter  provide  information about the actual tim  

ing  of flowering,  the mean flowering  day being  

the day when 50% of  the total  pollen catch was  
recorded. The duration of anthesis was  defined 

by  excluding  pollen catches beyond  the  limits of  

-2  and +1.2 standard deviations, i.e. including  in 

primary  anthesis the period  from 2.3  to 88.5% of  
the  total pollen  catch of the season  (Luomajoki  

1993).  This was  done in order to eliminate sec  

ondary  pollen.  
The phenological  stage of the female and  male 

flowers was  observed on seed orchard grafts in 

1989, 1992, 1993 and 1995. In  1989 the obser  

vations were made on 7  randomly  chosen clones, 

in 1992 and 1993 on 21  randomly  chosen clones  
with sufficient flowering  abundancy,  and in 1995 

on 65 out of the 67 seed orchard clones. The  

observations on the phenological  stage of the 
flowers were made on 3 grafts per  clone. The  

sample  grafts were the same in 1992 and 1993, 

and also in 1995 except  for the few cases  where 

they  had been removed in thinning,  had died or  

were  not flowering.  In those cases  they  were  

replaced  with the nearest  grafts  of  the same  clone. 
This experimental  design  made it possible  to  

study  the effect of  graft position  in the seed 

orchard together  with clonal variation. The  ef  

fect  of  graft position  was  further studied by  ana  

lysing  randomly  chosen grafts from four differ  

ent sections  of the seed orchard (Fig. 1),  nine 

grafts per section in 1992, 1993 and 1995. In 
1992 the effect of  the position  of  strobili in the 

crown (height above ground  level and exposure 

of the branch) was  also studied on  24 separate 

sample  grafts  from 18 different clones (Fig. 1). 
When studying  the clonal and environmental 

variation in flowering  phenology,  the stage of 

development  of  the female strobili was deter  
mined by observing  the top of the graft with 

binoculars,  and the stage of the male strobili by  

observing  pollen shedding  from the sample  
branch on the southern side of the  graft at a 

height  of two to three meters.  Phenological  ob  
servations were made daily, or  every  second  day 

depending  on the weather and the stage of  pheno  

logy.  During  warm,  dry weather the observa  

tions were made every  day  whenever possible,  
and during  cold, wet weather every  second  day.  
The observation  round was  planned  to take no 

longer  than two or  three hours in order  to ensure  
that the phenological  stage would not have 

changed  during the round. In 1995 when all the  

clones were included in the study,  the observa  
tion round  was divided into three separate rounds, 
each including  one ramet  per clone. The  effect 

of  the position  of the strobili was  investigated  on 

10 branches per graft by  observing  one  branch at 

differing  crown exposures in every  flowering 
whorl. 

The  phenological  stages of  the  female strobili  

were classified as follows: (0)  strobili not  yet 

receptive,  i.e. completely  protected  by  bud scales,  

,
 , a -5 5-90 

/ =  I + x (1) 
15 90 
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(1)  strobili partly  receptive,  i.e. partly covered 
with bud  scales  and partly  open,  (2)  strobili fully 

receptive,  i.e. cone scales  at a right angle  and 

most  of the ovules  receptive,  (3)  strobili started 

to close, i.e. cone scales had started  to bend 

upwards,  and (4)  strobili closed,  i.e. all the  cone 

scales bent. The stages for male strobili were: 

(0) pollen  not yet  shed. (1) small amount of 

pollen ready  to be shed, (2)  considerable amount  

of  pollen  being  shed, and (3) almost all  pollen  

shed. 

2.3 Data  Analysis  

In 1992 when the  effect of  flower position  in the 

crown was  investigated,  the phenological  stages 

were  used in the calculations as  such, while in all 

the other cases  the dates when  a certain pheno  

logical  stage had been reached were used in the 
calculations. The  dates of  stage 2 in both female 

and male phenology  represented  the timing  of 
female receptivity  and of  pollen  shedding.  When 

observations were not  made every  day,  the date 
of  the phenological  stage was  interpolated.  

When the dates of  the  phenological  stages  were 

used in the  analysis,  a  non-parametric  Kruskall- 
Wallis test was  used to determine the statistical 

differences between the clones, and the Spear  

man rank  correlation procedure to calculate the 

strength  of  the linear association between differ  

ent variables. Because the used day  scale was so 

coarse  that the  observations fell in only  a few 

classes,  a  non-parametric  test and rank correla  

tion procedures  were used. When the phenologi  

cal stages were used instead, the normal score  
transformation was  performed  before the  analy  
sis of  variance and  the Tukey  post-hoc  test using 

the GLM General Factorial procedure.  All  the  

analyses  were performed  by SPSS® Base 8.0 
statistical software (SPSS Inc. 1998). 

Broad-sense  heritabilities (/z B

2 )  (=  clonal repeat  

ability) were  estimated on the basis  of a single  

graft  using  the formula of  Sokal and Rohlf (1995,  

p. 214) as  described in Nikkanen and Ruotsalai  

nen (2000).  

3  Results  

3.1 Variation in the  Timing  of  Flowering  

The between-year  variation in the timing  of pol  

len  shedding  was  large  (Fig.  2).  When the years 
with poor anthesis  were  excluded  and  seven  years 

(1985,  1986, 1987, 1989, 1992, 1993 and 1995)  

out  of  the twelve were examined, the mean flow  

ering date varied from May 15 to June 6,  the 

average being  May 28. The effective  tempera  

ture  sum of these dates varied from 122 d.d. to 

159 d.d.,  the average being  141 d.d. (Table 1). 

The  timing  of  anthesis measured outside the seed 
orchard did not  differ from that in the  orchard.  

The  duration of primary  anthesis varied from 5 

Table 1  
.
 Duration  of  primary  anthesis, the  weather  conditions  and  the  effective temperature 

sums during primary  anthesis  in  the  Heinämäki  seed  orchard in  different  years.  

1 per  day 
-  during  the anthesis 

Duration Number of Mean -  Timins of anthesis 

Year of anthesis rainy  sunny temperature Start  Median  End 

days days hours ! °C d.d. 

1985 8 3  7.7 8.3 100 124 130 

1986 7  6 5.3 9.6 130 159 162 

1987 8  6 3.5 12.5 89 134 149 

1989 10 3 12.1 12.0 79 122 148 

1992 6 0 14.3 17.0 101 148 173 

1993 6 2 9.4 13.8 108 143 163 

1995 5 1  13.2 20.1 93 152 169 

Average  7 3  9.4 13.3 100 141  156 
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to 10 days,  the average  being  7  days. 

During the seven  years examined,  there  were 

large  differences in the onset  of spring  and in the 

weather during  flowering  (Table 1,  Fig.  2).  
Both female and male phenology  was  observed 

visually  on the seed orchard grafts in 1989, 1992, 

1993 and  1995. The time difference in the start 

of the receptive  period  of the female flowers 

between  the earliest  and the latest graft varied 
from 2 (1995) to 4 (1993) days, and in the start  
of pollen  shedding  from 3 (1995) to 6 (1993)  

days.  The  average  duration of  the receptive  peri  
od of  the  grafts was  4.0, 3.7,  4.0 and 2.6 days  in 

1989, 1992. 1993 and 1995, respectively.  The 

receptive  period  of  the whole  seed orchard var  
ied from 5 (1995) to 8 (1993)  days. On the 

average, the receptive period  of an individual 

graft started  from 4 (1989)  to 0 (1995) days 
earlier than pollen  shedding  on the same graft. 

3.2 Clonal Differences in Flowering  

Phenology  

The phenological  observations made in 1992, 

1993 and 1995 were used in the statistical analy  

ses.  The clonal differences in the start  and dura  

tion of the receptive  period  were  statistically  

significant (p  < 0.05) in all cases,  apart from the 

start  of receptivity  in 1992 (Table  2).  The aver  

age broad-sense heritabilities for the start and 
duration of the receptive  period  were  0.28 and 

0.36, respectively,  and  for the start  of pollen  

shedding  0.17 (Table  2).  
The Spearman  rank  correlation coefficients of 

the  clones between  the  years in the start  and the 

duration of the receptive  period were positive 
and  in most cases statistically  significant.  The 
correlation coefficients between the  start  and du  

ration of  the receptive  period  were  always  nega  
tive, and  in 1992 and 1995 statistically  signifi  

cant  (Table 3a),  i.e.  the early  clones had a longer  

receptive  period  than the late ones. The ranking  
of the clones between the years in the start  of 

pollen shedding  was  statistically  significant  in 
all cases (Table 3b).  The ranking  of the clones 

between female and male phenology  was statis  

tically significant  only  in 1992 (Table 3c).  

The differences between  the clones  in the start 

of  the receptive  period  were 1, 3 and 1  day  and in 

Fig.  2.  The  number  of  pollen grains captured in  the  

Heinämäki  seed  orchard  during flowering seasons 

of moderate  or abundant  anthesis, and  accumula  

tion  of the  effective temperature sum (> 5°C)  
based on temperature measured  at Jyväskylä 

Weather  Station. 
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Table 2  .  The  significance  of  clonal  differences  in  the  Kruskall-Wallis  test, and  the  broad-sense  

heritability  for the  start  of receptivity  and  pollen shedding and  for  the  duration of 

receptivity  in  the  Heinämäki  seed orchard.  

1 data from 21 clones 

-  data from 58 (9)  and 60 (cf)  clones 

Table 3.  The  Spearman rank  correlation  coefficients  of 21  clones  (significance  in  parentheses) 
between  years  a)  in  the  start  and  duration  of  the  receptive  period, b)  in  the  start  of  pollen 

shedding, and  within different  years  c)  in  the  start  of the receptive period and  pollen 

shedding in  the  Heinämäki  seed  orchard.  

Year Significance of  clonal differences Broad  sense  heritability 
9 s a 9 5 cf 

Start  Duration Start  Stan  Duration Start  

1992 1 0.090  0.014  0.062  0.22 0.42 0.21 

1993 1 0.019  0.022  0.109 0.41  0.41 0.24 

1995  2 0.030  0.010  0.332  0.21  0.26 0.05  

a 

Female Start  

1992 

Start  

1993 

Start  

1995 

Duration 

1992 

Duration 

1993 

Start, 1993  0.58  

(0.006) 

Start, 1995  0.44  

(0.050) 

0.35 

(0.130) 

Duration, 1992 -0.53 

(0.014) 

-0.26 

(0.254) 

-0.24 

(0.300) 

Duration, 1993 -0.31  -0.32 -0.05 0.66 

(0.173) (0.155) (0.829) (0.001) 

Duration, 1995 -0.36  -0.22 -0.66 0.71 0.54 

(0.121) (0.354) (0.002) (0.000) (0.014) 

b 

Male  Start  

1992 

Start  

1993 

Stan, 1993  0.45  

(0.040) 

Start, 1995 0.49  0.45  

c 

(0.028) (0.046) 

Start  

1992 

Start  

1993 

Start  

1995 

Female  x male  0.53  

(0.013) 

0.26 

(0.254) 

0.38 

(0.101) 
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Table  4.  The  average  phenological stages  of female and  male  strobili  in  different crown exposures and  heights in  

1992, and  significance  for  differences  in  ANOVA after normal score transformation. The  average  pheno  

logical  stages  marked  with  different  letters  differ  significantly  from  each  other,  p  < 0.05  in  the Tukey post  

hoc test.  

1 data from 51 observations 
2 data from 136 observations  
3 data from 90  observations 

the start  of pollen  shedding  3,  5 and 2 days  in 

1992, 1993 and 1995, respectively.  The  average 
duration of the receptive period  of the  clones 

was 4.2  (varying  from 3 to 5),  5.0 (3-7) and 3.2 

(2-5)  days  in 1992. 1993 and 1995, respectively.  
No correlation was  found between female or  

male phenology  and the geographic  origin  of  the 

clones. Neither was  there any correlation be  

tween the phenology  and the number of  flowers,  

except  in 1995 when  the receptive  period  started 
the  earlier (r  = -0.30,  p = 0.022)  the more abun  

dant  was  the flowering.  When the average size  
of the grafts and the  phenology  was  examined,  

statistically  significant  correlation was  found be  

tween  the crown volume and the start  of recep  

tivity in 1995 (r  = 0.40,  p = 0.002),  and the start 
of pollen  shedding  in  1995 (r  = 0.30,  p  = 0.021) 

and in 1993 (r  = 0.52, p = 0.016),  i.e. flowering  
started later in the clones with a large  crown.  

3.3 Environmental Effects  on Flowering  

Phenology  

In 1992 the receptive  period  in the whole  graft 

usually  started within one day,  but  there were 1 
to 3 days  differences in the start  of pollen shed  

ding. In the strobili situated in the upper part  of 

the crown (>  4 m)  pollen  started to shed earlier 
than in the  lower part.  In the lower part  the 

exposure  in the crown  also affected pollen  shed  

ding (Table  4). 

The differences in flowering phenology  be  

tween  the randomly  chosen grafts growing  in 
different sections of  the seed  orchard (see Fig.  1)  

were  more significant in male than in female 

phenology  (Table  5).  In the  northern sections  of 
the  orchard pollen  shedding  took place  later than 

in the southern sections. 

Environmental factors  had a stronger  effect on 
male than on female phenology  also when the 

larger  data set  for 1995 was  examined. The slope 
index  (the direction and gradient of  the slope) 

Exposure and height 
in the crown 

Gender and  date of observations  

9 cf 

May  26 or 27 May  28 
Phenological  stage of  flowers 

a a 

N  1.33 1.71 

W _|_ E >  4  m ai  1.17 -f. 1.40  a a 1.79 4. 1.77  a 

S 1.59 1.80 

a  a  

p  for  differences  0.840  1 0.900  2  

between  exposures  

N 

a 

1.30 

W _|_ E < 4 m a,  b  1.50  _}_ 1.86  b  

S 1.66 

b 

p  for  differences  between  exposures 0.010 3 
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Table 5.  The  average  number  of days, counting from May 1, when  the  receptive  period and  pollen shedding 

started  in four different sections  (9 grafts / section)  of  the  Heinämäki seed  orchard, and  the  statistical  

significance  of  the  differences in  the  Kruskall-Wallis test.  

Table 6.  The  Spearman rank  correlation  coefficients  of 

the  grafts (significance  in  parentheses) between  

the  start of receptivity  and  pollen shedding, and  

some environmental  factors. 

1 data  from  162 grafts 
2  data from  171 grafts 

correlated significantly  with the start  of pollen  

shedding,  but not with the start  of  female recep  

tivity (Table  6).  Pollen shedding  started the ear  

lier,  the more southerly  directed and the steeper 

was  the slope,  and the later the  more northerly  

directed and the  steeper it was.  The spacing  of 

the grafts correlated with both female and male 

phenology such  that flowering started earlier 
when the spacing  was  wide. The correlations 

were stronger when the spacing  was  weighted  

by  the slope index. In addition, the  position  of 

the graft was  significantly  correlated with both 

female and male phenology,  i.e. the higher  the 

position  the later flowering.  

3.4  Reproductive  Synchronisation  

Pollen shedding  on the first  grafts  in the seed or  
chard usually  started at about the same time as  
female receptivity.  On the average, however, the  

female flowers developed  earlier  than the male 

flowers,  because  the proportion of  receptive  grafts 

or  clones increased at  a  faster rate than the pro  

portion  of grafts or  clones shedding  pollen,  ex  

cept  in 1995 (Fig.  3).  All the clones in the seed 

orchard  were simultaneously  receptive  on at  least 

one day. On this day (May  26 in 1992, May  14 in 
1993 and May  31 in 1995) 62,  81 and  88% of  the  

clones,  respectively,  had  started to shed pollen.  
The proportion of  pollen  captured  by  the pollen  

catch  meter on that day was  3,  12 and 20%, and 

up to that day 4, 26 and 33% of the total pollen  

catch,  respectively.  In 1992 all the 21 clones were 

able to participate  in  the pollination  of all the 

clones,  but in 1993 four out of  the 21 clones 

(P391, PI 2OB,  P 1217 and  P2306) had passed  re  

ceptivity  before the last  three clones (P39 1, P496 
and P2578)  had started to shed pollen.  In 1995 
all  60 clones producing  male strobili  were able 

to  pollinate  all 58 clones bearing  female strobili. 

Section of Start  of  receptive period  Start  of pollen  s hedding  

the seed orchard  Year Year 

1992 1993  1995 1992 1993 1995  

NW Thinned  in 1994 26.0 13.1 31.1 28.0 16.0 31.7 

NE Thinned in 1987 26.0 13.7 31.2 27.8 15.1  31.8 

SE Thinned  in 1994 25.7 12.4 30.9 26.8  13.9 31.1 

SW Thinned in 1987 25.8 13.2 31.0 26.8  14.0 31.1 

p  for  differences 
between  sections  0.264  0.081  0.476 0.001 0.021 0.003 

Phenology  Altitude Spacing  Slope Spacing / 

in 1995 of  grafts ot grafts index slope  index 

Start of 1 0.25 0.20 -0.07 0.20 

receptivity  (0.001) (0.012) (0.363) (0.010) 

Start of -  0.40 0.26 -0.22 0.28 

pollen shedding (0.000) (0.001) (0.004) (0.000) 
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Fig.  3.  The  development of female  receptivity  and  pollen  shedding at the  

clonal  level, and  the  proportions  of  pollen  catches  (bars) by  pollen catch  

meter in  1992, 1993  and  1995. 

4  Discussion  

In southern  Finland, Norway  spruce flowers in 

the latter half of  May  or  in the beginning  of  June. 

The  midpoint  date of  anthesis,  which  represents 
the average date of  flowering,  varied in this study  
from May 15 to June 6,  the  average  date being  

May 28 (Fig.  2).  The average temperature sum 
that had accumulated by these days was  141 

d.d.(Table 1), which was  the same  temperature 

sum  as  Sarvas  (1968)  obtained for a  natural stand 

in southern Finland in two  different years, and 

close to the figure  (134 d.d.) Luomajoki  (1993) 

obtained for a natural stand located near the seed 

orchard. The  range of 37 d.d. between the lowest 
and highest  temperature sum values for the mid  

point  dates of anthesis corresponds  to 6-7 days  

calculated using  the average  daily temperatures 

during the flowering  period.  This is  much small  

er  than the  difference of  23 days  observed in this 

study.  The result that the  temperature sum ex  

plained  the timing of flowering  better  than the 
date is  in accordance with the  findings  and con  

clusions of  Sarvas  (1968,1972) and Koski  (1991), 

but contrary to that  of  Luomajoki  (1993).  
Anthesis lasted from 5 to 10 days, which is 

several days less than Luomajoki  (1993) ob  

tained for natural stands. The difference is prob  

ably  due to the more  strict  delimitation of  prima  

ry  anthesis in this  study  (2.3-88.5% of  the total 

pollen catch). After the primary  period  a small 

amount  of pollen,  probably partly  derived from 

the  surface of the branches and the  ground,  was  

caught  during  a period  of  5  to 7  days. 

The duration of the receptive  period  in the 
seed orchard varied from 5  to 8  days  in different 

years (Fig.  3). The duration of  receptivity  in the 
different clones varied from 2 to 7  days  depend  

ing  on  the clone and the year. There are no data 
available from Norway spruce  seed orchards 
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which could be compared  with  these results.  Oth  

er  results about the receptivity  of Norway  spruce 

are  also scarce.  On the basis  of  unpublished  data 
collected by the late Professor Risto Sarvas,  the  

receptive  period  of  a  stand of  30  trees at Punka  

harju  lasted for 16. 9 and 10 days  in 1966, 1967 

and 1968, respectively.  In Sweden, Eriksson  et 

al. (1973) found that the receptivity  of  Norway  

spruce clones in  a  young clone  trial varied from 
7  to 12 days  (the  whole period  lasted 13  days)  in 

1971 during rather  cold weather. Eriksson  et al. 

(1973) discussed how to define receptivity with 

several  examples  and figures,  and concluded that 
each model is still an oversimplification  since 
often  only  a part  of  the  ovules  in a strobilus are 

receptive  at one time. 
The short and rather simultaneous flowering 

period  observed in this Norway  spruce seed or  
chard is  different from that reported  for many 

other conifer species.  In Douglas  fir seed or  

chards the duration of flowering period  varies 
from 3 to 4 weeks  (El-Kassaby  et al. 1984, El- 

Kassaby  and  Askew  1991). and the duration of 

receptivity  among families between 5 and 12 

days  (El-Kassaby  and Askew  1991). Sitka spruce 

functions in the same way, i.e. the duration of 
the receptive  period  of  the  whole seed orchard is 

about 30  days  (El-Kassaby  and Reynolds  1990), 

while in individual clones it is  much shorter and 

in individual strobili it lasts  from 6  to 8  days  

(Owens and Blake 1984). Black  spruce and  white 

spruce are more similar to Norway  spruce. In  a 

black  spruce seed orchard the receptive  period  of 

12 clones lasted 16 days, the average  length  of 
the individual clone being  12 days including  

also partial receptivity  (O'Reilly  et al. 1982).  In 
white spruce (Picea glauca  (Moench)  Voss)  the 

receptive  period  for a single  strobili is  10 days  

(Ho  1984). The  reproductive  phenology  of  Scots  

pine,  the other common north European  conifer,  
is somewhat different from that of Norway  

spruce. According  to  Chung  (1981), the recep  
tive period  of a female strobilus is about  one 
week (from 3 to 10 days), but the differences 

between  clones are, in many cases,  more than 

one week in a clone bank  in southern Finland. In 

Sweden, Jonsson et al. (1976)  found clonal  dif  

ferences to be  considerable in a Scots  pine  seed 
orchard where the flowering  period  lasted from 

2 to 3 weeks  in four different years.  Pulkkinen 

(1994)  reported  clearly  shorter periods for two 

seasons  in a  Scots  pine  seed orchard  of  northern 

Finnish  origin  located in southern Finland. In 
other pine  species  the flowering  periods  are of  

ten longer  than in Scots  pine  or in Norway  spruce 

(Nilsson  1981, Griffin 1984, Askew  and Blush 

1990, Matziris 1994). 

In this study  female phenology  was  genetically  

more strongly  determined than male phenology  

(Table 2). The clonal  differences at the  start of 

receptivity  were,  in most  cases,  statistically  signif  
icant  but not in pollen shedding,  and the broad  

sense  heritability  estimates were  higher  for female 
than for male phenology.  This can also  be looked 
in the opposite  way:  the environmental factors  had 

a stronger  effect on male than on female phenol  

ogy.  In studies on  reproductive  phenology,  very 

little attention has  been paid  to environmental 
factors. The reason for  this has been the relative  

ly small variation between ramets  compared to 

that between  clones in many species  and  seed 
orchards (Jonsson et al. 1976, Wheeler 1983, 

Griffin 1984, El-Kassaby  et al. 1984, Matziris 

1994). For Douglas  fir,  Erickson and Adams 

(1989) estimated from Wheeler's (1983)  data that 

the repeatability  among ramets  within clones for 

the timing of receptivity  was  extremely high 

(0.94).  In radiata pine  the clonal repeatability  for 

the onset  of  receptivity  was  0.42  and for the start 

of  pollen  shedding  0.33 over  three years (Griffin  

1984), and in black  pine  the  corresponding  repeat  
abilities were  0.69 and 0.23, respectively  over  two 

years (Matziris  1994). In the present study  the  

average repeatabilities,  i.e.  broad-sense heritabil  

ities, over  three years were 0.28  and  0.17 for re  

ceptivity  and pollen  shedding,  respectively.  

Although  the clonal differences in flowering 

phenology  in the present study  were  rather small 
and affected by  environmental factors especially  

in the case  of  male flowering,  in most  cases  the 

ranking  of  the clones  was  similar  from year to 

year (Table 3).  The correlation coefficients be  

tween female and male phenology  were positive,  

but statistically  significant  only  in one year. No 

results  from Norway  spruce  trees  or  clones show  

ing the correlation of  flowering  phenology  be  

tween years or  between female and male phenol  

ogy  within the same year have earlier been pre  

sented, but the phenomenon  is well known in 

other coniferous species.  In Scots  pine  the corre  
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lation in flowering  phenology  between clones 
from year  to  year is  positive and significant  (Jons  

son et al. 1976, Chung 1981. Pulkkinen 1994, 

Burczyk  and Chalupka  1997). It has  also been 

shown for Douglas  fir (El-Kassaby  et al. 1984), 

radiata pine  (Griffin  1984), loblolly  pine  (Askew 

1988). and black  pine  (Matziris  1994),  that the 

order of  the onset  of  receptivity  and pollen  shed  

ding among clones remains unchanged.  
Differences in the origin  of  the clones did not 

explain the clonal  differences in flowering  pheno  

logy.  as  was  also the  case  in flowering  abundance 

(Nikkanen and Ruotsalainen 2000).  In this study  
the origin  of the clones may not have covered a 

sufficiently  large  area to show any  clear differ  

ences  in response to climatic  adaptation. On  the 
other hand. Eriksson  et al. (1973) did not  find 

any  significant differences in the onset  of  the re  

ceptivity between origins  even though their ma  

terial covered large  areas,  i.e. clones ranging  from 

Central Europe  to Scandinavia. 
In Norway spruce the female flowers are  mainly  

situated at the top of  the tree,  but the male flow  

ers  also in the lower parts. There are  obvious 
differences between the upper and lower part of 

the graft as  regards  solar radiation, air  flow and 

humidity. At the top of the grafts the environ  
mental conditions are about the same irrespec  

tive of  the exposure  of  the crown  and the section 

of the orchard, but in the lower parts the condi  
tions differ. The findings  concerning  the differ  

ences  in the onset  of pollen  shedding  (Table  4) 

were in accordance with  earlier results  for Scots 

pine,  i.e. earlier pollen  shedding  on the southern 
than on the northern side of the crown (Jonsson  

et al. 1976), and in the upper and middle parts 

exposed  to the  sun than in the  lower parts  of  the 

crown  (Chung  1978). The other finding  that pol  

len  shedding  started earlier on  the eastern  than 

on the western side of  the crown was  probably  
due  to the warming  and drying  effect of  sunshine  

on the eastern side before the  observations were 

made in the morning. 
Variation between the different parts  of the seed 

orchard was  also found in the start  of  pollen  shed  

ding. but not in the start  of the  receptive  period.  
On the average, pollen  shedding  started about 1 

day earlier on the southern slope  than in the north  

ern  parts  of the orchard (Table 5). When the en  
vironmental factors were investigated in more 

detail in 1995, it was  found that both the spacing  
of  the grafts and the slope  index (direction  and 

gradient  of  a  slope)  affected male phenology  es  

pecially  (Table  6). These results  indicate that the 

wider the grafts are located, the earlier will  pol  

len shedding  start,  and  also that  the more south  

erly  directed and steeper the slope  is,  the denser 

will it have to be to have  the same environmental 

effect on the start  of  pollen  shedding.  
The result that flowering, especially pollen  

shedding,  started later in the clones  with a wide 

crown could be another expression  of the need 
for solar  radiation or  high  temperature. Because 

the clonal differences in the crown  size  are  large 

(Nikkanen and Ruotsalainen 2000) and  the ram  

ets of  the same clone  were planted  side by side  in 

a north-south direction, the grafts of the wide  

crown clones were often overshadowed by  the 

grafts of  the same  clone, and the flowers on the 

shaded side  of the graft by  the  graft itself. In 

addition to the genotype, crown size  was  also  
affected by  the environment. 

The synchronisation  of  female and male flow  

ering  varied from year to year (Fig. 3).  In 1995, 

as  a result of  the very  warm weather, the dura  

tion of  flowering  was  short, and the  time  differ  

ence  between the clones was  small. In  this  year 
female and male flowering  took place  complete  

ly simultaneously,  and  the amount of pollen  in  

the air  was  also high  right  from the very  begin  

ning  of  the receptive  period.  In other years flow  

ering  lasted longer,  the clonal differences in the 

timing of  flowering  being  larger  and female re  

ceptivity  developing  earlier than pollen  shed  

ding. In 1993 some of  the 21 clones had passed  
their receptivity  before some of the clones had 

started to shed pollen. This means that,  at least in 

some years, some  of the clones  do not partici  

pate in the pollination  of all the clones  in the 

seed orchard. 

It was  not possible,  on the basis  of  the results  
from the pollen  catch meters  inside  and outside 

the seed orchard,  and on the visual observations 

made on flowering phenology  in the seed or  

chard, to distinguish  any  time difference between 

the airborne pollen  of non-orchard origin and 
that released from the seed orchard grafts. The 
results  of  the isozyme  analysis  of the seed from 

the same  seed orchard, which showed that the 

pollen  contamination rate  was  about 70% in 1989, 
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1992  and 1993 (Pakkanen  et ai.  2000), also  indi  

cate that there is no phenological  isolation be  

tween  the seed orchard  and the surrounding  nat  

ural forests, as had been assumed  by Sarvas 

(1970). Neither has any  isolation been achieved 
in the case  of Scots  pine.  In the seed orchards  of 

northern Finnish origin  the rates of  pollen con  
tamination have been 33% (Harju  and Muona 

1989)  and from 45 to 76% (Pakkanen and Pulk  

kinen 1991) in different orchards  and in differ  

ent years. In addition to a lack  of phenological  

isolation. Pulkkinen (1994) has proposed  that 

one of  the reasons  for the high  pollen  contamina  

tion would be  metandry,  i.e.  the phenomenon  in 
which the female flowers are receptive  before 

the male flowers on the same trees shed pollen,  

which is  characteristic for both pine  and  spruce 

(Sarvas 1968). According  to Pulkkinen (1994), 

this is  even overemphasised  in Scots  pine  seed 
orchards of northern origin established to the 

south. Harju  and Nikkanen (1996) have shown 
that, when pollination  in Scots  pine  seed orchard 
is restricted  to the pollination peak,  pollen  con  

tamination is  lower than during  the period  of  less 

abundant pollen release  at the  beginning of  fe  
male receptivity.  This also indicates that delayed  

pollen  shedding  of  the seed  orchard grafts could 

be one reason  for the high  pollen  contamination. 

This study  has  demonstrated that wide spacing  

of grafts promotes early  pollen  shedding.  The 

position  of  the grafts on the southern slope  also 

has a  similar effect and shortens the time differ  

ence  between female receptivity  and pollen shed  

ding. Pakkanen et  ai. (2000) found that pollen  

contamination in the thinned parts  of  the seed 

orchard is in some cases lower than that in the 

unthinned parts.  All this suggests  that it is  essen  

tial in Norway spruce  seed orchards  to keep the  
orchard open enough  to ensure  more  solar radia  

tion and better ventilation for the lower parts  of 

the crown. Adequate  thinning  can be used to 

promote early  pollen shedding  and decrease pol  
len contamination through  better reproductive  

synchronisation  and, subsequently  increase  the 

genetic efficiency  of  the seed orchard.  
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Abstract An  in  vitro  germination method  was used  to 

study variation  in  pollen viability,  that  is  pollen-tube  

growth rate  together with  germination percentage, 
among  the  Picea  abies genotypes in  a  seed  orchard.  The  
method  permits  easy,  rapid screening of  large numbers  of 

genotypes. Significant variation  in pollen viability  

among the  genotypes was  evident, the differences  among 
the  pollen-lot  means being 7-10-fold  in  different  years.  
No  correlation  was found  between  the  average  pollen 

viability  and  the  phenology, growth  or growing-site char  
acteristics  of  the  pollen donors.  However,  there  appeared 
to  be pollen  lots  that  either  benefit  from a higher germi  
nation temperature or  else  germinate faster at  lower  tem  

peratures.  The significant  variation  in  pollen viability  

among  the pollen donors  indicates  a potential for  male  
gametophyte competition.  This, together with  the ob  
served  genotype-environment interactions  in  pollen per  
formance, may contribute  to  the  variable  genetic compo  
sition  of seed  produced in  the  seed  orchard.  

Key words  Norway  spruce  ■ Pollination  •  Germination  
of  pollen  •  Pollen-tube  growth ■  Functioning of seed  
orchard  

Introduction 

The  fitness  of  male  gametophytes depends both  on  pater  
nal  traits, which  include  the  phenology of male  flower  
ing  and  the  amount of pollen produced, and  on pollen 

grain traits, such  as the germination percentage,  germi  
nation  time, pollen-tube growth rate  and selective  fertili  
sation  (Pfahler  1975). Competition among  male gameto  

phytes has  been  extensively  studied and  discussed  in 
angiosperms (Mulcahy  1983 and references  therein; 
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Charlesworth 1988; Quesada et al. 1993). In Hibiscus  

moscheutos ,  for  example, a faster average  pollen-tube  

growth rate  of  the  pollen donor  has  been  shown  to  result  
in  the  siring  of  a larger  number  of  seeds  (Snow and  Spira  
1991, 1996). Also,  in  several  gymnosperm  species,  e.g. 

Pseudotsuga menziesii, Pinus  radiata, Pinus  taeda  and  
Picea  abies, the  application of pollen mixtures  has  re  
sulted  in  unequal paternal success of the  pollen donors.  
Pollen  competition, including  different  rates  of  germina  
tion  and  tube  growth,  has  been  suggested as  one of the  
reasons for this  (Schoen and  Cheliak  1987; Nakamura  

and Wheeler  1992; Skroppa  and  Lindgren 1994). So  far  
the  only  report of  gymnosperms  actually  showing differ  
ences in  the  average  pollen-tube growth rate  among  pol  
len  donors  is  in Pinus  sylvestris  (Venäläinen et al.  1999), 

but there is no information  about whether  variation  in 

this trait  could  also affect  the  genetic composition of the  
seed  produced in  seed  orchards.  

A seed  orchard  is  a plantation of genetically superior 
trees,  managed to  produce frequent, abundant  and  easily 
harvested  seed  crops.  Such  an orchard  is  established  by 

setting out  clones  or the  seedling progeny  of trees  select  
ed for desired characteristics  (Zobel  et al. 1958). In order  

to  ensure the production of genetically diverse  and  phys  

iologically  high-quality seed  crops,  seed  orchards  have  
to fulfil  certain  requirements with  respect to flowering 
and  pollination in the  orchard.  The  functioning of forest  
tree  seed  orchards  is  often  far  from ideal.  There  are large 
differences  in  flowering abundance  between  clones  and 
from year  to year  in  several  species (Sweet 1975; 
Jonsson et al. 1976; Bhumibhamon  1978), including 
P. Abies  (Lindgren et al. 1977; Skroppa and  Tutturen  
1985). Also  variation  in the  reproductive phenology has 
an effect on the genetic composition of seed  produced in  
seed  orchards  (Chung 1981; Blush  et  al.  1993; Harju  and 
Nikkanen  1996). Owing  to  the abundance  of the species 
and  effective  pollen  dispersal (Koski  1970; Lindgren et  
al.  1995), high pollen  contamination  has  proved to  be  a 
serious  problem  in the  functioning of  seed  orchards  of 
P. sylvestris  and  P. Abies  (El-Kassaby  et  al. 1989; Harju 
and Muona 1989; Savolainen  1991; Pakkanen and 
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Pulkkinen  1991; Paule  et ai. 1993; Pakkanen  et ai. 

2000). In  addition, the  genetic composition of the  seed  

produced in  seed  orchards  may  be  affected by  competi  
tion  among  pollen grains. 

The  aim of  the present study was to determine  
whether  there is  variation  in  pollen viability, that  is  pol  
len-tube  growth rate  together with germination percent  

age, among  the  P. Abies  genotypes in  a seed  orchard and, 
if such  variation  is found, whether  it is  connected with  

other  characteristics  of the  pollen donors  or any  exoge  
nous factors. The  germination percentage and  the pollen  
tube growth rate of different pollen lots were studied  

using an in  vitro germination method  that  permits  easy,  

rapid screening of large numbers  of trees.  In  addition, 
the germination conditions  were varied  in  order  to  study  
the behaviour  of  pollen lots  under  varying  environmental  
conditions. 

Material and methods 

The seed orchard  

The variation in pollen-tube growth  was  studied in Norway  spruce  
(P.  cibies)  seed orchard no. 170 (Heinämäki)  located at Korpilahti, 
southern  Finland (62°13'N, 25°24'E). It consists of 67 clones 

originating  from latitudes 64°-67°N in northern Finland (Nik  

kanen  et ai. 1999). The seed orchard, 13.2 ha in size,  was estab  

lished in  1968 on a hill on  abandoned agricultural land (Fig. 1). 
A number of the properties of this seed orchard have been 

studied: the  variation in flowering abundance (Nikkanen  and  
Ruotsalainen,  unpublished), the phenology of flowering 
(Nikkanen,  unpublished), and pollen contamination (Pakkanen et  
ai.  2000). The data from progeny  tests  of  the clones are also avail  
able  (Ruotsalainen  and Nikkanen 1999). 

Collection  and storage  of pollen  

Pollen samples were collected from 66 of  the 67 clones in the seed 
orchard  in 1996 and 1998. A single  graft from each clone was se  
lected  as  pollen donor (Fig. 1). The same grafts were used in both  
years.  In addition to the seed-orchard  clones, five  trees from sur  

rounding areas  were  used  as  pollen  donors, but  these  trees were 
not the same  in 1996 and 1998.  

Pollen was collected by isolating microsporangiate strobili 
with  paper  bags a few days  before  natural  pollen  shedding. Pollen 
collected in 1996 was  stored in sealed glass bottles  at -20°  C. Sam  
ples from pollen collected in 1998 were taken directly from the 
isolation bags  for  in vitro germination, and the  rest of  the collec  
tion  was  stored as  in 1996.  

In  vitro germination  of pollen  

Pollen  lots  were germinated in vitro in 24-well plates by suspend  

ing  10 mg of dry pollen in 1 ml of modified Brewbaker's  and 
Kwack's  (1963)  medium,  the suspensions  being  agitated on an  or  
bital shaker  (Infors  AG,  180  rpm)  as described by Häggman et ai.  
(1997).  The germination time, temperature and illumination dur  

ing germination varied,  but in all the experiments  each  pollen  lot 
was  germinated as  six  replications. 

The experimental design included three  series of  germinations.  
(1)  All the pollen  lots were germinated under routinely used in 
vitro conditions, i.e. for  27 h at +2B°C in the dark  (Häggman et ai.  
1997; Aronen et ai. 1998; Venäläinen et ai. 1999). in order to 

study the variation in pollen viability. In the 1998 collection ger  

Fig. 1 A  map of  Norway  spruce  seed orchard  no. 170 indicating 
the location of the pollen-donor genotypes  (•,  @). The 21 geno  
types  used  in studying the effects  of  varying germination condi  
tions are marked  with (§)  

mination was  performed  with fresh  pollen, while in the 1996 col  
lection pollen stored  for  18 months  at -20° C was used.  
(2)  In the 1998 germinations the behaviour  of 21 pollen lots  se  
lected from the  seed-orchard  genotypes and the five pollen lots  
originating from the surrounding forests  was studied under vary  

ing germination conditions,  either  outdoors  or  indoors  at different 
constant temperatures.  In  the outdoor  experiment with  fresh  pol  
len, the  pollen suspensions on the  orbital shaker  were placed out  
side under a light  shelter to protect  the samples from  direct sun  

light and rain,  but subjected to diffuse illumination and natural 
temperature  variations. During the experiment the highest daily  
temperatures  in the shelter were around +l5°C and the lowest 

night temperatures  around +2°  C,  the daily mean temperature  being  
+B°C. Germination was  started in the late afternoon and lasted for  

92 h, i.e. until the mixture of  pollen  samples used for  monitoring 
the progress  of germination appeared to be well-germinated as  
evaluated under a microscope.  The dependence  of pollen  viability  

on the germination temperature  was studied using the same 1998 

pollen lots  stored for 9 months at -20°  C. Germination of the 
stored pollen was  performed in the dark  at constant temperatures 
of  +2B°C, +lB°C, and +B°C.  The germination times  were adjusted  
so that  the pollen lots received  the same  effective temperature sum  
in all treatments: germination  lasted for 27 h  at +2B°C, for  42 h at 

+ 18° C, and for 95 h at +B°C. 

(3) An experiment was also performed to investigate how long 
pollen keeps its  viability unchanged after shedding. For this pur-  
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pose,  the 1998 pollen of  four genotypes  (P375, P491,  P498 and 
P695)  was  kept in open isolation bags  in a greenhouse and germi  
nated for  27  h at +2B°C  in the dark 1, 4,  7, 14, 19 and 26 days 
after  pollen collection. 

Measurements  of  pollen-tube length  

Random samples of  germinated suspensions of  pollen  were  photo  
graphed under an Olympus  CK2 microscope (magnification 
13.2  x)  using an  attached  SC3S  camera. The negatives of  the black  
and white films  were enlarged (10  x)  with a photographic enlarger. 
The lengths  of  the pollen-tubes were measured from these  enlarge  
ments using a calliper rule  connected to a computer.  About 50 pol  
len grains were measured  per  replication, the total number of  mea  
surements being about 73 800. The possible appearance of  a sec  
ond  pollen-tube was  also recorded  for  each pollen  grain.  The pol  
len-tube length of  non-germinated pollen grains was  recorded  as  
zero. This  procedure was  adopted  because  the aim  was  to deter  
mine the actual competitive  ability of  the pollen lot under  in vivo 
conditions in which a non-germinating pollen grain also  occupies  
space in the pollen chamber. Moreover,  very  slowly  germinating 
and non-viable pollen grains could not yet be  distinguished after  a 
27-h  germination. In addition,  the diameter of  the  pollen  grains  in  
cluding sacci was  measured on a sample of about 300 pollen  
grains per  pollen lot collected in 1998 and stored for 9 months at 
-20° C. 

Statistical analyses 

Statistical analyses of  the measurements of pollen-tube length 
were carried out using the replication means as  observations.  
Single-tube  lengths were not used because  the tubes  growing in 
the same  well  could have been  affected by the same environmental 
disturbances,  e.g. growth of microbial contaminants.  The experi  
mental design  thus  provides  six  observations  for  each  lot, i.e. pol  
len collected from one genotype  and treatment combination. The 
analysis  of variance and post-hoc tests  for the treatment means 
were performed  using the  GLM General Factorial  procedure, and 
the calculation of  correlation coefficients using the Bivariate Cor  
relations procedure  of SPSS Base  8.0 statistical software (SPSS 
Inc. 1998). 

Results 

Differences in  pollen  viability among  genotypes  

Considerable  variation  was observed  in  both  the  germi  
nation  percentage and  the  average tube growth rate  of 
the  pollen lots.  After 27-h  in  vitro  -germination, the per  

centage of germinated pollen grains in  the  pollen lots 
collected  in  1998 and  germinated immediately after 

harvesting  varied  from 62  to 98,  the  grand mean being 
91 (±  SE 0.8). The  average pollen-tube length in these  

pollen  lots  ranged from 37 to 252  |am,  the  grand mean 

being 160  (±  6.0)  |im.  In the  pollen lots  collected  in 1996  
and  stored at  -20° C  for 18 months  before germination, 
the  average  germination percentage was  72  (±  1.9), vary  

ing from 31 to 94%. The  pollen-lot means for tube  
length in  the  1996 material  varied  from 26  to 249  |am,  
the  grand mean being 131 (±  7.9) pm.  When  only  the  

germinated pollen grains are considered, the grand 
means  for  pollen-tube length in  the  1998  and  1996  mate  
rials  were the  same, 175 (± 6.2) and  172 (± 7.8) urn,  re  

spectively.  There  was,  however, a significant correlation  

Table 1 Analysis of  variance for average pollen-tube length after 
in vitro germination of 1996 and 1998  pollen lots  originating from 

Norway spruce seed  orchard  no. 170. The 1996 material was 
stored at -20° C before germination, while the 1998 pollen was 
fresh  

between  the germination percentage  and  the  average  
tube length of  the  germinated pollen grains in  both  years,  
the  Pearson  r  value  being 0.270  (P  =  0.028) in  1998  and  
0.670  (P  = 0.000) in  1996. 

The  significance  of the  factors  affecting  pollen viabil  

ity  (length  measurements  including non-germinated pol  
len  grains as zero values), i.e.  pollen donor  and  collec  
tion  year,  was studied using  analysis  of  variance.  Both  
the  effects  of the  pollen donor  and  collection  year,  as  
well  as their  interaction, were found  to be  significant  
(P  = 0.000) (Table  1). The  Student-Newman-Keuls  test  
for  a multiple  comparison of means  also indicated  signif  
icant  (P<0.05) differences  among  the pollen donors.  
When  the  collection  years  were  analysed separately, the  
pollen donors  from the area surrounding the seed  or  
chard, i.e.  the  trees  representing background pollinators, 
did  not  form a group  of their  own.  Their  lot-means  fell  

evenly  within  the  total  range  of  the  tube-length values.  
The  Pearson  correlation  coefficient for the  pollen-lot  
means in  tube  length between  the  years  1998  and 1996  
was 0.324  (P = 0.008). 

There  was also  variation  in  the  average  pollen-grain 
diameter  and  in  the  appearance  of a  second  pollen-tube 

among  the pollen lots.  The  pollen-lot  means for  the  grain 
diameter  varied  from 95  to 116  pm,  the  grand mean  be  

ing 106  (±  0.98)  |jm. In 1998, the  average  percentage of 
pollen grains with a second  tube  varied  from 0 to  49%, 
the grand mean being 14 (± 1.3). In  the 1996  material, 
the corresponding values  were  2-54%  and 21 (± 1.5). 
The Pearson r  value  for  the  pollen-lot means in  the  ap  

Table 2 Analysis of variance for  average pollen-tube length of 
1998 pollen  lots  germinated under varying germination condi  
tions,  (a)  fresh  pollen germinated at a constant temperature  of 
+28°C  and outdoors,  and (b)  stored pollen germinated at +28°C, 
+ 18° C. and +8°C  

Source df MS F-value P-value 

Pollen donor 65 25 085 34.1  0.000 

Collection vear 1 89 360 121.4 0.000 

Interaction 64 12 506 17.0 0.000 

Error  654 736 

Source  df MS F-value P-value 

a 

Pollen donor  24 11 357 13.9 0.000  

Germination condition 1 459 686 562.9 0.000  

Interaction 24 6303 7.7 0.000 

Error  250 817 

b 

Pollen donor 25 31 241 108.4 0.000 

Germination condition 2  299  773 1040.8 0.000 

Interaction 50 7352 25.5 0.000 

Error  390 288 
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Fig. 2a-f The average  pollen  
tube lengths after  in  vitro ger  
mination under  varying condi  
tions. The Pearson correlation 

coefficient ( r) together with its  
significance (P)  and the  num  
ber  of  pollen  lots  (n)  in each 
comparison are shown. Some 
of  the pollen lots  are marked  
with  their clone number. Com  

parison between  a  germination 
at a  constant temperature  of 
+28°C  and outdoors  using fresh  
1998 pollen, b  fresh  and stored 
1998 pollen at +28°C.  c  stored 

pollen at +28°C  and +lB°C,  
d stored  pollen at +28°C  and 
+8°C,  e stored  pollen at +8°C 
and fresh  pollen germinated 
outdoors, and f stored 1998- 

and 1996-pollen at +28°C  

pearance  of  a second  tube between  the  years  1998  and  
1996 was 0.555  (P - 0.000). Also the  correlation  

between  the  appearance  of the  second  tube and  the  ger  
mination  percentage or the  average  pollen-tube length 
was  positive  and significant  in  both  years:  with  Pearson  

correlation  coefficients  of 0.403 and  0.398  (P  =  0.001  for 

both) in 1998, and 0.470 (P = 0.000) and 0.277 

(P  = 0.026) in  1996, respectively.  
Potential  connections  between  the variation  observed  

in pollen viability  and  other  characteristics  of the  pollen 
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donors  or  specific exogenous  factors  were studied using 
correlation  analysis. No correlation was found with  the 

geographical origin, the  abundance  of male  flowering, or 
the  average  performance of  the  progenies of the  pollen  
donor genotype,  nor  with  the  growth characteristics  or 
the  phenology  of  male  flowering of the  particular graft  
from which the  pollen was  collected.  No  correlation  was 
found  with  the  average  pollen-grain diameter, and  none 
with  graft  spacing or soil  factors,  such  as  the  pH or ex  
changeable Ca,  K,  P,  or  Mg concentrations  of the grow  

ing site  of  each  particular  pollen-donor graft.  Also  when 
the  appearance  of the  second  pollen-tube was  examined, 
no  correlations  with  any  genotype, graft,  or  soil  charac  
teristics studied were  found.  

Effect  of  germination conditions  on pollen viability  

The  behaviour  of  the  pollen  lots  under  varying environ  
mental  conditions  was studied by  changing the  in  vitro  

germination conditions  of  the 1998  material.  The  signifi  
cance of the  pollen donor  and germination conditions, as 
well  as their  interaction, was studied using analysis  of 
variance.  The  effects of the  pollen  donor, germination 
conditions  and  their  interaction  were found  to  be  signifi  
cant  (P  =  0.000) in  the  case of  both  fresh  pollen germi  
nated  at a  constant  temperature of +2B°C  in  the dark  and 

outdoors  (Table 2a),  and  for  pollen stored  at  -20° C  and 

germinated at  temperatures of +2B°C, +lB°C  and +B°C 

(Table 2b). 

The  pollen-lot means  for  tube  length in  different  ger  
mination  conditions  were compared using correlation  

analysis.  The  pollen-lot means of  the  most important 

comparisons are plotted  against each  other  in Fig.  2.  No 

significant  correlation  was  found  between  the  pollen-lot 
means when  fresh  pollen was germinated either under  

routinely used  in  vitro  conditions, i.e.  for  27  h  at  +2B°C 
in  the  dark, or  outdoors  (Fig.  2a).  

Based on the  finding that  the  pollen lots,  either  fresh  
or stored at -20°  C, behaved  in  a rather  similar fashion  

under  the  same germination conditions, with  the  excep  
tion  of lot  P491 (Fig.  2b),  the  effect  of  germination tem  

perature on pollen  viability  was studied  more closely  

using pollen stored  at  -20°  C. As can  be  seen from  Fig.  
2c and  d,  there  was  a  significant  positive  correlation  be  

tween germination at  either  +lB°C or +B°C and  at 
+2B°C.  When  the  pollen was  germinated at  +lB°C  the  
differences  among  the pollen  lots  were larger than  at 

+2B°C,  although the  grand  means for  these  germinations 
were similar, 161 (± 13) pm and 149 (± 9.7) pm. At  

+B°C, all  the  pollen lots  germinated slowly,  the  grand 
mean being 80  (± 5.2)  pm.  The  differences  among  the  
lots  were subsequently smaller. There  were a few  pollen  
lots  that behaved  differently  under  varying germination 
conditions.  For  example,  lots  P675 and  P2306  benefited  
from a higher germination temperature,  while  lot P683  

germinated relatively  faster  at  lower  temperatures. The  
comparison between  germination outdoors  under  tem  
peratures  varying from +2  to 15° C and germination at 

Fig.  3 The  mean  germination percentage  of pollen lots P375, 
P491,  P498,  and P695 at 1-26 days after pollen collection. The 

daily means  marked with differing letters  differ significantly from 
each other, f  <0.05 in the Student-Newman-Keuls  test for a multi  

ple comparison of  means  

+B°C showed  a  significant  positive  correlation  (Fig.  2e)  
that  was  also  present between  germination outdoors  and  
at  +lB°C, the  Pearson  r  value  for  the  latter  case being 
0.529  (P = 0.006). No  correlation  was  found  between  the 

means for  pollen-tube length in  the lots  collected  in 1998  
and 1996 and stored at -20° C for either 9 or 18 months 

and  germinated under  the  same conditions  (Fig.  2f).  

Persistence  of  pollen-germination ability 

The persistence  of pollen viability was  studied  by mea  

suring  the germination percentage and tube  length  of  the 

germinated pollen grains of lots  P375,  P491, P498,  and 
P695.  The  germination percentage remained  unchanged 
for 2  weeks  after pollen shedding (Fig. 3). The  tube  

length  of the germinated pollen grains varied  between  
164  (±  15) and  214  (±  11)  pm  during days 1-19, and  was 

significantly  lower  (138 (±  18)  pm,  P<0.05  in  a Student- 
Newman-Keuls  test  for  a multiple comparison of means) 
on day 26 after  shedding. 

Discussion  

There was significant variation  in  pollen viability among 

the P. Abies genotypes in the  seed  orchard,  the  differ  
ences among  the pollen-lot means being 7-10-fold  in  
different  years.  These  results  confirm  the earlier  report  
of considerable  variation  in pollen-tube growth rate  

among  individuals  selected  from natural  populations of 
P. sylvestris  (Venäläinen et  ai. 1999). There  is  good evi  
dence  that  the  pollen-tube growth rate  of  angiosperms is  

phenotypically variable,  and  that  this variation  affects 
fitness  (see Havens  1994). It has  been  suggested that  

pollen competition might also  be  one of the  reasons  for  
unequal reproductive success  in  gymnosperms  (Schoen 
and Cheliak  1987; Nakamura  and Wheeler  1992  and ref  
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erences therein; Skroppa and  Lindgren 1994). Ours,  
however, is  the  first report  showing variation  in  pollen 
viability  in  a seed  orchard  of an industrially  important 
tree species. 

In  the  present work,  differences  in  pollen viability  
were studied  in  vitro.  Germination  and  the  early  stages 
of the  tube  growth of spruce  pollen have  been  found  to 
be  similar  both  in  vitro  and  in  vivo,  although they  occur 
faster  in the former (Dawkins and  Owens 1993; 

Martinussen  1994; Lazzaro  1996). After 27-h in vitro  

germination in the  present study,  the  pollen-tubes  in  the  
fastest  lots  had  elongated on the average  to  250  pm.  This  
is  approximately  1/3 of  the  distance  they have  to  grow  in  
a female  flower  to reach  the  archegonium and  fertilise  
the  egg  cell (Sarvas 1968; Christiansen  1972). In  the  
slowest  pollen lots  the tubes  had  elongated on the  aver  

age  to  only  about  30  pm,  i.e.  approximately 1/25 of the  
total  distance  in  the  female  flower.  In nature,  tube  forma  

tion  in  P.  Abies pollen takes  place  during two  growth  pe  
riods,  interrupted by  a resting  period,  during which both  
male gametes and  archegonia with  egg  cells  develop. In  
the  first growth period,  which occurs soon after pollina  
tion,  the tube  attains  a length of about  240-400  pm  and  
then  continues  to  grow weeks  later,  i.e.  immediately 
before  fertilisation  (Sarvas  1968; Christiansen  1972). 

The reproductive biology of P. Abies  provides an  op  
portunity  for male  gametophyte competition through dif  
ferential  germination ability  and  tube  growth rate.  The  

pollen  chambers of the  species can accommodate  more  
than  ten pollen grains, five  being the  average  number  
(Sarvas  1968). Fertilisation  takes  place  relatively  soon 
after  pollination and, under  in  vitro  conditions  at  least, 

elongation of the  tubes  continues  in  a linear  fashion  up  
to lengths comparable with  the  final  distance  to the  

archegonia (Martinussen 1994; Martinussen  et  al. 1994). 
This  suggests that  the resting  period reported during in  
vivo  germination may  not  change the order  of  competing 
tubes.  Moreover,  no pre-zygotic  incompatibility  mecha  
nisms  have  been  reported. However, there  are also  fea  
tures  that  might  affect the  results  of  gametophyte compe  
tition.  In  P. Abies ,  there  is  usually  more  than  one arche  
gonium per  ovule, and  in  most  cases  two competing em  
bryos are formed to ensure the formation  of full  seed.  

Thus  the  genotypes homozygous for  lethal, sublethal  or 
defective  genes  are eliminated  either  by  early  abortion  of 
the  zygotes  or,  later  on, through embryo competition 
(Sarvas  1968). 

According to the  results  of the  present study, the  
fitness  of the  P. Abies  pollen donors  with  respect  to  the  

germination ability and  tube length of their  pollen varies, 
as has  also  been reported in  many  angiosperm species.  

According to Havens  (1994), however, it is unclear  
whether  the  variation  found  in  pollen performance is  

really heritable  or is  caused  by  environmental  effects. 
Her  results  obtained  with  pollen from cuttings of 
Oenothera  organensis suggest that  the  condition  of the  
plant, flowering shoot  and  /  or  flower  may  be  more im  

portant  than  genotype in  determining the  pollen-tube  
growth rate.  In  the  present study,  only  a single graft  per 

genotype was  used  as pollen donor  but, on the  other  
hand,  potential connections  between pollen viability  and  
several  exogenous  factors  and  other  characteristics  of  the  

pollen donors  were also  investigated. Since  no correla  
tion  was  found  between  the  average  pollen-tube length  
and,  e.g.,  the phenology, growth or site  characteristics  of 
the  pollen donors, the  variation  found is  expected to  re  
flect  the  genetic potential of  the genotypes. Unlike  sever  
al  studies  on angiosperms (Mulcahy 1983 and  references  
therein;  Quesada et al.  1993), no connection was,  how  

ever, found  between  the  pollen-tube growth rate  and  the  

performance of the  progenies.  This is  in  accordance  with  
the  results  obtained with  another  conifer, P. sylvestris  
(Venäläinen et al. 1999). 

Significant  genotype-year interaction  was  found  when  
the  pollen viability of all  the  genotypes  of the  seed  
orchard  were examined  in  different  collection  years.  The  

varying behaviour  of the  pollen  lots in  the  1996 and  
1998 collections  may  be  caused  by  a  number  of factors. 
The  weather  conditions  in  1996  and  1998  during flower  

ing were different.  The  fact  that  the 1996  material  was 
stored at  -20° C  before germination complicates the  re  
sults  because  some of  the  pollen lots may  have  suffered  
from freezing, as  was found  for  the  26  lots  in  the 1998  
material  that  were germinated under  varying conditions.  

Our study suggests  that  there  are pollen lots  that  
either  benefit  from a higher germination temperature or 

germinate faster  at lower  temperatures. This  may  indi  

cate  the  adaptation  of different  P.  Abies genotypes to  pro  
duce  fast-germinating pollen for  different environmental  
conditions.  As pointed out  by  Delph et  al.  (1997), geno  

type-environment  interactions  in  pollen performance will  

promote  the  maintenance  of genetic variation within  

populations  even if  pollen performance is  related  to fit  
ness. Johnsen  et  al. (1996) had earlier  suggested that  
some environmental  signals  during the  reproductive pro  
cess taking  place  in the  female  flowers, for  instance  pol  
len-tube  growth, may  cause variation  in  the  phenology 
traits  of the  progeny.  In  seed  orchards,  these  phenomena 

may  contribute  to the  variable  genetic composition of 
seed  produced in  different  years.  

As a consequence  of  the  genotype-environment inter  
actions  in  pollen performance,  a single in  vitro  germina  
tion  under  routinely  used  conditions  cannot  give a com  

plete picture  of  the  variation  among  genotypes.  Accord  

ing to  the  literature, the  recommended  conditions  for the  
in  vitro  germination of spruce  pollen include  a relatively 

high constant  temperature,  from +25  to +3O°C,  and  no 
illumination  (Christiansen 1972; Lanteri et al. 1993; 

Martinussen 1994; Lazzaro  1996; Häggman et al. 1997; 
Aronen  et  al. 1998).  In  the present  study  the  lot-means  
for  pollen viability  at a constant  temperature of  +2B°C 
did  not correlate  with  those  in  outdoor  conditions, while 

the  correlation  between  pollen  viability  at a constant  

temperature of  +B°C  and  outdoor  conditions  was positive  
and  significant.  On  the  other  hand, a significant  positive  
correlation  for  pollen viability  was found  when  the  ger  
mination  temperature alone  was  changed.  In  future  stud  
ies. however,  it would  be reasonable  to use lower  in  vitro 
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germination temperatures than  the recommended  tem  

perature of  +25  to  +3O°C in  order to  achieve the results 
that  best  correspond  to  the variation  occurring  in nature. 
The  weather  conditions  in  Finland  during the flowering 

period of spruce  differ  considerably from year  to  year,  
the  daily mean  temperatures varying from +8  to +2l°C 

during 1984-95, with  a  mean of +l3°C  (Nikkanen and  
Ruotsalainen, unpublished). The outdoor  conditions  in  
1998  were colder  than  the  average but still  favourable  
for  successful  pollination in  P.  abies. 

Under  the experimental conditions  employed in this  

study,  i.e.  dry  pollen in open  isolation  bags  in  the  green  
house, both  the  germination percentage and the  tube  

growth of  P. Abies  pollen remained  unchanged for 
2  weeks  after pollen shedding. Hak  (1996) has  earlier  
shown  that  vacuum-processed  Picea mariana  pollen 
stored  for  1 year  at  +lB°C  can retain  a high germinabili  

ty  of  78%.  In  the  case of P.  Abies  and  P.  sylvestris,  it  has  
been  estimated  that  the  share  of  pollen that  has  migrated 
from another population located  over hundreds  of kilo  

metres  away  is  small  on the  average,  but  can account  for  
a significant  proportion of  the total  pollination in  some 

years  (Koski 1970; Lindgren  et ai. 1995). Moreover, 

long-distance pollen of P. sylvestris  has  been  shown  to 
maintain  high  germinability (Lindgren et  ai. 1995). In  

spruce  seed  orchards,  the high persistence  of the  germi  
nation  ability  of pollen enables  fertilisation  by  pollen 
that  has  travelled  over long distances.  Air-borne  pollen is  
exposed  to  direct  ultraviolet  radiation, and  this has  been 
shown  to reduce pollen-tube growth in  19 of 34 taxa rep  

resenting both  monocotyledons and  dicotyledons. In  
coniferous  pollen  both  stimulating and  inhibiting effects 
have  been  reported (Torabinejad et al. 1998 and  refer  
ences therein).  

The  significant  variation  in  pollen viability found 

among  the  P.  Abies genotypes in the  present seed  orchard 

study  indicates  a potential  for  male  gametophyte compe  
tition.  Together with  the  observed  genotype-environment 
interactions  in  pollen performance, this may contribute  

to  the  variable  genetic composition of  the  seed  produced 
in  the  orchard.  The  magnitude of the effects of pollen 

viability  can,  however, be  assumed  to  be  smaller  than the  
effects of  variation  in  flowering abundance  and  phenolo  

gy within  the seed  orchard  and  of pollination by  non  
orchard  sources. Pollen-tube  competition in P. Abies  will  
be  further  studied  by  making  controlled  crossings  with  

pollen-lot  mixtures  including fast  and  slowly elongating 
pollen-tubes, and  by carrying out paternity  analysis  on 

the progenies. 
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Abstract  The  aim of the  present work  was to study  
pollen-tube competition in  Picea  abies.  Controlled  cross  

ings were performed with  pollen mixtures  including 

pairs  of  pollen lots  with  fast  and  slowly elongating pol  
len-tubes.  Paternity  analysis using  isozyme  markers  was 

performed on the  progenies  in  order  to  study  whether  the  
in  vitro  pollen-germination vigour corresponds to the 

proportion of seeds  sired  by the  pollen donor.  Paternal  
success was  found  to  be  unequal, 15 out  of 23 crossings 

producing progeny  that  differed  significantly  from the 

hypothetical ratio  of 1:1. The  paternal contribution  in  the 

majority  of  the crossings was as expected:  the  pollen 

parent with  more-vigorous in  vitro  germination sired 
more seeds  than  the  less-vigorous pollen. In  the  case of 

two pollen mixtures, however, the seed-siring success 
summed  over the  maternal  trees  was  the  opposite to  the  

expected value.  Despite these  aberrations, the  results  

support the  hypothesis that  pollen-tube competition is  
one of the  factors  contributing to  male  fitness  in  P. abies.  
However,  when  all  the  other  factors  affecting  pollination  
and seed  set under  natural  conditions  are taken  into  ac  

count,  it  is  clear  that the  seed-siring  success of  a  particu  
lar paternal genotype cannot be  predicted reliably  by  

measuring only  the  in  vitro  pollen vigour. 

Keywords Norway spruce  •  Pollination  ■  Germination  of 

pollen •  Pollen-tube  growth •  Paternal success 

Introduction 

In many  forest-tree species,  including Norway spruce 
(Picea abies), the  genetic gain achieved  by breeding is 
transferred  to  production populations through sexual re-  
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production in  clonal  seed orchards  consisting  of geneti  

cally superior  individuals.  As  a  result  of  random  mating 
within  a seed  orchard,  the  genetic composition of  the  
seed  crop  should  be  close  to  that  of  the  original  clones.  
However,  deviations  from random  mating within  a seed 
orchard  are an established  fact. There  are large differ  
ences in  flowering abundance  among  clones  and  be  
tween years  (Sweet 1975; Lindgren et  ai. 1977; Skroppa 
and  Tutturen 1985; Nikkanen  and  Ruotsalainen  2000),  as 

well  as  variation  in  reproductive phenology (Blush et  al.  
1993; Nikkanen  2001). In  addition, owing  to  the  effec  
tive  pollen dispersal of this  species,  pollen contamina  
tion  from non-orchard  sources has  also  proved to be  a 
serious  problem for the proper  functioning of seed  
orchards  (Savolainen 1991; Paule  et al. 1993; Pakkanen  

et al. 2000). 

Male  fitness  depends not  only  on the  flowering  traits  
mentioned  above, but  also  on the  traits  of  a pollen grain, 
such  as germination vigour, germination time, pollen  
tube growth rate and selective  fertilisation  (Pfahler 
1975). In  Norway spruce  there  is  no evidence  that  mater  
nal  plants could  control  the  pollen-tube growth rate,  as 
suggested for other  species by  Hormaza  and  Herrero 
(1996). 

Competition among  male  gametophytes has been  

extensively  studied  and discussed  in angiosperms 

(Mulcahy 1983 and  references  therein; Charlesworth  

1988; Quesada et  al. 1993). In  a deciduous  tree  species, 
Betula  pendula (Pasonen et  al.  1999), and  in  a perennial 
marsh  plant, Hibiscus  moscheutos  (Snow and  Spira  
1991, 1996), a faster  pollen-tube  growth rate  of  the  pol  
len  donor was  associated  with  the  siring  of  a  larger  num  
ber  of seeds.  The  rankings of the  pollen donors  were 
consistent  across the  different  maternal  plants.  Further  

more,  in several  gymnosperm  species,  e.g. Pseudotsuga 
menziesii.  Pinus  radiata, Pinus  taeda  and  P. Abies,  the  

application of pollen mixtures  has  resulted  in  unequal 

paternal success of the  pollen  donors.  Pollen  competi  
tion, including different  rates  of  germination and  pollen  
tube  growth, has  been  suggested as  one of the  reasons  
for this phenomenon (Schoen and Cheliak  1987; 
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Table 1  The pollen mixtures  
and isoenzyme loci  used  for  pa  
ternity analysis.  For  isoenzyme 
genotypes, F=fast  and S=slow 
allele 

Nakamura  and  Wheeler  1992; Skroppa and Lindgren 

1994). In  previous  reports,  we  have  shown  differences  in 
the  average  in  vitro  pollen-tube  growth rate  among 

pollen  donors  of  Pinus  sylvestris  (Venäläinen et  ai.  1999) 
and  P. Abies  (Nikkanen et ai.  2000). However, it is  not 

known  whether the variation  in  this trait also affects 

the  genetic composition of the  seed  produced in  seed 
orchards.  

The  aim  of the  present work  was to  study  pollen-tube 

competition in  P.  Abies  in  more detail. Controlled  cross  

ings were performed with  pollen mixtures  including 

pairs  of pollen  lots  with fast and  slowly elongating 

pollen-tubes. Paternity analysis  was performed on the  

progenies obtained  in  order  to  study  whether  the  in  vitro 

pollen  germination vigour corresponds to  the  proportion 
of  seeds  sired by  the  pollen donor.  

Materials and methods 

Pollen from 66 clones was  collected from P. Abies seed  orchard 

no. 170 (Heinämäki),  located at Korpilahti, southern Finland  
(62°13

/

N, 25°24'E).  Pollen grains were germinated in vitro  under 
routinely  used  conditions, i.e. for  27 h at 28° C in the dark,  and 
germination vigour was measured as described by  Nikkanen et ai. 
(2000).  Pollen lots  from each tail of the distribution,  i.e. those  

showing either fast  or slow tube-elongation,  were considered as  
candidates for  controlled pollinations. Based on distinguishable 

isoenzyme genotypes,  lots  P491,  P498,  P675,  P695 and P1 203 
were  selected for  the  pollen  mixtures.  

Five  pollen mixtures  were used to pollinate five seed parents  
(P495,  P683, P689, P1 206,  P2579,  three grafts/clone) in 1998. 
Each  of  the mixtures  consisted  of an  equal mass  of pollen from  
two clones. On the basis  of  the  in vitro germination results  of  fro  
zen  pollen from 1996 (Nikkanen  et ai. 2000),  one clone was  sup  

posed to have poor  and the other one good  in vitro pollen  germi  
nation  vigour. Mixtures  1  and 2 consisted of pollen collected in  
1996 and stored at -20° C for 2 years,  while mixtures  3, 4 and 5 

comprised  pollen collected just before  the controlled pollinations  
were  performed. The pollen donors in mixtures  3 and 4 were the 
same  as those  in mixtures 1 and 2 (Table  1). 

The pairs  of  sires  for  controlled pollination were composed on 
the basis  of identifiable isoenzyme genotypes.  Seed paternity was  
determined by genotyping germinated embryos at two  enzyme 
loci,  one for each combination (Table  1). The  method described  

for example by Muona et ai. (1987,  1990)  was  followed. For  
homozygotic seed  parents  we needed to  analyse only  embryos,  but  
for  heterozygous seed parents  the megagametophytes also  had to  
be studied in order  to  infer the  paternity (Table  2). 

Table 2 Isoenzyme  genotypes of  the seed parents  at the loci  stud  
ied. For  isoenzyme genotypes, F=fast  and S=slow allele 

The null  hypothesis of  the  equal contribution  of  the  sires  to the 
germinating seeds was  examined by using a  chi-square  test  of  the 
goodness  of  fit (Sokal  and Rohlf 1995). 

Results 

Paternity  analysis  showed  a  discrepancy in  the equal 

paternal contribution  in  the  germinating seeds from all  
the  pollen mixtures  (Tables 3 and  4).  Table  3 shows the  
paternal contribution  in  the  germinated seeds  expressed  
as a ratio, in  which  the  count of  offspring  from the  more  

vigorous pollen parent was  divided  by  the  count  of off  

spring from the less-vigorous pollen parent.  Since  the  
measure for the more-vigorous  sire  in  vitro  was the  
numerator,  all  the  values of  the  ratio  would  be  greater 
than one if the  outcome was in the same direction as that 

in  the  in  vitro  test.  Of the  23  ratio  values  for  the  five  pol  
len  mixtures  and five  seed parents  (two  seed  lots  were 

missing),  15 were greater than  one and  eight were  less  
than one (Table 3).  The  chi-square test  for the  goodness 
of fit for the 1:1 ratio  of the paternal contribution  
showed  that  15 out  of  the 23  ratio  values  differed signifi  
cantly from  the  hypothetical 1:1  ratio  (Table  4). Four of 
the  statistically  significant  ratio  values  were  in  an oppo  
site  direction  to  that  expected,  and  hence  the  less-vigor  
ous sire  in vitro  had  more  offspring  than  the  more-vigor  
ous one. 

Crossings with  two pollen mixtures  were performed 

using both  fresh (mixtures 3  and  4)  and  old  pollen  stored  
at -20°  C (mixtures  1 and 2). As shown  in  Table 3,  the 

ratios  of pollen-tube lengths in  the mixtures of fresh 

Pollen Sire Isoenzyme  locus  studied Isoenzyme 
mixture clones genotype 

Mixture 1  P491 DIA, diaphorase, E.C.  1.6.4.3,  slower locus  FF 

PI  203 SS 

Mixture 2  P498 DIA, diaphorase, E.C.  1.6.4.3,  slower locus  FF 

PI  203 SS 

Mixture 3 P491 DIA, diaphorase, E.C.  1.6.4.3,  slower locus  FF 

PI  203 SS 

Mixture 4  P498 DIA, diaphorase, E.C.  1.6.4.3,  slower locus  FF 

PI  203 SS 

Mixture 5 P675 GDH,  glutamate dehydrogenase, E.C.  1.4.1.2 FF 

P695 SS 

Seed parent Isoenzyme locus  

DIA GDH 

P495 SS FS  

P683 FF FF  

P689 FS FS  

PI  206 SS FF  

P2579 FS FF  
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Table 3  Paternal success in controlled  pollinations of  P.  abies.  All 
the ratio values are expressed  in the order in which the pollen  
parent with faster  growing pollen-tubes are in the numerator,  and 

the more slowly growing in  the denominator. The ratio values 
which differed significantly from the 1:1 ratio  are marked  in bold  

Table 4  Chi-square test for  goodness of  fit for the 1:1  ratio of  the paternal contribution estimated from the germinated seeds.  Statistical  
ly  significant deviations from the 1:1 ratio  are marked in bold  

pollen differed considerably from  the  ratios  obtained  for  
stored  pollen. When  comparing paternal success between  
mixtures  of freshly  collected  and  frozen  pollen, in mix  
tures 1 and  3  pollen lot  P1 203  had  a  better  paternal suc  
cess than  lot  P491, independently of the  ratio  value for  
tube  lengths: in  seven out  of ten crossings this  lot  sired 

significantly  more  progenies than  P491.  By  contrast,  in  
mixtures  2  and  4 the sire  with  longer pollen-tubes in  
vitro sired more seeds. 

When  the  contribution  of each  pollen mixture  was 
summed  over  the  seed  parents, three  ratio  values  out  of 
five  were in  agreement  with  the  in vitro  tests  (Table 3).  
All  the  ratio  values deviated  significantly from 1:1. 

Discussion  

In  the  present study,  paternal  success in  P. Abies proved  

to  be  unequal, 15 of  the  23  crossings  producing progeny  
that  differed significantly from  the  hypothetical 1:1 ratio.  
Similar  results  have  been  observed  previously  not only 

in P. Abies  (Schoen and  Cheliak  1987; Skroppa and  

Lindgren 1994) but  also  in  some other  gymnosperms  
such  as P. menziesii,  P. radiata and  P. taeda  (Nakamura 

and Wheeler 1992 and references  therein).  

The  paternal  contribution  in  the  majority  of the pres  
ent crossings  was  as expected:  the  pollen parent that  ger  
minated  more vigorously  in vitro  sired more seeds  than  
the less-vigorous pollen. A similar  connection  between  
pollen-tube growth rate  and  parental success has  previ  

ously been  reported  in  a number  of angiosperm  species  
(Snow and  Spira  1991, 1996; Pasonen  et  al. 1999). The  

present result  is  in accordance  with  the  reproductive bi  
ology of P. Abies,  which  provides an opportunity for  
male  gametophyte competition. The  pollen chambers  of 
the species can accommodate  more than  ten  pollen 

grains, five  being the average  number  (Sarvas 1968). 
Pollen-tube  formation  takes place during two  periods, in  

terrupted by a  resting period, resulting in  fertilisation  
weeks  after pollination (Sarvas 1968; Christiansen  

1972). Under  in  vitro  conditions, elongation of  the  tubes  
is linear  up to  lengths comparable with  the final  distance  

Pollen mixture,  

pollen donors 

Ratio  of 

pollen-tube 

Ratio of  paternal  success 
Seed parent 

length  

P495 P683 P689 PI 206 P2579  Together 

Mix 1 P491/PI203 6.93 0.94  2.88 0.58 0.48 0.20  0.71 

Mix 2 P49S/P 1203 8.47  0.87  2.09 2.00 1.36 2.11 1.61 

Mix 3 P 1 203/P49 1 1.32  7.25  3.57 3.71 8.50 16.00 5.86 

Mix 4  P1203/P498 1.51 2.00 2.10 1.06 -  2.20  1.75  

Mix 5 P675/P695 2.74  0.39  0.39 1.24 -  0.52 0.60 

Seed parent Pollen mixture 

Mixture 1  Mixture 2 Mixture 3 Mixture  4  Mixture 5 

P495 n 31 28 33  36 32 

x
2  0.03 0.14 18.94 4.00  6.12 

P 0.9>/»0.5 0.9>p>0.5  p< 0.001  0.05>p>0.025 0.025>/»0.01 

P683 n 31 34 32 31 32 

x 2 7.26 4.23 10.12 3.90  6.12 

P 0.01>p>0.005 0.05>p>0.025 0.005>p>0.00l 0.05>p>0.025 0.025>p>0.01 

P689 n 30 36 33  33 38 

X
2 2.13 4.00 10.94 0.03 0.42 

P 0.5>p>0. 1 0.05>p>0.025 /?<0.001 0.9>p>0.5  0.9>p>0.5 

PI 206 n 43 33 19 - -  

X
2 4.23 0.76 11.84 -  

-  

P 0.05>/»0.025  0.5>/»0.1  p<0.001  -  -  

P2579 n 30 28 34 32 32 

X
2  13.33 3.57 26.47 4.50  3.12 

P p<0.001 0.1  >^>0.05 p<0.001 0.05>p>0.025 0.  l>p>0.05 

Sum  over  n 156 159 151 132 134 

mothers  X
2 4.33 8.61 75.82 9.82  8.63 

P 0.05>p>0.025 0.005>/»0.001  p<0.001  0.005>p>0.001 0.005>/j >0.001 
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to the archegonia (Martinussen 1994; Martinussen  et al. 
1994), suggesting that  the  in  vivo  resting  period may  not 

change the  order of  competing tubes. Moreover, no pre  

zygotic  incompatibility  mechanisms  have  been  reported. 
In  the case of  two  of the  pollen mixtures,  1 and  5, the  

seed  siring success  summed  over the  seed  parents was 
the  opposite to  the  expected  one. There  are several  prob  
able  reasons for  this.  As  observed  in  our previous  study  
(Nikkanen et  al.  2000), in  vitro  germination under  a rela  

tively  high constant temperature  does  not  give a  com  

plete  picture of the  whole  variation  in  the  germination 
potential of  P.  Abies  pollen lots.  Generally,  the  ranking  of 
the  pollen lots  remains  relatively  stable  when  the germi  
nation  temperature is  changed, or when  stored  pollen 
is  used  instead  of freshly  collected  pollen. There  are,  
however, pollen lots  that  behave  differently  under  vary  

ing germination conditions.  For  example, lot  P675  in  
cluded  in  mixture  5 benefits  from a higher temperature 
(Nikkanen et  al.  2000). Thus  its  poor  parental success in  
the  present study could  be  at least  partly  explained by  
the  fact  that  the flowering period in  1998 was colder  
than  the  long-term average  (Nikkanen and  Ruotsalainen  
2000). On the  other  hand, pollen lot  P1203, which  was 
included  in mixtures 1 and 3,  was  found  to  have  varying 

vigour in  different  years. According to Havens  (1994)  
and  Delph et  al.  (1997), variation  in  pollen performance  
can be  partly  caused  by environmental  effects,  such as 

temperature or the  physiological condition  of  the donor  
plant during pollen development. The  fact  that  the  pollen 
in  mixtures  1 and  2 was  stored at  -20° C  before germina  
tion  may  also  affect  the  results,  because some pollen lots  
seem to suffer from freezing (Nikkanen et al.  2000). 

However,  lot  P1 203  sired  more  seeds  than  its  competitor,  
P491, irrespective of its in vitro  germination result.  

The reproductive biology of the  species  includes  fea  
tures that  might change the outcome of gametophyte 

competition. In P.  Abies  there  is  usually  more  than one 
archegonium per  ovule, and  in  most  cases two  compet  

ing embryos  are formed  in  order  to  ensure the formation  
of full  seed.  Thus  the  genotypes homozygous for lethal, 
sublethal  or  defective  genes  are eliminated  either  by  ear  

ly abortion  of the  zygotes or,  later  on,  through embryo  
competition (Sarvas 1968). In the  present study, how  
ever,  there  was no indication  that these  features would  

have  been  more active  in any  of the  parental  combina  
tions  than in the others. 

According to Pasonen  (2000), in  an angiosperm tree,  
Betula  pendula, genotype-environment interactions  were 
found  in  pollen-tube growth rate  and  seed-siring  success,  
but  the  changes in  the rankings of  the  pollen donors  did  
not  translate  into  parallel  changes in  seed-siring  success. 
In  greenhouse conditions, the  tube  growth rate  controlled  
the  paternity  of  the  birch  seeds,  but in the  more  heteroge  
neous outdoor  environment  a negative correlation  was 
found  between  pollen elongation and  paternal success.  
This  result  was assumed  to be due to differences in the  

physiological  condition  of  the  maternal  plants,  caused  by  
microhabitat  variation.  Since  the  maternal  plant  is  known  
to provide carbohydrates for germinating pollen also in  

gymnosperms  (Willemse  and  Linskens  1969; Johri  1992; 
Dawkins  and  Owens  1993), the  same  type  of natural  en  
vironmental  variation  could  have  affected the  pollen 

competition in  the  present  study.  

Despite  some aberrations, the  present results support  
the  hypothesis  that  pollen-tube  competition is one of the  
factors  contributing to  male  fitness  in  P.  abies.  There  are 

genotype-environment interactions  in  pollen perfor  

mance,  as shown  already by  Nikkanen  et al.  (2000) and  
also  reflected  in the  present  study,  that affect the  paternal 
success.  These  GxE interactions  promote  the mainte  
nance of  genetic variation  within  populations, even if 
pollen performance  is  related  to fitness  (Delph et al.  
1997); and  in seed  orchards  they may  contribute  to the  
variable  genetic composition of  the  seed  produced in  dif  
ferent  years.  On the  basis of  the  present results,  and  tak  

ing into  consideration  all  the  other  factors  affecting  polli  
nation  and  seed  set  under  natural  conditions, it  would  ap  

pear  that  the  seed-siring  success of a particular  paternal 

genotype cannot be  predicted reliably  by  measuring the  
in  vitro  pollen vigour only. 
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INTRODUCTION 

The  annual variation  in  female  flowering and  seed  

crop  in  Norway spruce  [Picea  abies  (L.) Karst.] is  

large (Heikinheimo 1932, Sarvas  1968, Koski  &  Tal  

lqvist  1978). In southern  Finland  there  are  usually  no 

more than two or three good flowering years each  

decade, and  in  northern  Finland  even less  frequently. 

Furthermore, the  seed  production capacity seems to  

decrease  on moving towards  the  harsh  conditions  in  

the  north  (Sarvas  1968). The  year-to-year variation  in  

pollen production is smaller  than  that in  seed  produc  

tion  (Koski  &  Tallqvist  1978, Ruotsalainen  &  Nik  

kanen  1989). Anthesis  also  seems to be poorly  

adapted  to  the  northern  conditions  in  areas where  the  

average  effective temperature sum is less  than  1000  

degree days (dd) (Luomajoki 1993). 

In order to  ensure a supply of reforestation  mate  

rial  for northern  Finland, seed  orchards  of Norway  

spruce  and  Scots  pine ( Piritis  sylvestris  L.)  have been  

established  in  southern  Finland.  During 1968-1972 
six  Norway  spruce  seed  orchards, totalling 99  ha  in 

size  and  comprising clones  from  latitudes  64-68°N,  

were established  in areas between  latitudes  61 and 

62°  N.  It was  expected  that  the  orchard  clones, moved 

from north  to south,  would  be  pollinated by  each  

other before  the shedding of local  pollen. This as- 

Pakkanen,  A., Nikkanen,  T.  and  Pulkkinen,  P.  ('Finnish Forest Research  Institute, Haapasten  
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A  mature Norway spruce [Picea  abies (L.) Karst.] seed  orchard, established in  southern 

Finland  with  67 clones  from northern  Finland, was  analysed in  three  different years in  order  

to estimate the pollen contamination  ratios.  Allozyme-based paternity analysis  revealed  that 
the contamination rate was high, 69-71%,  and did not differ between  the years studied.  It 

appears that, in  areas where spruce  is  the dominant tree  species, the contamination rate  will 
be very  high even in mature seed orchards.  However, the contamination rate  in the  thinned 

parts  of the orchard  was  significantly lower than that in the unthinned parts  in two of the 

three  years studied.  The outcrossing rate was also high, 96-100%  in  all  years, even though the 

ramets of each clone were planted using a clonal-row design, and  there were no significant 
differences in the outcrossing rates  between the different parts of the orchard.  Key  words:  

allozymes,  background pollination, mating system , Norway spruce,  selfing. 

sumption was based  on the  theory that  the  tempera  

ture criterion for the  onset of  flowering would  be  

smaller  in trees  adapted to northern  conditions  with  

short  and  cool  summers than  in  those  adapted to 

more southern  conditions  (Sarvas  1962, 1968, 1970).  

In  Scots  pine this  is  the  case with  female  flowers, but  

male  flowering tends  not to start  much  earlier  than  

that in  local  southern  forests (Pulkkinen 1994). The 

time difference between  the onset of female  and  male  

flowering within  Scots pine orchards  may  even be  

several  days (Pulkkinen 1994), thus  increasing  the  

risk  of non-orchard  pollination. 

Even  in  mature Scots pine seed  orchards  with  

northern  clones transferred  to the south, and with  

high pollen production, the  estimated  pollen contami  

nation  rates  are relatively  high,  ranging  from 45 to  

76%  (Pakkanen &  Pulkkinen  1991),  from 51 to 58%  

(Wang et  al. 1991) and  from 69  to 74%>  (Yazdani &  

Lindgren 1991). As a result  of pollen contamination  

from origins  located  further  to the  south  than  the  

seed orchard  clones, the  offspring of Scots pine are 

not adapted to  the  intended  utilization  area (Nik  

kanen 1982, Pulkkinen  et al. 1995). 

Multilocus  allozyme  markers  and  paternity  analy  

sis  have  been  used  to estimate  pollen contamination  

and the  mating system in  a number  of conifer species 
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(e.g.  Friedman  & Adams  1985  a, 19856, Ritland  &  

El-Kassaby 1985, El-Kassaby et ai.  1989, Harju &  
Muona 1989, El-Kassaby 1997), including Norway 

spruce  seed  orchards  (Paule et al. 1993). To the  

authors'  knowledge, however, no work has  yet been  

carried  out on variation  in the contamination  rate  

among  years  in  Norway spruce  seed  orchards.  

The objective  of the  present study  was to estimate  

the  pollen contamination  rate  in  three  different  years  

in  a Norway spruce  seed  orchard  established with  

clones  moved  2-5° latitude  southwards.  The  propor  

tion of outcrossing  was  also  estimated in  a  seed  

orchard  established  using a clonal-row  design. The  

within-orchard  differences  in  the  rate  of pollen con  

tamination  and the  level  of outcrossing  were also  

studied. 

MATERIALS AND METHODS 

The  material  for  this  study  was obtained  from clonal  

Norway  spruce  seed  orchard no. 170, established  in  

1968 at  Heinämäki  in southern Finland (62° 13' N, 

25°24'  E) with  an effective temperature  sum of 1100  

dd  (5°C threshold). The  orchard  is  situated  on a  hill, 

160-190  m  a.5.1., and is  surrounded  by  spruce  forests. 

The  area of the  orchard is 13.2 ha. 

The seed  orchard  consists  of 67  clones  originating 

from between  latitudes  64  and 67° N in northern  

Finland  (Fig.  1). The  effective  temperature sum at the  

clone  origin  varies  between  820  and  1070  dd, with  an 

average  of  888  dd. The  grafts  were planted using a  

spacing  of 3.5  x 6.5  m  and  arranged in  a clonal-row  

design, the  grafts of the  same clone  being located  6.5  

m from each  other. In 1987, half of the  orchard  

(blocks  II  and IV) was  thinned  systematically by  

removing every  third graft,  and  the  other  half  (blocks  

I  and  III) was left unthinned  (Fig.  2). After  thinning, 

the  total  number  of grafts  was 3162. 
The seed  material  for  the  study  was  collected  in  

1989, 1992  and  1993.  Cones  were collected  from one 

graft  per  clone  in  each  block.  The  cones were dried at  

room temperature, after which  the  seeds  were ex  

tracted, cleaned  and  kept  at 4°C until analysis.  A 

total of 1233-2013  seeds  was analysed each  year  

(Table 1).  

The parental  multilocus  genotypes were inferred  

from the  allozyme  patterns in  haploid megagameto  

phyte  tissue.  Before analysis,  the  seeds were stratified  

for  24  h  at 4°C, followed  by  germination for  6 days at  

room temperature. The  multilocus  genotypes of the  

embryos  and  megagametophytes were assessed  at the  

following 11 allozyme loci: acid phosphatase 

(E.C.3.1.3.2.), aconitase (E.C.4.2.1.3.), two loci  of 

diaphorase (E.C.1.6.4.3.), fluorescent  esterase  

(E.C.3. 1.1.1.), glutamate dehydrogenase 

(E.C.1.4.1.2.), two loci  of glutamate oxaloacetic  

transaminase  (E.C.2.6.1.1.),  leucine  amino  peptidase 

(E.C.3.4.1 1.1.), malate  dehydrogenase (E.C.1. 1.1.37.) 

and  phosphoglucose isomerase  (E.C.5.3.1.9.).  For  de  

tails  of  the  technique used  and  the formal  genetics of 

these  loci,  see Muona  et  al. (1987). Multilocus  geno  

types  that  included  missing data  were not used  in  the  

analyses.  

The  pollen contamination  rates  were estimated  for  

the  whole  seed  orchard, and  separately for the  

thinned  and  unthinned  parts  of  the  seed  orchard.  The  

multilocus  genotypes of pollen gametes originating 

from  open  pollination were deduced  by  comparing 

the  allozyme  patterns in  the megagametophytes and  

Fig. I. Location  of the Heinämäki  seed  orchard  and the 

origin of the clones.  
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Fig. 2. The Heinämäki seed orchard  is  situated on a hill 

Half  of the  orchard  (blocks II and  IV) was  thinned  in 1987  
The grafts are labelled  as open circles.  

in  the  corresponding embryos.  Pollen  gametes with  

genotypes that  could  not  have  been  produced by  any  

of the  seed  orchard  clones  were regarded  as observed  

contamination  ( b )  from  external  pollen sources. 

Contaminating gametes with  genotypes matching 

those produced by  the seed  orchard clones  could  not 

be  identified.  If the  gene  frequencies in  the  contami  

nating pollen cloud  are known, an estimate of the 

detection probability  of alien  pollen ( d )  can be  calcu  

lated  (Smith &  Adams 1983) and  used  to obtain  the  

adjusted contamination  estimate.  In this study,  the  

gene frequencies of 400  embryos  collected  from  99 

trees  (three to five  seeds  from  each  tree)  in  a  Norway 

spruce  stand  located  500- 1000 m south-east of the  

Heinämäki  seed  orchard were used instead  of the 

unknown  pollen cloud  gene  frequencies.  The  esti  

mates  of  pollen contamination  (m)  were  calculated  by  

the  multilocus  method  described  by  Smith  &  Adams 

(1983) as m  = bfd.  The  single locus  allele  frequencies 

are used  for  estimating  the  frequency of indistinguish  

able  multilocus  pollen gamete genotypes (Smith &  
Adams 1983). The  formula  for the  variance  estimate 

of contamination  is  given by  Friedman  & Adams 

(19856). 

The  proportions of outcrossing  (t)  were estimated  

by  the  multilocus  method  of Shaw  et  al.  (1981) for  

the whole  seed  orchard, and  in  one year  also  for  the  

thinned and unthinned  areas separately. Pollen  

gametes with  genotypes that could  not have  been  

produced by  the  mother  clone  were regarded as out  

crossings.  The  estimated  outcrossing rates  were ob  

tained  by  correcting  the  detected  outcrossing  rates  

with  the  probability of detecting inbreeding, which 

was estimated by  means of the  gene  frequencies of  the 

seed  orchard.  The proportion of inbreeding (s)  is  

calculated  as s = 1 t.  

Differences  in  the  estimated  number  of pollen con  

taminants  and in the observed  number of inbreds  

between  years  and between  thinned  and  unthinned  

areas were analysed using the  Pearson  2-test.  

RESULTS 

The  observed  proportions of alien  pollen were 0.076, 

0.076  and  0.079  in  1989, 1992  and  1993, respectively,  

and the probability of detecting alien  pollen was 

0.110.  The  estimated  pollen contamination  rate  in  the  

seed  orchard  was 0.69, 0.69  and  0.71, respectively  

(Table 1). There  were no significant differences  in  

Table  1. Seed  year,  number  of  analysed  seeds,  estimated pollen contamination  and  outcrossing rates  and  their  

standard deviations  (SD)  in the  Heinämäki  seed  orchard  

Seed year Seed number 

Estimated  pollen 

contamination SD Estimated outcrossing SD 

1989 2013 0.686 0.053  1.000  0.006  

1992 1430  0.693  0.064  0.962  0.009  

1993 1233  0.712  0.069  1.000 0.009 

Mean 1559  0.697 0.987  
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Table  2. Seed  year,  number  of  analysed seeds  and  estimated  pollen contamination  rates  in  the  thinned  and  

unthinned  parts of  the  Heinämäki  seed  orchard  (SD in  parentheses) and  significance  level  of differences between  
the  thinned  and  unthinned  areas (y  :-test)  

**v<o.ool, **p<o.ol, 
NS

/>>0.05.  

pollen contamination  between  the  years  (/
2
 = 0.74,  

p  > 0.05). 

The estimated  proportions of contaminant  male  

gametes  in  seed  lots  collected  from the  thinned  parts  

of the  orchard  were 0.55, 0.68  and  0.65, and  from the 

unthinned  parts  0.81, 0.70  and  0.77, respectively,  in  
the  three  years  (Table 2).  In 1989 and 1993, the  

proportion of alien  pollen was significantly  lower  in  

the  thinned  than  in  the  unthinned  parts  of  the  or  
chard.  However, there  was no difference  between  the  

differently treated parts  of the  orchard  in  1992.  

The estimated  outcrossing  rate  for  the  whole  or  
chard area was 0.96 in 1992 and 1.00 in  1989  and  

1993 (Table 1). In 1992, the  proportion of  inbred  

seeds in  the  thinned  part  (s,)  of  the  seed  orchard  was  
0.03  and  in  the  unthinned  part  (s 2 ) 0.01.  The  accepta  

tion  of  the  null  hypothesis  s, =s
:  (/

2  = 1.49, p  >  0.05)  

indicates  that there was  no difference  in the inbreed  

ing rate  between  the  thinned  and  unthinned  parts.  In 

1989, 1992  and  1993, the  total  detected  outcrossings  

were 0.89, 0.93  and  0.92, respectively. 

DISCUSSION 

The  estimated  proportion of pollen contamination  in  

the  Heinämäki  seed  orchard  was very  high,  about  
70%  in  each  of the  years  studied,  even though pollen 

production in  the  seed  orchard was  abundant  in  the  

years  when  the  seed  was  collected  (Nikkanen  & Ruot  

salainen  2000). Norway  spruce  is the  dominant  tree  

species  on 25%  of the  forest land  in  Finland, and  

even higher in  southern  Finland, 33%  (Sevola 1999, 
Table  1.12). It  therefore  appears  impossible to avoid  

pollen contamination  anywhere  in  the  country. In  the  

region where  the  Heinämäki  seed  orchard is  located, 

Norway spruce  forests  are predominant. The  concen  

tration  of airborne  spruce pollen is  thus  high  during 

flowering time, increasing the possibility of pollen 
contamination.  

Certain features  in the flowering phenology of the  

seed  orchard  grafts  moved  to the  south  also  tend  to 

increase  the  potential rate  of pollen  contamination.  

In 1989,  the  female  flowers  in  the orchard  grafts  

became  receptive 3-5 days before  pollen shedding,  

whereas  in  1992 and  1993  the  time  difference  between  

female  receptivity  and  pollen shedding was 1-3 days 

(Nikkanen  1993  and  unpubl.). However,  some pollen 

was in the air at the time of the onset of female  

flowering (Nikkanen  unpubl.), which  must  have orig  
inated  mainly from outside  the seed  orchard.  

The  pollen contamination  rates  reported from 

southward-transferred  Scots pine seed  orchards  have  

been  at same  level  as those found at Heinämäki  in  the 

present study (Pakkanen & Pulkkinen  1991, Pak  

kanen  et ai. 1991, Yazdani  & Lindgren 1991). In  

contrast,  Paule  et ai. (1993) found  somewhat lower  

pollen contamination  rates  of 0.43-0.59  in  two 

Swedish  Norway  spruce seed  orchards.  These  Nor  

way  spruce  orchards,  however, had  a more northerly 

location  than  the  present  orchard, with  a  shorter  
transfer of the seed  orchard  clones  to the south. The 

synchronization between  female  and  male  flowering, 

and  also  the isolation  from surrounding Norway 

spruce  stands, may have  been  better  in  Sweden than  

at Heinämäki. 

The pollen contamination  rates  in  different  years  

were surprisingly  similar, even though there  were 

differences between  years  in  flowering phenology and  
in weather  conditions  (Nikkanen, unpubl.). Annual  

differences in  pollen contamination  have been  re  

ported in  Scots  pine seed  orchards (Harju &  Muona  

1989,  Pakkanen  & Pulkkinen  1991). Although the  

present study  found  no differences  in the  contamina  

tion  levels  between  the  three  years,  in  exceptional 

years  some variation  may  still  occur in  background 

pollination in  Norway spruce seed  orchards.  

Year 

Thinned parts  Unthinned parts  

Seed number Pollen  contamination  Seed number  Pollen contamination  2 

z~ 

1989 969 0.550  (0.069) 1044  0.812 (0.080)  159.0***  

1992 600 0.680  (0.097) 830  0.702 (0.084) 0.735 ns 

1993 610 0.653 (0.095)  623 0.770 (0.101) 20.40*** 

Mean 726 0.628  832 0.761 2.69** 



Scand. J. For. Res.  15 (2000) Pollen  contamination in a Picea abies seed orchard  403 

The Heinämäki  seed orchard  was capable of pro  

ducing a large number  of different  gametotypes, to  

talling 765, and  the  probability of  detecting  alien 

pollen was rather  low.  The estimate of pollen con  

tamination  rate  and  its variance  estimate are  very  

sensitive  to the  detection  probability (Smith &  Adams  

1983). The  observed pollen  contamination  rates  must  

be  divided  by  the  detecting probability in  order  to  
achieve  the contamination  estimates, which  in  the 

present  case meant multiplying the  observed  contami  
nation  rates  by  about  9.  This  meant that the  esti  

mates and  their  standard  errors were rather  high. 

The  origin of migrating pollen may  vary  between  

years,  and  even between  days, during the  flowering  

period of the seed  orchard  and, according  to Paule  et  

al.  (1993), there  is  no feasible  way to obtain  reliable  

estimates  of the  gene  frequencies  of the  immigrating 

pollen cloud and  some uncertainty has  to be  ac  

cepted. However, pollen of local  origin must  have  

been  involved  and  therefore  the  embryo gene  fre  

quencies  from  a local  population were used  to de  

scribe  the  unknown  alien  pollen cloud.  If there  was 

long-distance pollen  migration, the  genetic composi  

tion  of the  pollen would  be  slightly different  from 

that  detected  in  the  local  population (Paule et al.  

1993), and  may  have  a slight effect on  the  estimates  

of the contamination  rate. Furthermore, mislabelled  

grafts not belonging to the  Heinämäki  seed  orchard  
clones  could  have  affected  these  estimates, causing a 

slight  overestimate  in  the pollen contamination  rates.  

The  spacing of the  grafts  in  the  seed  orchard  may  

also  have  influenced  the  rate  of  pollen contamination.  
There  was less pollen contamination  in  the  thinned  

than  in  the  unthinned  parts  of  the  orchards  in  1989 

and 1993, but  not in  1992. However, according to 

Nikkanen  (1993), in  1992 the  pollen from  grafts  in  
the  thinned  parts  of the  orchard started to be  shed  

earlier  than  in  the  dense, unthinned  parts.  One  expla  

nation  for  the  earlier  pollen shedding in  the  thinned  

parts  could  be  a greater amount of direct  sunshine  

and  better  ventilation.  The time  difference in  pollen 

shedding may  have  been  even greater in 1989 and  

1993, when  differences  were also found  in  the  pollen 
contamination  rate between the thinned and un  

thinned  areas. Some differences in  the  weather  condi  

tions  were also evident. In 1992  the  sky  was  clear  all 

day  during the  flowering period, while  in  1993  and  

especially  in  1989  there  were some cloudy and  rainy  

days. The  average  daily temperature was also higher 
in  1992  than  in  the  other  years.  In addition, flowering 

took  place 10-14  days  later  in  1992  than  in  1989  or 

1993  (Nikkanen unpubl.). 

There  are  large clonal  differences  in  the seed  pro  

duction capacity  of Norway spruce,  leading to an 

uneven representation  of  families  in  commercial  seed  

lots  (Ruotsalainen & Nikkanen  1989). However, 

equal numbers  of seeds were sampled  from each  

clone  for  the  analyses.  The proportion of  background 

pollination may  vary  between  families  as a result  of 

clonal  differences  in  the  abundance  and  phenology  of 

flowering  (Nikkanen &  Ruotsalainen  2000,  Nikkanen  

unpubl.),  the  amount of contamination  in  a seed  lot 

subsequently being dependent on the relative  propor  

tions  of individual  families.  

High  outcrossing  levels  were expected  as a result  of 

abundant  pollen contamination.  The  estimated  out  

crossing  rates in  the  Heinämäki seed  orchard  were  

also  high in  all  years  and  in  all  parts  of the  orchard, 

even though the  ramets  were planted in  a  clonal-row  

design, with  a distance  between  ramets  of 6.5  m.  

El-Kassaby (1997), however, showed  a lower  out  

crossing  rate in a clonal-row  Tsuga  heterophylla  

[(Raf.)  Sarg.]  seed  orchard  than  in  a  randomly de  

signed orchard, but  did  not find  any  between-orchard 

differences  in  seed  production. In this  study,  the 

outcrossing  and  contamination  estimates  were  calcu  

lated  for germinated seeds,  and  the  germinability of 

the  seeds  was fairly  low.  It is  possible  that  the  real  

degree of outcrossing  in  the  seed  orchard  seed  was  

lower,  but  the  inbred  seeds  did  not germinate. If this  

is  the  case then  inbreeding had  decreased  seed  ger  

minability  and  seed  crop  production, and had  also  

affected  the  proportion of pollen contamination.  
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TEMPORAL AND SPATIAL VARIATION IN AIRBORNE POLLEN 

AND QUALITY  OF THE SEED CROP IN A NORWAY SPRUCE 

SEED ORCHARD 

Teijo  Nikkanen,  Anne  Pakkanen &  Jaakko Heinonen 

ABSTRACT 

Temporal and spatial variation in airborne pollen,  and in the quality of the seed 

produced,  were studied in a Norway  spruce  (Picea abies)  seed orchard,  located in 

southern Finland (62°13'N,  25°24'E),  consisting  of  67 clones from northern Finland 

(64°-67°N).  Data for the study were collected in 1995, and consisted of the results  of 

pollen  sampling,  cone  and seed  measurements, and isozyme  analysis.  

Duration of anthesis in 1995 was  5 days. The amount  of airborne pollen  increased 

during  the first four days,  and then decreased rapidly.  Diurnal variation  was  high;  the 

lowest amounts  of  pollen  being  measured at night  and in early  morning  when,  in 

general, air  humidity  was  high  and wind speed  low. During  the first two  days of  

anthesis,  pollen  densities inside and outside the seed orchard  were  approximately  the 

same, but  from the third day  onwards  the densities in the orchard were  higher.  On the 

third day, the highest  densities were  measured on the southern slope,  but one day  later 

in the northern part  of the orchard,  indicating  phenological  differences in pollen  

shedding.  In addition to  phenology,  spatial  variation was  affected by  the wind;  the 

highest  pollen  densities were  measured on the  downwind side  of  the orchard. The 

spatial  variation in the amount  of  airborne pollen  correlated significantly  with pollen  

contamination: contamination was high (0.80) on the eastern, upwind  side of the 

orchard, and much lower (0.51-0.57)  in the middle and northwest part.  The estimated 

rate  of  pollen  contamination for  the whole seed  orchard  was  0.71,  while the rate  of  self  

fertilisation was  0.06 with no significant  spatial  variation. In  addition,  spatial  variation 

was  found in cone production  and seed characteristics. 

Keywords:  Picea  abies, pollination, background  pollination, pollen  contamination,  

self-fertilisation,  inbreeding,  reproductive  synchronisation  

INTRODUCTION  

In natural populations  of wind-pollinated  conifers,  gene flow via pollen  and seed 

shedding  is efficient (ADAMS  1992). Effective pollen  distribution is especially  

responsible  for gene flow (KOSKI  1970)  and,  because  of  the strong gene flow;  conifer 

populations  have a  high  level of  genetic  variation within populations,  large  effective  

population  size,  but  small  variation among populations  (GOVINDARAJU  1989;  MUONA 

1990; ADAMS 1992;  MULLER-STARCK  et al. 1992). The amount  and distance of pollen  
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shedding  have been studied  for a  long  time (WRIGHT  1953;  Lanner 1966; KostCl  1970; 

SÖRENSEN 1972),  and  it has  been shown that considerable amounts  of viable pollen  can 

fly from population  to another,  and even over long  distances (WHEELER  et al. 1993; 

LINDGREN  et al. 1995). 

In  seed orchards,  gene flow from outside sources,  i.e. pollen  contamination,  has 

three different kinds of effect. Firstly,  it will  raise or at  least  maintain the genetic  

diversity of the  seed produced  (SAVOLAINEN  &  KÄRKKÄINEN 1992; NIKKANEN & 

Ruotsalainen 2000).  Secondly,  a high level of pollen  contamination,  observed in 

many wind-pollinated seed orchards  (Harju & Muona 1989; PAKKANEN & 

Pulkkinen 1991; Wang et al. 1991; Yazdani & Lindgren 1991;  Pakkanen et al. 

2000),  significantly reduces the genetic  gain  that can be obtained from seed  orchards 

(Lowe  & Wheeler 1993). Thirdly,  gene flow may reduce the adaptability  of  seedlings  

originating  in seed orchards  that  are  established outside the geographic  origin  of their 

clones (Nikkanen  1982; Lowe & Wheeler 1993; Ruotsalainen & Nikkanen 

1998). As  a consequence, pollen contamination from non-selected natural forests is 

considered a major problem  in many conifer seed orchards (Dl-GIOVANNI  & Kevan 

1991; Lindgren 1991; Savolainen 1991; Buchert 1992; Di-Giovanni & Joyce 

1992;  Wheeler &  Jech 1992). 

The  procedures  used to estimate pollen  distribution and contamination in seed 

orchards can be divided into two  categories,  namely  trapping  of  airborne pollen  (Dl- 

Giovanni & Kevan  1991; Di-Giovanni & Joyce 1992; Wheeler et al. 1993),  and 

paternity  analysis  of  seeds by  means  of isozyme  or  DNA-marker techniques  (Buchert 

1992; Wheeler & Jech 1992;  Friedman & Neale 1993; Lowe & Wheeler 1993; 

WHEELER et al. 1993). There are  a  range of pollen  trapping  techniques  that are  used for 

different purposes (Sarvas  1955; SÖRENSEN 1972; SOLOMON et al. 1980; Dl- 

GIOVANNI & Joyce 1992). The type of recording  pollen  sampler,  developed  and 

described by  Sarvas  (1962;  1968), can be used specifically  for studying  temporal  

variation in airborne pollen,  and the  rotorod type of sampler,  developed to measure  the 

densities of different particles  in the air (EDMONDS  1972), can be used  for studying  

spatial  variation in airborne pollen.  In conifers, paternity  analyses  have  frequently  been 

performed  on the basis  of multilocus allozyme  markers (Shaw  et al. 1981; Smith & 

Adams 1983; Friedman & Adams 1985; Muona et al. 1987),  but in recent  years also 

DNA markers,  such as RAPD fragments  (Lu  et al. 1995;  Khasa & Dancik 1996; 

Szmidt et al. 1996), chloroplast  micro-satellites (Ziegenhagen et al. 1998; PLOMION  et 

al. 2001) and (polymorphic)  EST-PCR markers (Schubert  et al. 2001) have been 

developed  for this purpose. 

The  aim of this study  was  to investigate  temporal  and spatial  variation in airborne 

pollen  in a Norway  spruce ( Picea abies  (L) Karst.)  seed orchard and its immediate 

surroundings,  and to estimate pollen  contamination and self-fertilisation in different 

parts  of the orchard. The hypothesis  of the study  was  that  the rate  of pollen  

contamination might be affected by  temporal  and spatial  variation in airborne pollen.  

Both pollen  trapping  and paternity  analysis  were  applied  in the  study.  An additional aim 

of  the study  was to estimate  spatial  variation in some of  the  quality  characteristics  of  the 
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seed  produced.  The data collected during several  years  in the seed  orchard,  which was  

the  object  of the present study,  have earlier been used to determine the variation in 

flowering  abundance (NIKKANEN  & RUOTSALAINEN 2000)  and flowering phenology  

(NIKKANEN  2001),  as  well  as  to estimate pollen  contamination (PAKKANEN  et ai. 2000)  

and genetic  diversity  (Nikkanen  & Ruotsalainen 2000).  

MATERIAL AND METHODS 

The seed orchard  

Variation in the amount  of airborne pollen  and in the quality  of  the seed produced  were 

studied in Norway  spruce seed orchard no. 170, Heinämäki,  established in 1968 at 

Korpilahti, southern Finland (62°13'N,  25°24'E).  The seed orchard consists of 67 

clones originating  from latitudes 64°-67° N in northern Finland. 

The  seed orchard is  13.2 ha in size,  and  is  located on a hill (160-190  m asl)  sloping  

gently  to  the south and steeply  to  the east  and west  (Fig. 1). The grafts were planted  in  

the orchard using  a clonal-row design  with  ramets  of  each clone in two  or  more rows.  

The spacing  of the grafts was  3.5 x 6.5 m, the ramets  of the same clone being  located 

6.5 m from each other. The seed orchard has been thinned systematically  by removing  

every  third graft (Fig. 1). For  more details about the growth  and flowering  of  the grafts,  

as  well  as  management of  the seed orchard,  see  Nikkanen and Ruotsalainen (2000),  

and Nikkanen (2001). 

Figure 1.  The Heinämäki seed  orchard.  Sample grafts for isozyme  analysis,  as well as the 
borderlines of  a)  altitude zones,  and  b)  sections  of  the  orchard, are  marked on the  map.  



4 

The topography  of  the seed orchard and its surroundings  and the position  of the 

grafts and pollen  samplers  were determined in 1993 by  means of a tachymeter  (Nikon  

A2O)  and a  field computer (Geonic  1000).  The equipment  was  used to  create  a  three  

dimensional coordinate system  covering  the study  area.  This information was  utilised 

when the orchard was  divided into  zones  and sections  (Fig. 1). 

Climatic observations 

The weather data  for the study  period  in 1995 were obtained from the Jyväskylä  weather 

station of the Finnish Meteorological  Institute,  located 25  km north-east of the seed 

orchard, and from our  own weather station (Datataker  610)  in the orchard (Fig.  2).  The  

weather data from Jyväskylä  weather station consisted of  daily mean temperatures, 

effective temperature sum (d.d.,  >+s°C),  cloudiness,  and precipitation.  The data from 

our own weather station consisted of  continuous temperature, illuminance, humidity,  

precipitation, and wind speed  and direction during the flowering  period  (Table  1,  Fig.  

3).  

Figure 2.  The Heinämäki  seed orchard and  its  immediate surroundings. Locations of  the  pollen 

samplers  and the weather station, and  the  borderlines of  the  orchard and  the  spruce forest, are  

marked on  the map. 
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Table  1.  Weather  conditions in 1995 in  the  Heinämäki seed  orchard  during rotorod  

sampling  (10  min  periods) of airborne  pollen, measured  using a Datataker  610  weather  
station.  

Figure  3. Distribution of  wind  direction  in  the  Heinämäki seed orchard on different days during 

anthesis  in 1995. 

Sampling  

date and time Temperature  
°C  

Luminance 

W/m2 

Humidity 
% 

Wind 

speed  direction 
m/s 

May 28  13 23.1 757 37 2.4 256 

May 29 10  22.5 585 50  1.0 158 

13 26.5 294 42 2.3 162 

16  26.6 625 44 3.3 155 

May 30 10  23.9 578 49 1.2 228 

13 27.0 725 40 2.8 213 

16  26.7 668 40 1.2 201 

19  26.6  266 39  1.7 274 

May 31 7 17.2 269 68 2.0 135 

10  21.9 610 49 1.8 226 

13 26.1 759 36 0.5  55 

16 25.9 618 30 2.1 274 

June 1 1 16.7 18 72 1.0 38 

7 15.3 268 81 1.7 75 

10 17.9 599 67 2.4 58 

13 22.7 742 53 2.2 74 

16 25.0 618 48  2.3 89 

19 23.1 122 49 2.4 137 

22 18.9 22 76 0.8 94 

June 2 10 23.7 590 65 2.4 119 

13 28.0 798 50 2.3 93 

16 26.9 175 42 2.3 158 

June 3 10 27.3  607 47 0.5 121 

13 28.9 769 42 1.5 116 
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Pollen sampling  

Temporal  variation in airborne pollen  was  measured by  means of a recording pollen  

sampler  (Sarvas  1968), located in the centre of  the seed orchard at the height  of  9.4 m 

(Fig.  2).  Spatial  variation in airborne pollen  was  studied using  a  rotorod type  of  sampler  

(Edmonds  1972). A  total of 70 samplers  were situated on 48 masts,  1-3 samplers  on 

each mast; 48 samplers  were at the height of  4.5 m, 16  at the height  of  9.0 m, and 6 at 

the height  of  13.0 m (Fig.  2).  37 of  the samplers  were  located in the seed orchard and 33 

outside it. A total of 24 ten-minute sampling  periods  were achieved during the seven  

day  period  from 28 May  to 3 June, 1995 (Table  1). 

The rotorod sampler  consisted of  a  pair  of rods, 92 mm apart, rotated  at a constant  

speed  by  a means of an electric  motor  with an average  rotation speed  of 2100 rpm (it 

varied  from 1840 to  2410 rpm depending  on the distance between  the sampler  and its  

battery).  With a  sampling  period  of  10  minutes and 8  observation  views of  0.7 mm
2  in 

each rod,  the average volume of air  swept was  0.067 m \ Pollen grains were trapped  on 

a  thin film of  Vaseline in the collector rods.  The number of  pollen  grains  caught  was  

counted using  a microscope  (Wild  M 20)  and special  reading  equipment.  

Cone and seed sampling  

Cones were collected from the seed orchard in September  1995. A total of 490 grafts 

from 66 clones were  sampled  for  the target of  collection. The cone  and  seed  crops  were  

determined separately  for each graft.  In addition to  the number and volume of cones, the 

number of damaged  cones was  also counted. After extracting  the seeds,  the weight of 

the  seed crop, 1000-seed weight,  and the number of  seeds per  cone were determined for  

each graft. In addition,  the percentage of full  seed was determined by x-ray  analysis  

(SIMAK  1980;  NUMMINEN & Häggman 1987) using  400  seeds  from one clone,  each of 

which consisted on the average of  6 grafts. 

Statistical  analyses  

Temporal  variation in the amount  of airborne pollen was analysed  by non-linear 

regression  analysis.  Statistical differences in cone and seed characteristics among the 

clones,  and  between the zones  and sections  of the orchard,  were studied by  analysis  of 

variance and the Tukey  post-hoc  test using  the GLM General Factorial procedure.  The 

strength  of  a linear association between different variables was assessed  by Pearson 

correlation coefficients. The analyses  were performed  by SPSS® 10.0 statistical 
software  (SPSS Inc. 1999). 

Spatial  analysis  of  airborne pollen  

Spatial  variation in airborne pollen  was  described by  means  of  density  maps. The pollen  

density values at each sampling  time were interpolated  for the 20 x  20 meter grid 

covering  the whole study  area. Interpolation  was performed  by  applying ordinary  
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kriging  (Cressie  1993) p. 120). The spatial  correlation of pollen density  was expressed  

as  a symmetrical  spherical  variogram model (Pebesma  1999). The parameters of the  

variogram  model were  estimated using  pooled  data from all the samplings,  and the  same 

estimates of  the parameters  were  then used  in each sampling.  Kriging  was  computed  on  

the logarithmic  scale,  and the interpolated logarithmic  values were transformed into  the  

original scale for  map drawing. Kriging  was performed by Gstat 2.2.1 software  

(Pebesma  1999). 

Estimation of pollen  contamination and self-fertilisation 

A total of 238 grafts from the 52 clones available were used  as material for the pollen  

contamination and inbreeding  analyses.  The grafts were chosen to cover  all the zones 

and sections of the orchard,  as  well as all the seed-producing  clones. A total of 2838 

seeds were analysed  (Table  4). The multilocus genotypes of the embryos  and haploid  

megagametophytes  were  assessed  at the following  11  allozyme  loci: acid  phosphatase  

(E.C.3.1.3.2.), aconitase (E.C.4.2.1.3.), diaphorase  (E.C.1. 6.4.3.), fluorescent esterase  

(E.C.3. 1.1.1.), glutamate dehydrogenase (E.C.1.4.1.2.), two loci of glutamate  

oxaloacetic transaminase (E.C.2.6.1.1.), two  loci of leucine amino peptidase  

(E.C. 3.4.11.1.),  malate dehydrogenase  (E.C.1. 1.1.37.) and phosphoglucose  isomerase 

(E.C.5.3.1.9.).  For  details of the technique  used and the formal genetics  of these loci,  

see  Muona et ai. (1987). 

The multilocus genotypes of pollen gametes were deduced by comparing  the  

allozyme  patterns  in the megagametophytes  with those in the corresponding  embryos.  

Pollen genotypes that could not  have  been produced  by  any  of the seed orchard clones 

were regarded  as  detected contamination (b ). Because part  of the contaminating  pollen  

could not  be distinguished  from pollen  produced by  the orchard clones, the detected 

contamination (b) had to be adjusted  by  the detection probability  ( d) of alien pollen  in 

order to obtain the  estimate of pollen  contamination rate  (m) as  m=b/d (Smith & 

Adams 1983). The single  locus embryo  gene frequencies  of 400 seeds,  collected in 

1992 from 99  trees  in  a Norway spruce  stand close to the Heinämäki seed orchard,  were  

used to obtain an estimate of  the detection probability.  The formula used to estimate the  

variance of contamination is given by  Friedman and Adams (1985).  The multilocus 

method of Shaw et al. (1981)  was  used to  estimate the  proportions of outcrossing  (/), 

and selfing  (= 1-t) rates.  Pollen gametes not  matching  with the mother tree  genotype 

were regarded  as  outcrossings.  The estimated outcrossing  rate  was  obtained by  adjusting  

the detected outcrossing  rate  by  the probability  to detect the selfings,  which was 

estimated by means of the gene frequencies  of the seed orchard. The pollen  

contamination and self-fertilisation rates  were  estimated for the whole seed orchard,  and 

separately  for the zones and sections  of the seed orchard. Differences in pollen  

contamination and self-fertilisation between  the  zones  and sections  were analysed  using  

the Pearson 
2
-test. 
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RESULTS 

Temporal  and spatial  variation in airborne pollen  

Duration of anthesis  in 1995 in the Norway  spruce seed orchard was  5 days (Fig. 4). 

During  this period  (May  29 to  June 2)  the daily mean temperatures varied from 19.5 to 

22.0 °C,  with an average of  21.2 °C,  and the  temperature sum accumulated from 85 to 

166 d.d..  The average number of  sunny  hours per day was 13.2, varying  from 10.1 to 

15.9, and the only  slight  rain occurred  on  June 2. During  the period  wind direction, as  

well as  wind speed,  varied from day  to day (Fig. 3). The  maximum wind  speed  varied 

from 3 to 4 m/s, except  on May 29 when it was 4.7 m/s. The weather conditions during 

the rotorod sampling  are  shown in Table 1. 

Figure  4. Variation  in  the  amount of  airborne  pollen caught with different pollen samplers,  and  

the  prediction  of  the  variation during the  flowering period in  1995  in  the Heinämäki seed  orchard.  

The amount  of pollen  in the air  was highest  on the fourth day of anthesis;  the 

average pollen  density  at 4 p.m.  at the height of 9 m in the orchard was  4000 pollen  

grains /m
3 of  air  (Fig.  4).  Pollen densities, measured on the same masts, were  3.5% 

higher  at the height  of  4.5 m than  at the height  of  9  m, and were significantly  correlated 

(r  = 0.96,  p = 0.000).  The amount  of pollen  measured by  the two  different types of 

pollen  sampler  was  also  highly  significantly  correlated (r = 0.94,  p = 0.000).  

Diurnal variation in the amount  of airborne pollen was great; at night and in the 

early  morning  much less  pollen  was  in the air  than during daytime  (Fig.  4).  The 

logarithm of  the amount  of  pollen  was  expressed  as  a function of  temperature sum, 

humidity  and wind speed.  The estimated model was  
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where In = natural logarithm 

1 143 =1 if temperature sum < 143 d.d., and I=o if temperature sum > 143 d.d 

D = temperature sum at a  specific  moment  

H = humidity  at the same moment  

W = wind speed  at the same moment  

The model is  applicable  when  the temperature sum is between 85 d.d. and 200  d.d..  

The model has  two  phases;  the increasing  phase  when the temperature sum is  <143 d.d.,  

and  the decreasing  phase  when it is  >143 d.d.. The effects of  humidity  and wind speed  

are  the same in both phases.  The adjusted  R
2

 of  the model was  0.80,  and the fit of  the  

model is  shown in Fig.  4. 

Figure 5. Spatial  variation in pollen  density  at  different sampling  times in 1995. Wind speed  and 

direction are  marked  on the maps.  

ln(pollen+0.1)  = 1143*(-4.82+0.07*D+0.10*(D/100I
143*(-4.82+0.07*D+0.10*(D/100)

3

)+ 

(1  -1 143)*( 1 8.00-0.09* D+0 .11  *(D/ 1 00)
3

)-o.os*H+ l ,4o*ln(  W+o.s)  
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Spatial  variation in pollen  density  at different sampling  times is shown on the maps  

in Fig.  5.  On  the first  and second day  of  anthesis  the differences in the different parts  of  

the orchard and outside it were small, but later on they  were much  larger. In  the 

afternoon of the third day the highest  pollen  densities were measured on the southern 

slope,  while on the next  day and the day after they  occurred in the northern part  of  the 

orchard. The accumulated amount  of  pollen  during anthesis  was almost two times  

higher  in the  western  and  middle sections  (NW, SW  and M) than in the eastern  sections  

(NE  and SE)  of  the orchard (see Figs.  1 and 5). 

On the first and second day of anthesis the average pollen  densities in the seed 

orchard and outside it were about the same,  but  on  the  third day the average density  in 

the orchard was more than 3 times higher,  and on the fourth and fifth day about 1.5 

times higher  than outside it (Fig.  6). 

Figure  6. The average pollen densities on different days in 1995 inside and  outside the  
Heinämäki  seed  orchard.  

Variation in cone and seed production  

The average number of cones produced  per  graft  was 143, varying  from 0 to 2400. 

There were large  and significant  differences in the tested cone and seed characteristics  

among the clones. The clonal mean of  cones  per graft varied from 0 (6 clones)  to  1150,  

and the mean of seeds per  cone from 3 to 84. The clonal mean of the proportion  of  full 

seed varied from 13 to  70%. The number of seeds per cone  and the percentage of full 

seed correlated significantly  (r  = 0.528,  p = 0.000).  

The number of  cones  per graft, as  well  as  the number  of  seeds  per  cone,  1000-seed 

weight,  and the percentage of  full seed differed in most  cases  significantly  between the 

altitude zones and the sections of  the orchard (Table  2).  The highest  values in all cone 

and seed characteristics occurred in the uppermost  zone and middle section  of  the 

orchard.  High  correlation (r  = 0.88,  p  = 0.051)  was  found between  the section  means  of  

full seed and the accumulated amount of  pollen  (Table  3). 
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Table  2.  Number of  sample  grafts, cones  per  graft  and some seed  characteristics in  different 

altitude zones  (a) and in  different  sections  (b)  of the Heinämäki  seed orchard, and  

significance  for differences in  ANOVA. The means marked  with different letters  (m, n) 
differ  significantly  from each  other, p  < 0.05 in  the  Tukey post-hoc  test. 

Table  3.  The  Pearson correlation  coefficients  (significance  in  parentheses) between  different  

characteristics  of pollination and  seed  crop  in different  sections  of the Heinämäki  seed  

orchard.  

a 

Altitude Number Number Number 1000-seed Percentage  

zone of of cones of seeds weight of 

asl  grafts per  graft  per  cone g full seed 

< 175 m 171 126 m n 17.8 m 4.6 m 38 m 

175 
-
 184 m 154 118 m 18.1 m 4.8 m n 42 m 

> 185 m 159 185 n 30.9 n 5.0 n 49 n  

Total 484 143 22.3 4.8 43 

F  3.482 18.489 5.030 15.583 

P 0.032 0.000 0.008 0.000 

b 

Section of Number Number Number 1000-seed Percentage  
the seed orchard of of cones of seeds weight of 

grafts per  graft per  cone g full seed 

NW 52 194 25.4 m n 4.5 m 49 n 

NE 128 138 23.0 m n 4.8 m n 43 m n 

SE 142 114 19.5 m 4.6 m 39 m 

SW 94  125 17.4 m 4.8 m n 43 m n 

Middle 68  198 29.8 n 5.3 n 47 n 

Total 484  143 22.3 4.8 43 

F  2.024 3.834 3.811 4.478 

P 0.090 0.005 0.005 0.002 

Characteristic Accumulated Number of Percentage  of Self- 

pollen  amount  seeds  per  cone full seed fertilisation 

Number of seeds  0.5 8 

Per cone (0.3 07) 

Percentage  of  full seed 8 0.73 

(0.0  51)  (0.163)  

Self-fertilisation -0.2 4 -0.73 -0.17 

(0.7  02) (0.166) (0.781)  

Pollen contamination -0.8 9 -0.85 -0.86 0.50 

44) (0.069) (0.063)  (0.394)  
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Pollen contamination and self-fertilisation 

The proportion  of detected alien pollen  was 0.079  for  the whole seed  orchard.  When the 

detection probability  was  0.11 the  estimated pollen  contamination for the orchard was  

0.71, varying from 0.60 to  0.87 for  the different altitude zones,  and from 0.51 to  0.80 

for the different sections  of the orchard (Fig. 1, Table 4).  The differences in  the rate  of 

pollen  contamination were significant both between the zones  and the sections. The  

highest  contamination was estimated for  the lowermost altitude zone,  and the lowest for 

the middle section  of  the orchard (Table  4).  Significant  negative  correlation (r = -0.89, 

p  = 0.044)  was  found between the contamination and the accumulated amount of  

airborne pollen  (Table  3).  The rate  of  estimated self-fertilisation was  0.06 for  the whole 

seed orchard (Table 4). The differences between the altitude zones and different 

sections  were  not  significant.  

Table  4. Number  of analysed seeds, detected  and  estimated  pollen contamination and self  

fertilisation rates  and their standard deviations in  different altitude  zones  (a) and  in 

different  sections  (b)  of the  Heinämäki seed orchard,  and  significance  for differences in  the  

Pearson  x2-test. 

a 

Altitude zone Number Detected Estimated Estimated 

asl  of seeds contamination (sd)  contamination (sd) selfing  (sd)  

< 175 m 953 0.095 (0.010)  0.87 (0.09)  0.075 (0.009)  

175-184 m 1007 0.067 (0.008)  0.60 (0.07)  0.061 (0.008)  

> 185 m 878 0.074 (0.009)  0.67 (0.08)  0.057 (0.008)  

Total 2838 0.079 (0.005)  0.71 (0.05)  0.064 (0.005) 

x
2
 6.032 174 2.675 

P 0.049 0.000 0.263 

b 

Section of Number Detected Estimated Estimated 

the seed orchard of seeds contamination (sd)  contamination (sd) selfing  (sd)  

NW  All 0.063 (0.012)  0.57 (0.11) 0.073 (0.013)  

NE 623 0.088 (0.011)  0.80 (0.10)  0.063 (0.010)  

SE 834  0.088 (0.010)  0.79 (0.09) 0.066 (0.009)  

SW 527 0.084 (0.012)  0.76 (0.11) 0.072 (0.011)  

Middle 427 0.056 (0.012)  0.51 (0.10)  0.044 (0.010)  

Total 2838 0.079 (0.005)  0.71 (0.05) 0.064 (0.005)  

x
2
 6.250 181 3.882 

P  0.181 0.000 0.422 
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DISCUSSION  

In the Heinämäki  seed  orchard flowering  in 1995 occurred  some days  later (May  29  to  

June 2)  than on  the  average  (Nikkanen  2001).  Weather  during the flowering  period  

was  exceptionally  warm,  the mean temperature being  21.0 °C  when it is  normally  5  to 

10 degrees  less  (NIKKANEN  2001).  As  a  result,  the flowering  period  lasted only  5  days.  

In years with colder and more cloudy  and rainy weather,  the duration of flowering  is 

longer.  The average duration of  anthesis  in seven different years in Heinämäki has  been 

7  days,  varying  from 5  to  10 days  (Nikkanen  2001).  

Temporal  variation in airborne pollen was analysed  by non-linear regression 

analysis, and the model obtained employed  temperature sum, air  humidity  and wind 

speed  to give  a rather  good  fit for predicting  the  variation in the amount  of  pollen  (Fig. 

4). The model has not  been  tested in other years or  other seed orchards,  but the main 

result of  the  model is that, within a certain range of temperature sum, the diurnal 

variation of airborne pollen  can be explained  on the basis  of air  humidity  and wind 

speed.  A good  example  showing  the prediction  power of  the parameters included in the 

model is  the night of  May  31/  June 1 (Fig.  4).  During  that  night there was  a  peak  in the 

curve of  the measured pollen  catch,  as  well as  in the predicted curve, as a result of  the 

lower air  humidity  than  during other nights  together  with sufficient wind  (about  2  m/s). 

The regular  diurnal variation, i.e. a high  amount  of  pollen  during day time and a  low 

amount  at night, and its  close relationship  with air humidity,  has been observed for 

instance by Sarvas  (1955).  He presented  an example  similar to  ours;  in a natural Scots  

pine  stand, when the humidity  is  low the amount  of pollen  is high even at night 

(Sarvas  1962). 

When the spatial  variation in pollen  density  was  investigated  in detail (Fig.  5),  there 

was  only  slight variation during the first  two  days  of  anthesis (May  29 and 30),  but the 

variation on the third and fourth day  of  anthesis (May  31 and June 1)  was  much larger. 

The variation in pollen  density in the seed orchard implies  the effect of wind, and 

phenological  differences in pollen  shedding  between the southern slope  and the northern 

part  of  the orchard (Nikkanen  2001).  On May  31 the highest  densities occurred  on  the 

southern  slope,  but on June 1, especially  in the afternoon, they  occurred in  the northern 

part  of  the orchard. On this day  high  densities were  observed in the western,  downwind 

side of the orchard, indicating  heavy  pollen shedding  from the grafts and the effect  of 

wind. The wind direction varied from day to day but, during the last two  days of 

anthesis,  it was  mainly  from the east (Fig.  3).  The applied  kriging  method tends to give  

estimates  close to the overall mean value when the distance to the nearest  observation is 

large.  The lack  of  samplers  in the middle of the orchard has  probably  resulted in 

underestimates in the density  maps for these areas  (Figs.  2  and 5). 

The average pollen  density  in the seed orchard was  about the same as  that  outside it 

during the first  two days of anthesis,  but on  the third day it was  much  higher  in the 

orchard (Fig.  6).  This seems  to indicate that pollen  caught  in the orchard during the first 

two  days was  mainly  derived from outside the orchard,  but on  the third day,  because of 

the higher  pollen  densities, from inside the orchard. This is in accordance with the 
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results  that  the main proportion  of pollen  shedding  from the seed orchard grafts took 

place  within two  days -  from  May  31 to June 2  (NIKKANEN  2001).  In the  seed orchard  

the  pollen  density  increased considerably  from the second to the third day,  but  outside it  

the greatest increase occurred one day  later. This may indicate that there are  some 

phenological  differences in pollen  shedding  between the seed orchard grafts and the  

surrounding  forest, as had been expected  when seed orchards  like  the studied one, i.e. 

those  of northern origin  established at more southerly  sites,  were planned  (Sarvas  

1970). 

The receptive  period  of female flowers and pollen  shedding  from male flowers 

occurred  almost simultaneously  in the orchard in 1995,  while in 1992 and 1993 pollen  

shedding  was more delayed (NIKKANEN  2001). However, the reproductive  

synchronisation  was not complete  even in 1995. The first female flowers  became  

receptive  on May  29,  and all the flowers were receptive  on May  31 (NIKKANEN  2001).  

Thus,  on May 31 when abundant pollen  shedding  in the orchard started (Figs.  5 and 6), 

most  of  the female flowers in the orchard had been receptive  from one to  two  days  and,  

on  the next  day, some  of them had already  started to close (NIKKANEN  2001).  This 

means  that part  of the orchard pollen  was  too  late to pollinate  the female flowers. This 

also confirms that a phenomenon,  called metandry  (i.e. female flowers are receptive  

before male flowers shed pollen), which is characteristic for Norway  spruce and Scots 

pine  (Sarvas  1962, 1968), is  pronounced  in south-transferred seed orchards  of  these  

species  (Pulkkinen  1994;  Nikkanen 2001).  

The amount  of airborne pollen  was  determined by  means  of  two  different types of  

pollen  sampler.  One of the samplers,  the Sarvas-Wilska model,  is  a recording  sampler  

with a  clock  mechanism that enables pollen  to  be  trapped  on one tape during a  1-week 

period.  This makes it especially  suitable for measuring  temporal variation in airborne 

pollen.  The rotorod sampler,  on the other  hand,  was  developed  to  measure  the  number 

of pollen  grains or other  small  particles  in a known volume of air, and is therefore 

suitable for  measuring  the density variation of  pollen in the orchard. Because the 

rotorod sampler  operates at a high rotation speed,  it is only  suitable for catching  

relatively  small particles.  However, according  to our  results,  the size of a Norway  

spruce  pollen  grain is  not  too  large  to  be caught  using  a  rotorod sampler.  In  this  study  

the  Sarvas-Wilska sampler  was found to  give  pollen  quantities that  agreed almost 

exactly  with the quantities  caught  with the rotorod sampler.  

Flowering  and cone production  in the Heinämäki seed orchard was  rather abundant 

in 1995, but the quality of the crop was  poor; more than 90% of the cones had resin  

flow and other  forms of damage,  while in 1989 damage  was  found in only  14% of the  

cones  (Nikkanen  1992). The number of  seeds  extracted per  cone was 22 in 1995, while 

in 1989 it was  87 (Nikkanen,  unpublished  data). In addition to  large  differences in the  

quantity and  quality  of the seed among clones,  there were also large  and significant  

differences between different parts of the orchard (Table 2). For instance,  cone 

production  and 1 000-seed  weight were higher  in the central  and  uppermost parts  than in 

the  other parts  of the orchard,  probably  because of the more fertile  soil (abandoned  

agricultural land) in this part (Nikkanen & RUOTSALAINEN 2000).  Clear spatial  
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variation was  also  found in the number of seeds per  cone and in the proportion  of full 

seed. Because the  proportion,  of  full seed was  strongly  correlated with accumulated 

amount of pollen  (Table  3),  differences in the abundance of  pollen  may have affected 

this parameter. 

The estimated rate  of self-fertilisation in the Heinämäki seed orchard was 0.06, 

which was  higher  than the rates  estimated  for  the same seed orchard in 1989,  1992 and 

1993, of  0.00, 0.04 and 0.00, respectively  (Pakkanen  et al. 2000).  However,  the selfing 

estimate for Heinämäki in 1995 was lower  than that  estimated by  XIE and KNOWLES 

(1993)  for a  Norway  spruce seed orchard in Canada (0.09),  but higher  than  the estimate 

of PAULE et al. (1993)  for two  seed orchards in Sweden (outcrossing  rates  0.95 and 

0.98).  The selfing  rates  estimated  for  Norway  spruce  stands have been higher  than those 

for seed orchards (MUller 1977; Lundkvist 1979; Muona et al. 1990). The 

differences in the rate  of selfing  between the different parts of the orchard (Table  4) 

were not  significant.  

The rate  of  pollen contamination in 1995 was  0.71,  which is in the same level as the 

rates in the same seed orchard in 1989, 1992 and 1993 were 0.69,  0.69 and 0.71,  

respectively  (Pakkanen  et al. 2000).  In  spite  of  the annual differences in the weather  

conditions and timing of  flowering  (NIKKANEN  2001),  the contamination rates  were  

surprisingly  similar in different years.  The rates  were also  high  when they  are  compared  

to  the only  study apart  from  ours  (as  far as  we  know)  concerning  pollen  contamination 

in Norway  spruce  seed orchards: PAULE et al.  (1993)  estimated contamination rates  of 

0.43 and 0.59 for  two  different seed orchards in Sweden. These orchards,  which were 

also established with  northern material, were located closer to the origin  of  the mother 

clones,  and  this  may  have had different effects  on  reproductive  synchronisation.  The 

contamination rates in Scots pine have varied from 0.45 to 0.76 (PAKKANEN & 

Pulkkinen 1991; Wang et al. 1991; Yazdani & Lindgren 1991). The method we 

used to estimate the  pollen  contamination is rather sensitive  to differences in 

background  pollen  frequencies,  because  the detection probability  of  alien  pollen  is  low 

in orchards  that include a large  number of clones. Even though  the differences in  

isozyme  gene frequencies  are  known  to be small in Norway  spruce populations  

(Lundkvist  1979),  significant  heterogeneity  between pollen  clouds has  been reported  

(Muona  et al. 1990), and it is obvious that  there is temporal  variation in the gene 

frequencies  of  the pollen  cloud during  flowering  and between years. However, because 

it is very  difficult to  obtain precise  estimates of  the gene frequencies  of  background  

pollen, some uncertainty has to be accepted,  as  PAULE et al. (1993)  also stated. 

In pollen  contamination significant  differences were found between the different 

parts of  the orchard (Table  4).  In the middle of  the orchard the contamination rate  was  

about 0.50,  while on the edges,  except in the NW section, it was close to 0.90.  The 

contamination was  higher  in the eastern  than in the western  parts of  the orchard,  

obviously  because  of  the prevailing  wind direction  during  late anthesis.  In a  Scots  pine 

seed orchard in Sweden,  YAZDANI and LINDGREN (1991) reported  significant  

differences between the blocks  in the orchard,  and also significant  interaction between 

blocks  and years.  
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The spatial  variation in pollen  contamination correlated significantly  with the  

accumulated amount  of  airborne pollen  (Table  3).  Most of  the differences  in the pollen  

sum  between the sections occurred  on the fourth  day of  anthesis (Fig.  5). In the middle 

and downwind side of the orchard the pollen  densities were  higher  and the pollen  

contamination lower than in the other parts  of  the orchard. When differences in pollen  

density during late anthesis,  or  accumulated amount  of pollen  and wind  direction, are  

taken into consideration,  it is rather easy  to understand the spatial  variation in pollen  

contamination found in the study  (Table  4). 

The high  rate  of pollen  contamination estimated from the seed orchard seed in this  

study,  and in the study  of  Pakkanen et ai. (2000),  indicate that  a strong gene flow into  

the seed orchards from outside sources  is the predominant pattern at least in the  

orchards of  northern origin  established at more southern  sites.  This is  also the case  for  

Scots  pine  (Pakkanen  & Pulkkinen 1991; Wang et ai 1991; Yazdani & Lindgren 

1991). Our results  are in accordance with the findings  of Sorensen and Webber 

(1997),  who  also  found that there are small but obviously  effective quantities  of  pollen  

in the air  before the  shedding  from orchard clones starts. The result  that  the greatest  

increase  in pollen  density  occurred outside the seed orchard one day later than inside it  

(Fig. 6), indicating  phenological  differences between the orchard and local forests,  is 

one sign  that the origin  of  airborne pollen  during the first  one or  two  days of  flowering  

was  probably  not  from the surrounding forests but mostly  from more distant sources.  

The prevailing  southerly winds on these  days lend support to the possibility  that pollen  

may have migrated  from areas  where the flowering  of  the species  was  in advance of  that  

in the seed orchard area. The importance of  long-distance  pollen  flight  has been  stressed 

by Wheeler et al. (1993),  who  reported that although  the likelihood of gene flow is  

greatest when individuals are  located close to  each  other and in phenological  synchrony,  

long-distance  pollen flight accounts for a considerable proportion  of successful  

fertilisations in most  seed orchards  and natural stands. Koski  (1970)  pointed  out  the 

same, adding that even if  the proportion  of  long-distance  pollen  remains small on 

average, it can account  for a  significant proportion  of  total  pollination  in some  years. 

The  main results  from this study  were as  follows: During  the first two  days of the 

receptive  period  of grafts in the seed orchard, most of the pollen  caught  was derived 

from outside the orchard, either from the surrounding  forests or from more distant 

sources.  Later  the proportion  of  pollen  shed from the seed  orchard grafts increased  to a 

level above that of the background  pollen.  The phenological  differences in pollen 

shedding  between different parts  of  the orchard,  and the wind direction, had  an  effect on 

spatial  variation in pollen  density.  This variation, measured as  the accumulated amount  

of  pollen,  had an effect  on the rate  of  pollen  contamination and probably  also  on  the 

proportion  of  full seed. 
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