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This study  generalizes  the assumption  of  perfect  capital markets  as  one  cornerstone  assumption  
in the classical  Faustmann forest  rotation model. We show  that  an  infinite chain of optimal  

rotations is  determined by  a  nonlinear difference equation  with a saddle point  property.  The 

rotation period is  nonconstant  but approaches  a stationary  rotation in finite time. The  length  of  

optimal  rotation,  timber supply  and  the value of  forest  land depend  on  forest  owner specific  

parameters  that are  normally  nonexistent in the rotation problems.  The model explains  several  

empirical  findings  that cause  problems  to the classical  versions of  the Faustmann model. 

Klassinen optimikiertoaikamalli  perustuu täydellisiin  pääomamarkkinoihin  eli oletuksiin,  että  

metsänomistaja  voi saada lainaaja  sijoittaa  rahaa samalla korkokannalla ilman rajoitteita.  Nämä 

oletukset eivät kuitenkaan tyypillisesti  esimerkiksi  Suomessa ole voimassa. Tämä on seurausta  

siitä,  että lainasta maksettu korko  on useimmiten suurempi  kuin metsänomistajan  sijoituksilleen  

saama korko,  metsämaa puustoineen  ei välttämättä kelpaa  lainan vakuudeksi koko  rahallisesta 

arvostaan  ja  metsänomistaja  voi eri  syistä  olla luotonsaantirajoitusten  alaisena. 

Vaikka  pääomamarkkinoiden  epätäydellisyyksiä  voidaan pitää  tyypillisinä,  ei  niiden 
vaikutuksista  optimikiertoajan  määräytymiseen,  metsämaan arvoon ja 

metsänhoitotoimenpiteiden  taloudelliseen kannattavuuteen juurikaan  ole kansainvälistä 

metsäekonomista tutkimustietoa. Aijemmin  julkaistu  epätäydellisiä  pääomamarkkinoita  ja 

puuntarjontaa  koskeva  tutkimus ei  perustu  kiertoaikamalliin vaan  sensijaan  metsän kuvaukseen  

homogeenisena  biomassana ilman ikäluokkia. Homogeenisen  biomassan korjuuta  kuvaavat  

metsämallit eivät  tuota tuloksia  kiertoajasta,  maan arvosta  tai taloudellisista kannustimista 

istuttaa uusi  puusto päätehakatun  tilalle. Tämän seurauksena "perhemetsätalouden"  ymmärrys  

ja metsäneuvonnan tutkimuksellinen perusta  ovat  puutteellisia.  

Epätäydellisten  pääomamarkkinoiden  sisällyttämisellä  optimikiertoaikamalliin  on  selvää 

empiiristä  ja  käytännön  merkitystä.  Metsänomistajille  tehdyssä  opaskirjassa  (Mielikäinen,  K.  ja 

Riikilä,  M. 1997,  Kannattava Puuntuotanto,  Metsäntutkimuslaitos ja Tapio  

Metsälehtikustannus, s.  15,  30)  esitetään  metsänomistajien  metsäpääomalleen  asettamien 

tuottovaatimusten riippuvan  siitä  onko  metsänomistaja  "säästäjä",  "käyttäjä"  vai  "sijoittaja".  

Esitetty  kuvaus  ei voi  päteä  täydellisillä  pääomamarkkinoilla,  koska  näillä toimiva rationaalinen 

metsänomistaja  ottaa  markkinakoron  annettuna  riippumatta  säästämistä/kuluttamista  
koskevista  tavoitteistaan. Jos  kysymyksessä  on  epätäydellisten  pääomamarkkinoiden  
olosuhteisiin tarkoitettu neuvonta, puuttuu esitetyiltä  ajatuksilta  tutkimuksellinen pohja.Tätä  

pyritään  tässä  tutkimuksessa kehittämään. 

Klassisen  kiertoaikamallin ongelmana  on,  ettei  se  selitä miksi  esimerkiksi Suomessa ja 

Yhdysvalloissa  yksityismetsänomistajien  puuntarjontaa  selittävät metsänomistajakohtaiset  

tekijät  kuten  metsätalouden ulkopuoliset  tulot,  varallisuus tai ikä. Se  ei  selitä miksi  

metsätulojen  realisoitumisen ja kulutuksen välillä voidaan havaita empiirinen  yhteys (ns.  "Volvo 

argumentti").  Lisäksi  klassinen kiertoaikamalli näyttää  epäonnistuvan  metsämaan 

markkinahinnan ennustamisessa ja selittämisessä.  Tällä on myös  Suomessa kasvava  merkitys  

metsämaan kaupan  vapauduttua  ja esimerkiksi laskettaessa korvauksia lunastettaessa 

metsämaata luonnonsuojelutarkoituksiin.  



Suomen metsäpolitiikan  suunnittelussa paljon käytetty  MELA -malli nojaa  täydellisten  

pääomamarkkinoiden  oletukseen ja  klassiseen  kiertoaikamalliin. MELA-mallin kehitystyön  

yhteydessä  tehty  yritys  käsitellä  tapausta,  jossa  anto-ja  ottolainakorot eroavat  on  kiinnostava,  

mutta  on  metsänomistajan  preferenssejä  koskevan kuvauksen osalta  hyvin  rajoittunut  (Lappi  ja  

Siitonen 1985). 

Tässä  tutkimuksessa  pääomamarkkinoiden  epätäydellisyys  muotoillaan lainarajoitteen  
muodossa. Tämä kuvaa  myös  tilannetta, jossa  sijoituksia  ja lainaa koskevat  korot eroavat  

toisistaan olettaen,  että  lainakorko on  riittävän suuri  aiheuttamaan metsänomistajan  

pidättäytymisen  lainanotosta. Lainarajoite  sisällytetään  malliin,  joka  yhdistää  klassisen 

optimikiertoaikamallin  taloustieteessä vakiintuneeseen mallin kotitalouden 

säästämistä/kuluttamista koskevasta  päätöksenteosta.  

Osoittautuu,  että epätäydellisillä  pääomamarkkinoilla  optimirotaatio  ei ole vakio kuten 

klassisessa  kiertoaikamallissa. Ajan  kuluessa  kiertoaika kuitenkin lähestyy  vakiopituista,  
stationääristä kiertoaikaa,  joka  on varallisuuttaan vähentävälle metsänomistajalle  klassista  

optimikiertoaikaa  lyhempi.  Vakiona toistuva stationäärinen kiertoaika riippuu  negatiivisesti  

puun  hinnasta ja  positiivisesti  uuden puuston perustamiskustannuksista  kuten  klassinen 

kiertoaika,  mutta  päinvastoin  kuin klassinen kiertoaika,  on sitä pidempi  mitä suurempi on 

markkinakorko. Lisäksi  stationäärinen kiertoaika on sitä pidempi mitä suuremmat  ovat 

metsätalouden ulkopuoliset  tulot ja mitä alhaisempi  on metsänomistajan  subjektiivinen  

korkokanta. Näinollen malli selittää  esimerkiksi  sen  miksi  lyhyen  aikavälin hyvinvointia  

painottava  metsänomistaja  on  taipuvainen  päätehakkaamaan  metsänsä niin varhaisessa 

kasvuvaiheessa kuin  laki  sallii. Klassisen  kiertoaikamallin mukaan "lyhytnäköinen"  

metsänomistaja  soveltaa samaa kiertoaikaa  kuin pitkän  aikavälin hyvinvointia  painottava  

metsänomistaja.  

Suomessa päätehakattavan  puuston  täytyy  toteuttaa  joko  minimi-ikä- tai minimijäreyskriteeri.  

Tämän tutkimuksen perusteella  voi otaksua,  että  lainarajoitteisen  metsänomistajan  
näkökulmasta tämä säädös saattaa  olla taloudellisesti optimaalista  hakkuuajankohtaa  rajoittava  

tekijä. 

Metsänomistajille  suunnatussa  neuvonnassa  (vrt. Mielikäinen ja Riikilä 1997)  näyttäisi  olevan 

perusteltua  jäsentää  päätöksentekotilannetta  sen  mukaan onko metsänomistaja  velaton ja 

omaisuuttaan kasvattava  vai velkaantunut ja mahdollisesti lainarajoitteinen.  Ensimmäisessä 
vaihtoehdossa kiertoaika  määräytyy  klassisen kiertoaikamallin mukaan ja korkona käytetään  

sijoituksille/säästöille  saatavaa  (verojenjälkeistä)  korkokantaa.  Toisessa  vaihtoehdossa 

sovelletaan veloista maksettavaa (verojenjälkeistä)  korkoa,  mutta  jos  metsänomistaja  on lisäksi  

lainarajoitteinen  voi optimikiertoaika  olla velkakorolla laskettua klassisen  kiertoaikamallin 

suositusta oleellisesti lyhempikin.  

Klassinen kiertoaikamalli antaa teoreettisen taustan  esimerkiksi Suomessa  sovellettavalle 

metsämaan arvon  laskennalle. Tässä  tutkimuksessa tehty  numeerinen tarkastelu osoittaa, että 

pääomamarkkinoiden  epätäydellisyyksien  seurauksena metsämaan arvo  voi olla oleellisesti 
klassisen  mallin arviota alhaisempi.  Paljaan  maan todellinen arvo metsänomistajalle  voi olla 

negatiivinen,  vaikka klassisen  malli ennustaa  positiivista  maan arvoa.  Toisin sanoen,  

pääomamarkkinoiden  epätäydellisyyksien  seurauksena kannustimet istuttaa uusi  metsä 

päätehakatun  tilalle voivat  puuttua,  vaikka  klassisen  mallin perusteella  investointi näyttää  
kannattavalta. Tämä osoittaa,  että  pääomamarkkinoiden  toimivuus ja  metsänomistajan  



varallisuuteen nähden rajoittamaton  lainansaanti ovat  kestävän  metsätalouden perusedellytys,  

joiden  puuttumista  on  Suomessa jouduttu  paikkaamaan  mm. lainsäädännöllisin toimenpitein.  
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1 Introduction  

Based on  150 years  of history, the forest rotation model by  Faustmann (1849),  Pressler  

(1860)  and  Ohlin (1921)  possesses  several  unique features as a  description  of intertemporal  

decision making.  Under perfect  markets and perfect  foresight, the model specifies  the 

rotation period  for an even  aged  stand that maximizes the  present  value of  forest  land over  

an infinitely  long  time horizon (Samuelson  1976).  The ongoing  research  has yielded  new 

extensions with various kinds  of uncertainties (Miller and Voltaire 1983, Clarke  and  Reed 

1989, 1990,  Willassen 1998),  nonlinearities (Heaps  1984,  Mitra and Wan 1986) and  models 

for studying  the utilization of the global  forest resources  (Lyon and Sedjo  1990). The forest 

rotation model also  has  high  practical  relevance. Biologically  oriented forest scientists  have 

developed  highly  detailed numerical procedures  for determining  optimal forest management 

procedures  (e.g.  Haight  1985).  In the Nordic countries detailed guidance  on how to obtain 

field estimates for the financial maturity of a growing forest stand are based on the 

Faustmann model as  well  as  the calculations for the value of forest land. l  

In spite  of  its  unique  success  the Faustmann model faces  difficulties with  empirical  

observations on nonindustrial private forest  owners  in Northern Europe  and various parts  of  

North America. A number of  econometric investigations  have  revealed that forest owners' 

harvesting  decisions depend  on owner-specific  characteristics  like nonforest income, wealth 

and owner's age, which are excluded from the classical Faustmann model (e.g. Binkley 

1981, Romm et al. 1987, Dennis 1988, 1989, Jammick &  Becket 1987, Kuuluvainen and 

Salo 1991). There is  also some empirical  evidence on the dependence  of forest land prices  

on owner characteristics (Aronsson  and Carlen 1997). In the Nordic forestry  folklore the 

"volvo argument"  states that harvests can be explained by  the forest  owner's  need for a new 

'As  discussed  by  Miller  and  Voltaire (1983),  problems  similar to  the rotation model  occur  in 
various other fields in economics  as  well. For example,  some optimal  stopping  problems  
come close to the rotation model. 
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vehicle (Johansson  and Löfgren  1985, p. 138,  Malmborg  1967).  Forest experts believe that 

forest owners have an incentive to use a forest as  a "bank" for direct financing  of their 

consumption  expenditures.  These findings  are  disturbing  for the Faustmann approach  based 

on perfect  capital  markets  because  the model,  by  assuming  profit  maximization,  implicitly  

relies on the Fisherian separation theorem and predicts  that forest  owner-specific  factors 

should play  no  role in explaining  cutting  decisions. In addition,  there should be no temporal  

connection between harvesting  and peaks  in consumption  levels. 

This study explains  these findings by relaxing  one basic assumption  in the 

Faustmann tradition,  i.e. the assumption  of perfect  capital  markets. In his widely cited 

paper,  Samuelson (1976)  indicates this  as  one  important future extension of the rotation 

model.  However, the progress  in this  line of  research has  been  slow or  nonexistent.  While 

relaxing the perfect  capital  market  assumption,  a number of studies have  given  up  the  

age-class  structure  and even aged  harvesting  approach  inherent in the Faustmann rotation 

model (e.g.  Johansson and Löfgren  1985, p. 8, Koskela  1989,  Kuuluvainen 1990).  Instead,  

these models describe forests as homogeneous  biomass. This choice increases  analytical 

tractability but  undoubtedly  the original flavor of the Faustmann model and its strong 

biological  base  are  lost.  Murphy  et al.  (1977)  study  the effects  of imperfect capital  markets  

in  the original  rotation framework. They search for numerical solutions using dynamic  

programming  but obtain solutions labelled as 'globally  nonoptimal',  due to the artificial 

dependence  of the length  of the planning  horizon. Another study  (Lappi  and Siitonen 1985)  

assumes  a divergence between lending  and borrowing  rates  of interest and applies  linear 

programming.  Postulating  linear utility from consumption  and  a max-min type intertemporal  

objective  function, consumption  (or  utility) is  constant  over time. Their numerical examples 

suggest that imperfect capital  markets may  provide  an interpretation for the smoothness 

requirements  for forest income, an idea foresters  normally  apply  ad hoc.  

We formulate a  continuous-time utility  maximization consumption/savings  life cycle  

model augmented  by  forest capital  within the Faustmann rotation framework. Imperfections  
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in the capital  markets  are  specified  as  a constraint on borrowing.  This may reflect credit 

rationing  or  the fact  that in many countries standing  forests  are  not  accepted  as  securities to 

their full  financial (or  Faustmann)  value. In addition,  a constraint on  borrowing  must  

partially  reveal the more complex  case  of  different lending and borrowing  rates  of  interest 

since a  sufficiently  high  borrowing  rate  of  interest is equivalent  to  a borrowing  constraint. 

We assume  an infinite time horizon,  which reflect a perfectly  altruistic bequest  motive or  a 

"forest dynasty".  

As  in earlier Faustmann extensions (e.g  Heaps  1984, Willassen 1998), our borrowing  

constraint  leads  to a  complex  optimal  control problem.  The model includes a pure state  

constraint and endogenous  jump discontinuities in the two  state variables. We handle the 

discontinuities by formulating  the model as  an infinite chain of control problems  where 

jumps occur  between the successive subproblems.  The continuity condition for the 

Hamiltonian yields  a nonlinear "rotation difference equation"  that determines the chain for 

optimal  harvesting  dates. 

If the borrowing  constraint is not  binding, the Faustmann solution satisfies our 

rotation difference equation  as  a stationary solution. With a binding  borrowing  constraint 

the difference equation  has a stationary  solution that depends on forest owner-specific  

characteristics. Only  with specific  initial financial assets and stand age does the optimal  

solution follow the stationary  path  without transitional dynamics. Along the stationary 

solution,  consumption  jumps  up at the harvesting  dates, contrary  to the continuous 

consumption  under perfect  capital  market. Assuming  a  specific  form of  the utility function,  

we obtain a rather complete  set  of analytical  results for  the comparative  statics of the 

stationary  rotation. To derive these results,  we extend a lemma by Pontryagin  et  al. (1962,  

p.  122). It is  shown  that,  for  example,  nonforest income increases and the borrowing  

constraint decreases the rotation length.  In contrast  to the Faustmann model,  the rotation 

length  is longer,  the higher the  rate  of interest.  Assuming  the stationary  solution, we show 

by numerical computation  that the borrowing constraint causes major changes  in the 
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determination of the value of forest land  and incentives for planting  a new stand after 

harvest. 

Linearization and numerical analysis  of  the third order rotation difference equation  

reveals  that it possesses  the saddle point property. With a  given level of initial nonforest 

assets  and stand age, the optimal  rotation length converges toward the stationary  solution. 

For forest  owners  with saving  incentives,  the borrowing  constraint may become ineffective 

after e.g. one harvest. In such a  case the Faustmann solution is reached in finite time. A 

brief review  of  econometric timber supply  studies  suggests  that the empirical  results  causing  

difficulties  for  the classical Faustmann  model may  be  explained  by  our  extended  model. 

All  these  results  are  new  in the forest  economic literature. A preliminary  analysis  in 

Tahvonen (1997)  uses  a  similar formulation but is restricted  to the stationary  solution and 

cases  with zero  rate  of interest and nonforest income. Tahvonen and Salo (1997)  show that  

(under  perfect  capital  markets)  also the in situ or  amenity  preferences  lead  to nonstationary  

rotation programs and violation of  the Fisherian separation  theorem. However,  the context  

of that study  and the specific dynamic  features of  the model are clearly  different that those 

studied here.  

The paper is  organized  as  follows. Section 2  develops  the model and shows  how the 

Faustmann solution follows as  a special  case.  Section 3 focuses  on stationary,  and section 4 

on nonstationary,  solutions. Section  5  includes empirical  remarks  and suggests  extensions. 

2  The  forest  owners  decision  problem 

The forest owner's problem  is to choose  his consumption  time path c and  the cutting  

moments tj so as  to maximize his life cycle  welfare. As  in any  economic description  of life 

cycle  decision making, it is not  possible  to circumvent the question  of bequest  motives. 

Theoretically,  an important  benchmark is obtained by assuming  that each generation  of 

forest owners  takes  the welfare of  future generations  as  if they  themselves lived infinitely  
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(see  e.g.  Ihori 1996).  This benchmark is  useful here since  it  enables  us  to  study  the effects  

of  the  borrowing  constraint without additional  complications  to  the model. 

U(c)  denotes a strictly  concave utility function with U'(c)-»°  as  c-tO,  where c is  

consumption.  The rate  of subjective  time preference  is  8  and  the rate of interest  p.  The  level 

of financial assets is a and the constant  level of exogenous nonforestry  income m.  The  

commercial stand volume x  is  a function of stand age s. There exist  o<s<s  such that for all 

se(s,s)  it  holds that x(s)>o and,  as s-<s,  x=F[x(s)]-*O.  In addition,  it holds that F(x)>o and 

F"(x)<0.  The logistic  growth 2  function  satisfies these requirements  in the form s=o  and s=~. 

The variable t  denotes calendar time and  tj  the harvesting  moments.  The left hand  limit of  t  

at tj  is  tj-.  When te  [tj_|,  tj), the stand age  along  the ith rotation is  Sj=t-t;_i.  The (constant)  

stumpage price  and  regeneration  costs are  denoted by  p  and w respectively.  

The forest owner's  problem  with borrowing  constraint is  to  

where t
o
=o and a<),  x  0  denote  the initial levels of financial assets and forest stand 

_rs  
2 ln this case x(s)=K/(l-Ce ), where C=(l-K/x0 ), where x O ,K,r  are positive constants.  

Another growth function that  we will use in numerical examples is x(s)=a-be~ cs

,
 when 

a-be~cs>o and x(s)=o otherwise. 

f
o° g 

max W= U(c)e  
l

dt, (1) 
{  c,11»t2 »

—} J 0 

s.t. a=pa-c+m,  when tetj,  i=1,...,°°, (2) 

a(tj)=a(ti-)+px(ti--ti _ 1)-w, (3)  

a(t)>o, (4) 

a(o)=a o> (5) 

x=F(x),  when tetj,  i=1,...,°°, (6) 

x(ti)=xo ,
 (7) 

x(0)=x0,
 (8) 
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respectively.  In (7)  the volume of forest stand  immediately  after the regeneration  is  x O .  

Equation  (3) shows the level of financial assets after the harvest.  Restriction (4) is the  

borrowing constraint,  which, for  simplicity,  restricts  financial assets  to be nonnegative.  

The complexity  of this problem follows from the fact that stand volume and 

financial assets  jump discontinuously  at the  harvesting  moments.  These jumps  and the 

related necessary  conditions can be studied by  specifying  the problem  in the form: 

and (2), (4),  (6)-(8) and i=  l ln (9),  Wi+ | is the value function for  the rotation periods  

starting  at i+l and it is  defined by  a problem  analogous  to the maximization of Wf.  In (10)  

a,_i denotes the initial  asset  level at tj_j .  When tj=to,  write to=o,  a(0)=a 0  and x(0)=x0 .  Due 

to  the pure state  constraint,  a(t)>o,  we apply  a  scrap  value extension of theorem 2,  p. 332  in  

Seierstad and Sydsseter  (1987).  The Hamiltonian for any subperiod  i is given by 

H,=U(c)e  t
+/J(pa+m-c)+(pF(x)  and  the  Lagrangian  by  Lj=Hj-i(pa+m-c),  where  fj.  and  <p  are  

the  present  value  costates  for financial assets and stand volume respectively.  The shadow 

price  T is  associated  with the constraint  a(t)>o when a=o. We obtain the following  necessary  

conditions: 

Wi(ai_,,ti_|)=max {  U(c)e"
st

dt+W
i+ ,  [a(ti -)+px(ti -t i_i)-w,ti ] }, (9) 

{ t  j  ,C}  U  t  j  _j 

s.t. a(ti
_ l )=a j

_ l ,
 (10) 

U'(c)e"
st

-jU=O, (11) 

T  is  constant  on  any  interval where a>o, (12i) 

T is  continuous at  all te(tj_j  ,t;) where a=o  and a is  discontinuous, (1 2ii) 

H*=H+T, (13i) 

where fi*  is  continuous,  and fi* has  a  continuous derivative /i*  

at all points  of continuity  of c  and T, (13ii) 
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and where [i has one-sided limits everywhere  and T is nondecreasing.  In (16), 

<9W
i+ and,  in (18), -<9W

i+ |/dtj=Hi+ |(tj) (see  Seierstad and Sydsieter  1987,  

theorem 11,  p.  215).  Thus (18)  yields 

where s i=t
i
-ti_ 1 is  the length of the rotation period  i. Equation  (19)  implies  the continuity of 

the Hamiltonian function.  This requirement  forms the basis  for studying  the optimal  rotation 

period. By  (17),  <p(tj-)=psWj +1 and similarly  (p(t i+l -)=p/i(tj+]). To develop  term 

9(tj)F(x0) in  (19),  note  that (15) together  with (6) is  a  linear  first  order differential equation  

for (p. We can write its solution as  

/j,*=-dL/da=-pn*+Tp, (14)  

<p=-<pF(x), (15) 

/x(t i -)-(9W i+ i/<9a(t i -)>0, [iu(ti-)-^W i+ |/a'a(ti-)]  a(tt-)=0, a(tr)>o, (16)  

<p(tj-)=<9W i+ ]/<9x(Si), (17) 

Hi(ti )=-awi+l
/^t

i , (18) 

U  [c(tj-)]  e"
sti

+/x(tr)  [pa(ti-)+m-c(tj-)]  +<p(tj-)F  [x(Sj)]  =  

U  [c(tj)]  e"
sti [a(tr )+px(si)-w]  +m-c(tj)  }+cp(t j)F(x 0), (19)  

Jsl+'"F[x(t-ti)]dt  
<p(tj)=<p(tj

+
r)e 1 . (20) 

Using  the change  of variables dt=dx/F(x) 

'tj+l fX(ti+ i  -tj) 
F'[x(t-tj)]dt= F(x)/F(x)dx=ln{F[x(t i+r-ti )]/F[x(t i-tj )]}. (21) 

J ti J X(tj-ti) 

Since x(ti-ti)=xo  and t j+ i-tj=Sj+ ], it follows by  (20),  (21)  and (17) that  
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By (16),  |i(ti -)a(t j which allows us to eliminate pa(tf)  from both sides  of (19). 

The Hamiltonian continuity condition obtains the form 

This is  a nonlinear difference equation. We will  call it the rotation difference equation.  

Faustmann solution as  a special  case 

We show that (23)  yields the Faustmann formula as a special  case when the borrowing  

constraint is  not  binding.  This analysis  will help us in studying  (23)  in the more complex  

cases  with the  binding  borrowing  constraint. Without the constraint a>o,  we can assume  

r=o. Hence and (16)  takes the form jti-<9Wj
+
|/(9a(tj-)=0,  implying  that ju. must be 

continuous, i.e.  /x(tj—)=/x(tj) and  c(tj-)=c(tj). By  (14) 
>t

'  and  /i(ti+ i)=jUoe t]
e  Ps

'+i.  

Now (23)  reduces to 

This is  a first  order  nonlinear difference equation  for Sj. In (24)  the marginal  value growth 

for rotation i, pF[x(Sj)],  must  equal  the interest  costs  p[px(Sj)-w]  for the next  harvesting  

net  income,  plus  the  present value loss  pe~PS|+, F[x(Sj
+
j)]  which  occurs  if  the next  rotation 

i+l is  marginally  shorter. This relationship  must  hold between all  successive  rotations up to 

infinity.  It  is  possible  to  solve  pF[x(s i+l )] from the equation  for the next  harvest  at t i+ |  and 

then repeat this up to infinity,  yielding  pF[x(Sj)]=  X  p  [px(Sj
+j)-w]  e Thus an 

equivalent  form of equation  (24)  states that marginal  value growth  equals  the interest costs 

<POi)F(x o)=(P(ti+r)F[x(Sj +l )]  =p^(tj
+
|)F[x(s i+ |)] . (22) 

U  [c(tj— )]  e"
sti

+ji(tj-)  [m-c(tj-)]  +pjU(tj)F  [x(sj)]  =  

U  [c(tj)]  e"
st

'+/i(ti)  { p  [px(sj)-w]  +m-c(tj)  }+pju(ti+ ,)F  [x(s i+l )]. (23)  

pF  [x(sj)]  -p  [px(Sj)-w]  -pe"
P^s [x(si+l )]  =O. (24)  
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of postponing all the coming  harvests  marginally,  whatever the lengths  of the different 

rotation periods.  Usually,  in  deriving  the Faustmann rotation, it is  postulated  a priori that all 

rotation  periods  must  have  equal  length  since,  after each  harvest,  the problem  is  always  the 

same (Faustmann  1849, Clark 1990, p. 269).  In our  model, however, financial assets  evolve  

in time. Within this model we may note that,  since (24)  is  independent  of  calendar time, of 

any  forest owner factors  and of any variables that may evolve in time (excluding  the forest 

stand),  successive rotation periods  must have equal  length.  Assuming  s,=s  Vi leads to 

pF[x(s)]-p[px(s)-w]/(l-e~^ s

)=o.  This is  an  equation  for  the  Faustmann  rotation,  which we  

denote by  s=Sf.  Another argument can  be based  on a  notion that the stationary  (Faustmann)  

solution is  unstable since  ds
i+ j/dsi .  

_

 =e^Sf>l.  Thus  there  cannot  be  any  rotation programs 
I s i —s f 

that solve  (24)  and  smoothly  converge toward  s=sf.  Any  other possible  solutions to (24) can  

be shown to violate second order necessary  conditions requiring  that the derivative  of (24)  

with respect  to Sj be nonpositive  (Seierstad  1988, theorem 4, remark 8). Thus the globally  

optimal  solution  to  (24)  must  be  the Faustmann rotation. 

A numerical example  for the case  s>p  is depicted  in Figure  1. The optimal  rotation 

is  70  years  (Fig.  la).  Since B>p  the forest  owner  has an incentive to  initially  consume  more 

than he earns,  implying  that the optimal  consumption  schedule is  decreasing  in time (Fig  

lb). Since the capital  markets are  perfect,  the optimal  consumption  path  is  continuous 

although  the forest income stream and the path  for financial assets  are  discontinuous (Fig.  

lc). As  t-w the asset  approaches  a cycle  where the debt just  equals  the present  value of 

future forest  and  nonforest  earnings,  i.e.  a(t)=-m/p-e^ t  t|\v I+w)  when  te  [tj,tj
+
|],  where  Vf  

is the Faustmann value for bare land and is the land value t-tj  years after 

each regeneration  at tj. Given x(0)=x0 in (8),  the consumption  time path  satisfies the budget  

constraint I [c(t)-m]  e'^dt-aQ-[px(Sf)-w]  e  Sf/(l-e Sf)=o  together  with  U'(c)e and 

{i=-pli.  As  the development  of financial assets  demonstrates, this solution is  inherently  

based on  borrowing  in perfect  capital  markets.  We  turn  to  study  the rotation under binding  

borrowing  constraints. 
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Figure 1. Optimal  rotation and consumption  without borrowing  constraint 

Note:  x(s)=a-be"
cs

,
 a=600,b=842.9, c=0.0!2, 

U(c)=c'" a

/(l-a),  a=l/2,  5=0.02,  p=o.ol  

m=sooo,  w=3ooo,  p=l7o 
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3  Stationary  rotation  programs  

Faustmann rotation is  stationary  in the sense  that  a  constant  rotation is  repeated  forever. We 

next  study  the properties  and existence  of stationary  rotation programs under binding  

borrowing constraints. 

Proposition  1. Given  s<p,  the stationary rotation equals  the Faustmann solution and 

consumption  is  continuous. Given s>p  and  a  stationary  solution, consumption  jumps  up at 

the harvesting  moments but is  continuous between the harvests.  

Proof: Appendix  1. 

Thus  for forest owners  with incentives  to avoid exhausting  their savings  (s<p),  the 

borrowing  constraint cannot  be binding  in the stationary  state and consumption  is  

continuous,  as  without the borrowing  constraint. However, for forest owners  with incentives 

to  consume  their  savings  (<s>p), the borrowing  constraint becomes  binding  either at the date 

of each harvest or  before the harvesting  moment.  The first  case occurs  at least  with m=o, 

since  U'(c)-«°  as  c-tO  rules out  the possibility  that c=a=o  for any  interval of nonzero  length.  

In both of  these cases  consumption  jumps up at the harvesting  moment.  This shows that 

under a bidding  borrowing  constraint there is  a  clear connection between  timber harvesting  

and high  rates  of  consumption  (cf.  the "volvo  argument").  

Let  us  transform (23) to the current value form. Along  the stationary  program with 

borrowing  constraint, successive  rotations must all have the same length and same 

consumption  schedule. Let us  denote c=c o at any tj and /x=/J0  at t=o. By equation (11)  we 

have  U'(c o)=JUo  at  t=o  and  U'(co)e at any  tj, implying  Ju(t i )=juo
e~^t '  and 

M(t i+l)=Alo
e^ wjiere Soo j s (hg stationary  rotation. Denoting  c(tj~)=cs, x(tj~)=xs and 

multiplying  (23)  by  e^ 1'  yields  
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stationary  state.  When s°°-w°  c
s
-im and the LHS approaches  U(m)-U(c0)-U'(c 0)(m-co)+ 

U'(co)  [pF(x
s )-p  [px(°°)-w],  which  is  negative  by  the concavity  of U(c).  Thus there always  

exists  at least  one level  of s that satisfies (25)  and where the value of the LHS  of (25)  is 

positive  (negative)  with levels of  s  lower (higher)  than the optimality  candidate. We have 

not  been able to prove the uniqueness  analytically,  but with our  functional forms there have 

not  been any signs  of multiple  local optima in the numerical analysis.  If there are many 

rotation levels  satisfying  the necessary  conditions,  the globally  optimal  solution is  the 

candidate that gives  the highest value for the criteria functional (Seierstand  1988, theorem 

4, remark 8,  or  Seierstad Sydsaeter  1987, theorem 13,  p. 145, note  27). 

Equation  (25)  can be  interpreted  in line with the Faustmann formula given by (24). 

The term U'(co)pF(x s ) reflects  the fact  that a  marginally  longer rotation increases the value 

of the  next  harvest.  The term U(c s
) is  the consumption  utility from a longer  period before 

the harvest. The term U'(cs)(m-c
s
) denotes the cost  of producing  this prolongation  by  

marginally redecing  the rate  of consumption  (net  of  income)  before the cut.  Thus the sum 

of these  terms equals  the benefit of increasing  the rotation length  marginally. The rest  of  the 

terms show the cost of this prolongation.  U(c o)+U'(co)(m-Co) denotes the direct effects in 

consumption  utility due to shorter next  period.  The term U'(co)p(px
s-w)  denotes the interest 

U(c s )+U'(c s )(m-cs)+U'(co)pF(x s
)-U(co)-U'(co)[m-co+p(px

s
-w)+pe"

ssco
F(x

s
)]=o. (25)  

When the constraint a>o  is  not  binding  before  the end of  the rotation,  the budget  constraint 

between any  two  successive  harvests  is ~^S ds-j s°°c(s)e^ s

ds+px s
-w=o,  which  together  

with U'(c)e and /i=-p/J  defines the dependence  of  cq,  cs  on the rotation length  s°°.  In 

the other case  3s'  such that a=o for te  [s',s°°)  and the budget  constraint is  

|
s
 me  P

s
 c(s)e 

S

ds+px s
-w=o,  which,  together  with  c(s')=m,  U'(c and f°r  

te  [tj,tj']  defines the dependence  of  c  0  on  s°°.  

Assume that in (25)  s°°-ts°,  where s°  implies  px(s°)-w=o.  The LHS  of  (25)  must 

-ss°  
approach  U'(co)pF[x(s°)](l-e )>O, since, without nonforest income,  c=m Vt in the 
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S 00 
cost  and  U'(co)pe~  °°F(x

s
)  the  reduced  value of  the  next harvest.  Recall that (25)  must  hold 

between successive harvests up to infinity. 

An  equivalent  form  of the  stationary  cutting  equation  (25) is  

The term  U'(c o)pF(x s ) is  the benefit of  lengthening  the rotation marginally. The term 

_ sv^oo  
U'(c o)p(pxs

-w)/(l-e" ) denotes the costs of  postponing  all the future net  harvesting 

Ss°°  
incomes. The remaining  term,  -{• }/(l-e~ °°),  reflects  the fact that increasing  the rotation 

length  postpones  all the coming  jumps  to  a  higher  consumption  level after  a harvest.  This 

implies  another loss in present  value utility. Note that the concavity  of U(c) implies  

-H/(l-e-
&

"»0.  

Equation  (26)  differs from the  Faustmann formula pF(x s )=p(px s
-w)/(l-e Sf) in  three 

respects.  First,  all monetary  items are  evaluated in utility units and secondly  the term 

U'(co)p(px s -w) is  divided by  (1-e 
s

)  and not  by  (1-e  s
)  as  in the  Faustmann formula. 

Third, in the Faustmann program, consumption  is  continuous and the last  term in (26)  is  

zero.  Since with B>p  it  holds that (1-e  
s

)>(l-e 
s

),  this  difference has  a  positive  effect  on 

-5s  
the rotation length.  However,  -{ }/(l-e )>0 implies  a negative  effect  on rotation length.  

Thus we  cannot  directly  deduce how  the borrowing  constraint changes  the optimal  rotation. 

A numerical example  of a stationary  solution is demonstrated in Figure 2. The  

parameter values are the same as in Figure  1.  The optimal  rotation length  is  now  58 years  

(Fig.  2a). Consumption  decreases between harvests and reaches the level of nonforest 

income 22 years after each harvest (Fig. 2b) at the same moment  when financial assets  

reach the zero  level (Fig.  2c).  

U'(c o)pF(x s )=U'(co)p(px s
-w)/(l-e^SO0

)-  

ju(cs)+U'(c s)(m-c s)-  [U(c o)+U'(co)(m-c o )]  }/(l-e"
ös

°°). (26)  
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Figure  2.  Optimal  rotation and consumption  under borrowing  constraint 

Note: x(s)=a-be"
c
\ a=6oo,  b=  842.9, c=0.012,  

U(c)=c l  
a

/l-a, a=l/2,  p=o.ol,  5=0.02, 

m=sooo, w=3ooo, p=!7o  
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Comparative  statics  of  the optimal rotation period  

The comparative  static derivatives take different forms depending  on  whether the borrowing  

constraint  becomes  binding before or at the harvesting  moments.  In  the following,  we study  

the analytically  more tractable case where financial assets reach the zero level at the 

harvesting  moments only.  The  other case  will be described numerically.  

For  proof,  see  Appendix  2. The first  result shows  that increasing  the rate  of  subjective  time 

preference  5  decreases the length  of the rotation period  at least when the rate of interest p 

and the level of exogenous income m are  sufficiently  small. Recall  that 8  does not  enter  the 

Faustmann formula. Since we have shown  earlier that p=B  implies  the Faustmann rotation,  

the result  ds/dö<o implies  that the borrowing  constraint shortens rotation below the 

Faustmann length.  Although  the analytical  result is  based on "small" p and m, numerical 

computation  suggests that the result  is  much more general  since we have found no 

exceptions.  Next in (ii) it is shown that an increase in the nonforest income lengthens  the  

rotation. Again recall that nonforest income is absent in the Faustmann formula. In the 

Faustmann model, increasing the  rate  of interest always  shortens  the rotation period. Under 

1 (Y 

Proposition  2. Given U(c)=c  
~

 /(I-a), o<a<l,  <s>p  and  a>o  Vte  [tj,ti+1 ): 

i) ds/dB<o when m>o and  p>o  are  sufficiently  small,  

ii) ds/dm>o,  

iii)  ds/<9p|
m

_o
>o,  

iv)  ds/dw>o, 

v)  <9s/(9p<o,  given  m>o or  w>o,  

vi) ds/dp=o,  given  m=w=o,  

vii) ds/dp<o,  given m>o and  p/w=C7|;  ds/dp=o,  given p/w=C|  and m=o (<7|>o),  

viii) <9s/<9p=o,  given p/w=CT|,  p/m=cr2  (cri,o 2 >O),  

ix)  ds/da<o. 
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the borrowing  constraint and zero  exogenous income,  it  is  possible  to  prove  that the result  is  

the reverse  (iii). 

In the classical  Faustmann model the rotation period  depends  on p/w  but not  on the 

absolute  levels  of price  or  planting  costs.  If  planting  costs  are  zero,  price does not  have any  

effect  on optimal  rotation.  Here the picture  is  slightly  more complicated.  An increase in the 

planting  costs lengthens  the rotation period as  in the Faustmann model (iv).  If either 

planting  costs  or nonforest income is  nonzero,  then an increase in price  shortens  the rotation 

period  as  in the Faustmann model (v).  However, if they  are  both zero, price  does not  affect 

optimal  rotation (vi).  If  timber price  and planting  costs increase,  compared  to the (nonzero)  

nonforest income, the rotation period  decreases  (vii). If timber price,  planting  costs and 

nonforest income change  at the same rate, the rotation period remains constant  (viii). 

Finally,  increasing  the elasticity  of  marginal  utility  a shortens  the rotation period.  This is  

natural since with higher  marginal  utility, the forest  owner  prefers  a more even consumption  

profile,  which is  obtained via shorter rotations and more frequent  harvesting. 

Figure  3 shows numerical results on the dependence  of the rotation period on 

parameter values.  The computation  covers  examples  where financial assets  reach  the zero  

level at the harvesting  moment  or  before harvesting.  Fig.  3a  shows  that the rotation period  

depends positively  on nonforest income.  In  addition,  it shows an example  where the rotation 

period with borrowing  constraint is  shorter than the Faustmann length  (83  years).  Increasing  

nonforest income to m=lo7 lengthens  the rotation period to 75.7, still shorter than  the 

Faustmann rotation. Fig.  3b shows  the rotation period  as  a function of price and  Fig.  3c as  a 

function of the subjective  time preference. Proposition  2iii shows  analytically  that the 

rotation period is an increasing function of the rate  of interest,  given m=o. Fig.  3d shows 

that with the parameter values used,  an increase in the rate  of  interest  implies  a longer  

rotation period for a wide range of nonforest income. For example,  when m=lo7 and 

p=lo-5
, the rotation period  is  68.039 compared  to the Faustmann rotation,  113.204 years.  

Increasing  the rate  of interest  to p=0.0299  lengthens  the rotation period  to 68.585. Recall 
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Figure  3.  Comparative  statics  of  optimal  rotation under borrowing  constraint 

The parameter values  are as follows:   

x(s)=K/(l-Ce"
rs

),  C=(x
0
-K)/x

0
,  K=soo,  r=0.048,  x

o
=lo,   

U(c)=c'"7(l-cx)  o<a<l   

a: p-0.02, 5=0.025, p=l7o,  w=3ooo, ct=l/2 
b:  p=0.028, 5=0.03, w=3ooo, m=soo, «=l/2  

e: p=0.02,  p=l7o, w=3ooo, m=soo, cc=l/2  

d: 5=0.03, p=l7o, w=3ooo, m=soo,a=l/2 
e: p=0.025, 5=0.03, p=l7o,  m=o, <*=l/2  
f: p=0.028, 5=0.03, p=l7o, w=3ooo, m=soo  
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that with p><s=o.o3  the stationary  rotation period  with the borrowing  constraint equals the 

Faustmann rotation (Proposition  1). This implies that the rotation period  may be a  

nonmonotonic function of the rate  of interest. Fig.  3e shows that higher planting  costs 

lengthen  the rotation period  as in the Faustmann case. Finally  Fig.  3f shows how the 

rotation period  depends  on the elasticity  of marginal  utility, a. 

The value of  forest  land and incentives for stand regeneration  

Given a stationary  forest rotation program, the forest owners  maximized utility W]  is  

where s°° and c* are the optimal stationary  rotation period and consumption  schedule 

respectively.  If the owner sells  his forest  land,  the maximized utility is  defined as 

where Vis the value of bare  forest land given  that  Wi=W2. Thus the value of forest land, 

i.e. forest owner's reservation price, equals  the monetary compensation  that makes the 

maximized welfare without the forest land equal  to the maximized welfare based on both 

forest and nonforest income. Without the binding  borrowing  constraint, the value  of forest 

land equals the present value net  forest  income (p  as the rate  of discount),  i.e. the 

Faustmann land value. With the borrowing  constraint,  the  rotation period deviates from the 

Faustmann rotation and thus the present value net  forest income must also deviate from the 

Faustmann land value. However, under the borrowing  constraint, discounting  based on 

market  rate  of interest does not  yield the true  value of some  future payment to the decision 

maker (see Hirshleifer 1970, p. 196). Thus we can expect that under the borrowing  

W,=  
S

 U(c*)e"
ss

ds/(l-e"
&00

),  
J

o  

pOO ~ 

W
2=max U(c)e dt, s.t. a=pa-c+m, a(o)=px(s°°)+V,  and a(t)>o, 

{c}
J

o  
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Figure  4. The value of  forest land under borrowing  constraint 

a:  5=0.025, p=0.022, w=2ooo, m=o, ct=l/2 

b:  8=0.03, p  =0.025, p=l7o,  m=o, cx=l/2  

c: p=0.02,  p=l7o, w=2ooo, m=o, a=l/2 

d:  5=0.03, p  =0.025, p=l7o, w=4770, m=o  

e:  5=0.025, p=l7o, w=2ooo, m=o, a=l/2 

f: 5=0.03, p=0.028, p=l7o, w=3ooo, a=l/2  

Note:  The Functions  and  parameter values  are as  follows:  

x(s)=K/(l-Ce"
rs

),  C=(x
0
-K)/x

0
,  K=soo,  r=0.048,  x

o
=lo,  

U(c)=c'"
a

/(l-a), 
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constraint V*  [px(s»)e / (l-e"^
s

°°).  It  is  possible  to  study  the forest  land value 

analytically  using  the envelope  theorem and differentiating  W|-W2=o.  However,  we  present  

the  numerical examples  shown in  Figure  4. 

The Faustmann land value  depends  positively  on timber price  p  and negatively  on 

planting  costs w and the rate  of  interest p.  Figs.  4a and 4b show examples  where similar  

dependencies  hold for p and w under the borrowing  constraint. The examples  also show 

how the borrowing  constraint yields a  deviation between the true land value and the 

discounted net  forest income. It is a priori clear that the borrowing  constraint must reduce  

the land value. As  shown,  this yields  the result that low timber price or  high  planting  costs 

imply  negative  land values at parameter levels  where the Faustmann land value is  positive  

(e.g.  Figs.  4a and 4b).  Thus the  borrowing  constraint reduces  the economic incentives to 

replant  a new  stand after the harvest. 

Increasing  the rate  of  subjective  time preference  reduces  the value of forest  land 

(Fig.  4c).  A forest owner  with high  elasticity  of marginal  utility (high  a)  prefers  an even  

consumption  time path. According  to  Fig.  4d also  his  reservation price  for  the forest  land is 

higher than for forest owners  with low  a and more uneven consumption  between rotations. 

Note that in Fig.  4d the Faustmann land value is  about 1000. With low levels of a,  the  

discounted net  forest income under the borrowing  constraint  is  950. However, the true  value 

of forest land under the borrowing  constraint is -1000. Thus the forest owner has no 

economic incentives for replanting,  although  the classical rotation model clearly  suggests 

the reverse.  

The Faustmann land value decreases with the rate  of interest,  and  as  p-)0  the  land 

value approaches  infinity.  Examples  in Fig.  4e suggest  that under a  borrowing  constraint 

this  dependence  may be nonmonotonic and the value of  forest land remains bounded when 

the rate  of interest  approaches  zero.  Again  the difference between discounted net  forest 

income and true  land value may be large.  Finally,  Fig.  4f shows an example  where the land 

value decreases as a function of nonforest income. We have not found numerical 
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counterexamples  for this somewhat  surprising  result. This means that,  with higher nonforest 

income,  unrestricted borrowing  is more  important  than with lower nonforest income in 

aiming  at maximum utility from an even aged  forest  stand. In other words,  the borrowing  

constraint affects  land value  more in the case  of  a forest owner with higher  than  lower  

income. It is  easy  to find examples  where land value decreases below  zero  due to high  

nonforest income. Thus, under  the borrowing  constraint,  high  nonforest income may yield  

low incentives for regeneration.  

4 Nonstationary  rotation  programs  

The rotation difference  equation  and its  linear approximation  

Equation  (23)  can  be written in current  value form as 

As  noted in section 2,  this  is  a  nonlinear difference equation.  To find its  order,  we must  

study  how c(tj-), c(tj) and  c(t i+ i) depend  on the length  of different successive  rotations. 

Consumption  level c(tf) depends  on Sj  but  also  on s;_i  since  the length  of  Sj_i determines 

the  initial assets at the beginning  of Sj.  Similarily,  c(tj) depends  on the initial asset level at t(  

and thus on s;  but also on the length  of the coming  rotation Sj+]
.  Analogously  c(t i+l ) 

depends  on  s i+i  and s
i+2 .  Thus (27) is  a  third  order difference equation  which,  if  computed  

forwards,  determines s, + 2  if S;_|,  sj  and Sj +i  are known. In the previous  section,  we studied 

stationary  rotation programs as  steady  state  solutions to (27).  Next we study the stability  

properties  of  the stationary  program and  then  compute  nonstationary  rotation programs. 

We restrict  the local stability  analysis  to  cases  where assets  reach  zero level just  at 

the harvesting  moment (m is "small").  The budget  constraint between any two rotations is 

r=U  [c(tj—)]  +U'  [c(tj—)]  [m-c(tj-)]  +pU'  [c(tj)]  F[x(sj)]  -  

U  [c(t|)]  -U'  [c(ti)]  [p[px(Si)-w]-t-m-c(tj)}-pU'  [c(ti+l )]  e"
&i

+'F[x(s i+l )]  =O.  (27)  
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constraint implies  

Equation  (29)  readily  suggests  how to  construct  c(tj +1 ). We can now  eliminate c(t; —), c(tj)  

and c(t j+l) from (27), which is then a  function of  Sj_), s,, Sj
+

| and s;
+2-  To study  the local 

stability  properties of the stationary  state, we compute  the derivatives: <9r/(?Sj_i=£o,  

dr/dsKi,  sr/i9si
+
 dl7dsi+2=C3-  The characteristic equation  is £3

A3+£2A
2+Ci  A+£o=o.  

Consider the possibility  that all the characteristic roots  are real  and o<A]<l,  A2>l,  A3
>l.  In 

such a case,  the stationary  state has a local saddle point  property.  

The saddle point  property  can  be interpreted  as  follows: assume  some given  initial 

level ao  for the financial assets.  When we now specify  equation  (27)  for the first  harvest  at 

t|, the equation  includes  three unknowns: S|, s2 ,  and S3.  After specifying  some sj  and S2, 

(27)  determines S3. The  (local)  saddle point  property means that there can exist  only  one 

pair  (s|,s2)  such  that solving  for s3  and then s,  for i=4,...,°°  yields  a  convergence toward  the 

stationary  program. Numerical computation  of the characteristic roots  suggests  that equation  

(27)  possesses  this  property.  Figure 5  shows  examples  of  characteristic roots as  a  function 

of  timber price  where o<A]<l, A,3>l  in all cases.  

Close to  the stationary  state, we can write along  the saddle point solution that 

Asj~qAi',  where q  is  a  constant.  Thus if Asj=A  is  a  deviation from the stationary  rotation s°°, 

it  holds that As
i+ i=AAi and As

i+2=AAi 2
.  It  is  now  possible  to compute  As,.] from  (27)  and 

then proceed  backwards.  The approximation  will be  arbitrarily  close to  the original  solution 

for the nonlinear equation  when A is  sufficiently  small. 

px(Sj_|)-w+ Assuming  U(c)=c'" a

/(l-a),  o<a<l, the budget  

c(tj)=e^S|+l^a(ap+ö-p){e'sS|+l  [ppx(Si)+m-pw]-m)/{ap[e^S|+l^o:+''Sl+l -e'sS|+l/
'a

]}, (29)  

c(ti -)=c(ti_,)e
Si(P- 5)/a (30)  
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Figure  5.  The characteristic roots  of the  linearized  harvesting  equation  

Examples  of  nonstationary  rotations 

We hypothesize  that in our model it is possible  to distinguish  the following  four 

cases:  

We  have already  shown that in the case  where s<p  the stationary  rotation program must  be 

the Faustmann rotation (Proposition  1). If the forest owner's initial assets (at the moment  

when he has bare land) are not lower than px(Sf)-w, the credit rationing  constraint will 

never  be binding.  If ao<px(Sf)-w (case  2),  the  optimal  solution is initially constrained by  the 

borrowing  constraint and thus the solution initially deviates from the Faustmann rotation. 

Note:  x(s)=6oo-842.9e'
ool2s,  U(c)=c' a

/l-cc, a=o.9  
6=0.03, p=0.015, p=  170,w=3000,m=0.  

1:  If a(o)>px(Sf)-w and s<p,  then there is no effective  borrowing  constraint and the 

Faustmann rotation is  optimal  Vsj,  i= 

2:  If a(o)<px(sf)-w  and  s<p,  Faustmann rotation is  reached from  below in finite time if ckp  

and in infinite time if  s=p.  

3: If a(o)>px(s°°)-w  and B>p,  the rotation period  decreases toward the stationary  rotation,  

S°°<Sf. 

4: If a(o)<px(s°°)-w  and <s>p,  the rotation period  increases toward the  stationary  rotation,  

S°°<Sf. 
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However, since s<p implies  savings  incentives,  the optimal  solution must approach  the 

Faustmann rotation when the assets accumulate in time. When B<p the optimal  

consumption  level increases between harvests. If the rotation period  approaches  the 

Faustmann rotation  period asymptotically,  it should hold that a(tj-)=0 Vi,  since  otherwise ji  

would be continuous (by  16) at the harvesting  moment  and the rotation could not  deviate 

from the Faustmann lenght.  However, a(tj~)=o Vi,  monotonically  increasing  consumption  

between the harvests,  upward jumps  in consumption  at  harvesting  moments, together  with a  

rotation program that asymptotically  converges toward the Faustmann solution, is a 

contradiction. Thus with s<p  the optimal  rotation must  reach  the Faustmann length  in finite 

time. Accordingly,  it can  be shown that with ö=p  there must  be asymptotic  convergence 

toward the Faustmann rotation. 

Figure  6a-c shows  a  numerical example  for case  2  and s<p.  It  has  been computed  

backwards by first  solving  the optimal rotation and consumption  program, given  

a(t4)>px(sf )-w. With this initial asset level the optimal  solution must continue as  a 

Faustmann program Vte  [t4,«).  Since S4,  S5  and S6  equal  the Faustmann length,  it is possible  

to proceed  backwards  using  (27).  This yields a rotation program as in Fig. 6a  where  sj~4B, 

52—55, 53~62,  S4=Ss=Sg~67.  Consumption  increases discontinuously  until the first  harvest 

with Faustmann rotation occurs.  Financial assets increase  discontinuously  but  remain  strictly 

positive  after  the switch  to the Faustmann rotation. 

Figure  7a-c  shows  a numerical example  of case  3. The given  parameter values imply  

that the  Faustmann rotation is 5fc;64.338  while the stationary  rotation under the borrowing  

constraint is 5°°~46.849. The characteristic roots  for  the linearized harvesting  equation  are: 

A]=0.322066,  A2=4.07741, 12.6601. As  a deviation from the stationary  program in 

_7 
backward computation,  we  use A=lo . After 14 rotations backwards the rotation length  

equals  about 56 years.  Proceeding  backwards  using  equation  (27)  yields  a  solution where 

consumption  would jump downwards at the harvesting  moment.  This violates condition 

(16), suggesting  that there must be a switch to a regime  where consumption  remains 
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Figure  6. Optimal  rotation and  consumption  with low initial assets  and  δ<p  

Note: x(s)=a-be'
ts

,
 a=6oo, b= 842.9, c=0.012  

U(c)=c'"7(l-oc),  a=o.9,  5=0.01, p=0.0102, 
m=so, w= 1000, p=l7o. 
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Figure  7. Optimal  rotation and consumption  with high initial assets  and with δ>p  

Note: x(s)=6oo-842.9c"
OOI2s

,
 U(c)=c'"7(l-a),  a=o.9, 

5=0.03,  p  =0.015, p=l7o, w=3ooo,  m=o.  
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continuous and financial assets strictly positive  at the harvesting  moments. Taking  this into 

account,  the length of  the next  period  is  64.193 years. Continuing  backwards then  yields  

converge toward the Faustmann rotation. Thus,  when looking  forward,  the forest owner has 

high  initial assets and, during the early  rotations,  financial assets decrease but remain  

positive  and consumption  is continuous. However, the rotation period is shorter than the 

Faustmann rotation and decreases in time. After a  finite number of rotations,  the borrowing  

constraint becomes binding,  consumption  jumps up  at the harvesting  moments and the 

rotation period  converges toward  the stationary  program as  t-w.  Applying  a similar 

procedure  but  assuming  A=-107 as  the initial deviation,  it  is  possible  to  compute examples  

for case  4 where  the initially  short rotation increases asymptotically  toward 5°°~46.849. 

5  Discussion  

Empirical  testing  of  our  model is beyond  the scope  of the present  paper, but a few 

observations on the evidence from earlier studies are  in order. The  overwhelming  evidence 

suggesting  that forest  harvesting  decisions depend  on forest owner  characteristics has 

perhaps  cast the darkest shadow over the Faustmann model. According  to a number of 

studies,  a parametric  increase in nonforestry income tends  to increase optimal  rotation 

period,  as indicated by  less  frequent  harvests (Binkley  1981, Romm et al. 1989, Dennis 

1989, 1990, Hyberg  and Holthausen 1989). This is clearly  in line with our comparative  

static  results  (Proposition  2ii). On  the other hand,  the effect  of  permanent income on harvest 

per land unit should be positive.  This has been found to be the case in Kuuluvainen and 

Salo (1991),  Kuuluvainen et al. (1996)  and Kuuluvainen and Tahvonen (1996).  

Under a borrowing  constraint,  an immediate effect of a parametric  shift in the 

interest rate  is  negative  but  the steady  state effect is positive  (Proposition  2iii). A negative  

effect for  the  interest  rate  has been  estimated in some Scandinavian studies  using aggregate 

data (Toppinen  and Kuuluvainen 1997)  or  micro data with information on interest rates  on 
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individual forest owners  (Pajuoja  1994)  or  using market interest rates  (Kuuluvainen  and 

Tahvonen 1997).  Another basic observation  in empirical  studies  is  the dependence  of timber 

supply  on the forest owner's age. A typical  observation is  that frequency of sales decrease 

over  the owner's age (e.g.  Romm et al. 1989). Our model explains  this observation  under a 

binding  borrowing  constraint and accumulating  financial assets. 

It may be typical  for household forest owners  that lending  and borrowing  rates of 

interest differ. Taking  this into account, instead of a  borrowing constraint,  will add one 

more  state  variable to the model but  may still be analytically  tractable. Our sensitivity  

analysis  for the rotation period and land value is  restricted  to stationary  states and should be 

generalized.  It  should be possible  to compute the dependence  of the rotation length  given 

any initial level for financial assets and stand age. Allowing intertemporal variation in 

prices  and  nonforest income would be highly  relevant for  empirical  purposes. Finally,  we 

note  that existing  studies  adding  stochastic  features to the Faustmann model are  restrictive  

since  they  assume  profit  maximization and then implicitly  relay  on the Fisherian separation  

theorem. 
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Appendix  1. Proof of proposition  1. 

Assume s<p.  In (16),  dWj
+

i/<9a(tj-)=jii(tj).  If  fi  is  discontinuous at tj, (16)  requires 

that /I  must  jump downwards and a(t; -)—0 Vi.  Assume that a(t)>o Vte  [tj,tj
+ |), implying  that 

we can set By  (l  l) and  (14)  together  with <s<p  it follows that c>o  for  all  te  [tj,t j+ ]). If  jU 

jumps down at tj,  it follows that c  jumps up. A constant  rotation period,  c>o  Vte  [tj,t i+ ]) and 

a  jump  up in c  at  tj  Vi  is  clearly  inconsistent with a(t,-)=0 Vi.  Assume next that  3tj'  such  that  

ti'e(ti,ti+ i) and that a(t)=o for te  [tj',ti+l). When te  [tj,tj'),  we have  a(t)>o, T=o  and  c>o. At t,'  

there must  be a  jump down to  c=m. Since c  is  discontinuous at tj'  also  a is  discontinuous 

implying  that r  must  be continuous (12ii). Since p.*  must be continuous,  condition (13i)  

implies  that also p  must  be continuous at tj'. Continuous p  with  discontinuous c  contradicts 

(11). Thus,  when s<p, a stationary  program is inconsistent with discontinuous p.  

Continuous p implies  that (23) reduces  to (24),  implying  Sj=s f  for Vi.  

Assume next  that B>p. If a>o  for  te[tj,ti+ i), then ju and c are  clearly  continuous 

between harvests. With <s>p  and continuous c  over the cutting  moment, we obtain c-»  0  as  

t-too  together  with a-»°°  as  t-w>  due to  forest and nonforest income. This  cannot  constitute the 

globally optimal  solution. Thus p must  be discontinuous at tj  and by  (16)  it  jumps down,  

implying  that c  jumps  up at each tj. Assume next  that there exists  tj'  after which c=m and 

a=o within each rotation. For  te  [tj,tj'),  it holds  that a>o, t constant, e.g. r=o,  /j.=/u*-t,  

t  and  c>m. For  te  [tj',t i+l),  we have  jLt=U'(m)e~^t  and  c=m. By  (13i)  it  holds  that 

T=^*-U'(m)e"^t  and  by  (14)  that t/sfU'(m)e"^t'(l-p/5)  when  te  [tj',t i+l ).  

This yields by (13i), that i?=(p/ö-l)U ,(m)e"^t+U'(m)e"^t'  (l-p/5),  implying  

T=-öU'(m)e Thus ris  nondecreasing,  as  required.  Since (12i,  I2ii,  13i, 13ii and 

14)  are  satisfied by  construction,  the solution  satisfies the necessary  conditions. If c  were 

discontinuous at tj',  then by  (12ii)  ris  continuous and therefore by  (13i),  (13ii)  and (14)  also 

fi is  continuous at tj',  contradicting  the discontinuity  of  c.B 
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Appendix  2. Proof  of  proposition  2. 

In proving  the comparative  static  derivatives we apply a modification of a well known 

lemma in optimal  control theory  (see  Pontryagin  et.  al. 1962, p. 122-123).  It states  that the 

n cl* S 
function f(s)=l bj(s)e  1 ,  where b](s),...,bn(s)  are  polynomials  of  degree  ri,...,rn ,  respectively,  

i =1 

there can be at most ri+r2+...+r„+n-l zeros.  For our  purposes we need to  extend the lemma 

as follows: 

Definition:  s0 is a zero of the function f with multiplicity k if 

f(so)=f(so)=,...,f( k~'>  (s0)=0  but  f(  k)  (s0)*0. 

k, a. s  
Lemma 1: Let fk(s)=l  b,(s)e  1 , fk(s)  not  identically  zero,  where bj(s) is a 

i=l  

polynomial  of  degree  rj,  i=1,..., k  and ai,...,ak  are  constants.  Then the sum  of multiplicities  

k 

of  the zeros  of  fk  is  at most  I q+k- 1. 
i=l  

Proof:  Clearly  the functions g(s)  and  h(s)=e  ,s
g(s),  where aj constant, have the 

same zeros.  These zeros  have also  the same multiplicities.  To show  this,  let T be a  zero  of  

g(s)  with  multiplicity  m, i.e.  g(T)=g'(T)=...=g^m ~'\T)=o,  but  g^m\T)*o.  Then h(T)=O,  

The observation made above immediately proves  the lemma for k=l.  Next,  note  that 

if T  is  a  zero  of  g(s) with multiplicity  m,  then T is  a  zero  of  g'(s)  with multiplicity  m-1 and 

it holds  that between any  two  consecutive zeros  of g(s) there must be a zero of g'(s). Thus 

the sum  of multiplicities  of  the zeros  (SMZ)  of  g'(s)  is  at least  m-1,  where m is  the SMZ of  

g(s). By repetition,  the SMZ of is at least m-j.  Let the SMZ of functions of type fk  be at 

most mk  and  g(s)=fk (s)+b(s),  where b(s)  is  a polynomial  of degree  r.  Let  the SMZ  of gbe  m.  

Then g^
r+l \s)=dr+l fk /dsr+l =7k

,

 a  new function of  type  fk .

 Then the  SMZ  of  g^ and  

h'(s)=ea|S [a,g(s)+g'(s)],  

h"(s)=e
a

'
s

 [a,  2g( s)+2a,  g'(s)+g"(s)] ,
 

h®(s)=ea,s [  i  (•|)a 1 j-'g(l)
(s)] ,  

i=o 1 

and  therefore  h'(T)=...=h^ m but  h^m \T)=ea,Tg^m which  proves  the  claim. 
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i)  We first  study  ds/ds=-(dr\/d8)/(dTi/ds).  Note that T|=o is  a  first  order condition 

for a  relative maximum. The second order  necessary  condition is  <9r|/ds<o.  We can  exclude 

the case  dF\lds=o  if  we  find that dr|/<9&O since cT\/ds=o,  together  with dT\/dBto,  will not  

be an equilibrium  with any normal smooth comparative  static properties.  Thus the 

sgn(ds/c?s)=sgn(dri/<9ö).  Differentiating  T| yields 

g^r+l '<m
k.  Therefore m<m

k+r+l.  But  the same  is  true  for  fk+!  because  

fk+l  (s)=fk(s)+bk+ l  (s)e
ak+'  

s
=e

3k
+ 1  

s

 [Fk(s)+bk+ ,  (s)]  

and thus  fk+i  and F k+bk+ ]  have the same zeros  with the same  multiplicities. The lemma is  

true  for  k=l  and  by  repetition,  also  true  for  all  k>l.
B 

We can now proceed  by  studying  the signs  of the comparative  static derivatives.  We 

1 ~oc 
first give equation  (25)  a more compact form. Given U(c)=c /(1-a), where o<a<l, the 

terms U(c
s
)+U'(c

s
)(m-c

s )-U(co)-A<)(m-Co) in  equation  (25i)  can  be written as 

c
s

 1 ~a
/(  1  -a)+c

s

~a
(m-c s

)-c 0

1  "°V(  1  -a)-c o

"a
(m-c o)=  

-c o

"a

{  ac0
e^ s

/(a-1  )-me^s"^ s
-  [a(co-m)+m]  /(a-1)},  

where  g=(l-l/a)(5-p)<o  (by  B>p  and  o<a<l)  and  c
s
=coe

s^"^^a .  Write  equation  (25i)  in 

-OC 
the form (c 0) pr[=o,  where 

r,=(co/p)a(  1  -egs
)/(a-1  )-m(  1  -e&"ps

)/p+F[x(s)]  (1  -e"
&

)-p  [x-w/p]  =O,  (A  1)  

and where  c o
=e^a

(ap+§-p)[e'
ss(aoP+m)-m]/[ap(e^o:+',s-e'3s^0:

)]  and  ao=px(s)-w.  The 

comparative  static  derivatives can  now be computed  from F)=o  in (Al). 

dT  i/d<s=c oba(  1  -e^s

)/  [p(a- 1)]  -c 0a(-s/a+s)e^
s
/  [p(a- 1)] +sme^ s ~'ss

/p+sF  [x(s)]  e~  
,
 (A  2)  
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where b  is  defined by  dc
0
/d^c

o
b=c

o
{s/a+\/(ap+s-p)-sc â+ps/[a(c^a+ps-z^a

)]}.  

Eliminate F[x(s)]  by  solving  it from from (Al).  Some rearrangement yields <9r\!ds=  

c  0  jba(  1  -e gs
)/(a-1  )-a(-s/a+s)e

gs
/(a-1  )+se"

ss
ae

gs/  [(a-1)(1--e
ss

)]  -  
sae"

&
/[(a-l)(l-e"

&
)]  }/p+ MYp) 

sme^s s

/p-sme  s
/[p(l-e  S

)]  +se  s
m/[p(l-e  s

)]+p  [x(s)-w/p]  se  S

/(  1  -e~^ S

). (A3)  

The last  four terms  in (A3)  approach  zero  as  p->0  and m-tO. Since co>o,  we can  prove  claim 

i)  by  showing that in (A3).  We obtain 

r
2=ct(  1  -egs

)/(a-1)  {b+s(  1/a-1 )e gs
/(  1  -e gs )-se"

ss
/(  1  -e"

&
)}=a(  1  -e gs

)/(a-1  )r3 .
 (A  4)  

Since a(l-e
gs

)/(ct-l)<0> the task  is  to  show  that r3>o.  Using the definition of  bit  follows 

that 

r
3
a/s=  I+aJ  [s  (ap+S-p)]  +e

ss/a+P'S/(eps/a
-e

&/a+ps
)+(  1  -a)e

gs
/(  1  -e gs

)+a/(  1  -e&
). (A  5)  

We obtain a/[s(pa-p+s)]+ct/(l-e^s )=a[e^s-ss-l+ps(l-a)]/[(e^s

-l)(aps-ps+ss)].  The 

denominator is  clearly  positive.  The numerator  is  positive  since  it is  increasing  with <5  and 

positive with s=o. The remaining terms of (A  5), i.e 

j  +e
&/a+ps

/(e
ps/a_

e
<ss/a+ps

)+( ,  _a)c
gs/( ,  _e

gs
} ,  can be written as  

r4^PsVa+P s  [e5
v  1)+1  ]-acP

s,a+ss
}/[(e

ss/a+p s
. e

Ps/a
)(e

ps/a+ss_
e
6s/a+ps

)]  

The denominator of T
4 is clearly negative. The nominator can be written as  

Ul =e
ps/a+(ss/a+ps

f
3(s),  where f

3(s)=-cee
s(p " s)/a+&" ps

+e

ss
(a-l)+l.  This  yields  f3(0)=0,  

f3'(o)=p(a-l)<0, and lim f3(s)=-°°.  Thus s=o is  a zero with multiplicity of 1.  Since  f3(s)  is 
S- » 00  



39 

negative  for small and  large levels of  s, the possibility  that  f3(s)>o for  some level of s 

would contradict lemma 1. Thus f3(s)<o  and Uj<o  for Vs>o,  implying  that r4>0,  r3>0,  

r2<o,  dV\/dB<o  and ds/ds<o  when  p  and m are sufficiently  small. 

(ii) We next  study  ds/dm. Computing  and  some rearrangement yields  from (Al)  that  

The  denominator is  negative.  The numerator  equals  f
6
(s)/e^ a

,
 where 

dr|/r7m=e e^o£+ps [pc^s
(a-l)+öe

ps -ap-&-p]-e'
5s^o: {e^s

[e
ps

(ap+ö-p)-<s]  +  

pe
ps(  I  -a)}  /  [pp(a-1  )(e&/a+Ps

-e
ps/o:

)]. (A 6)  

f
6(s)=&

s('3- 5)/a+ss "Ps

-(ap+ 6-p)e
s(P " s)/a+&

+(ap-p)e
s(p " s)/a

+(ap-p)e
ss

+seP s
-ap-sfp.  

5s  
Because e is the fastest growing term, f

6(s)=-°°. Direct computation  yields: 

f6(o)=f6 '(o)=f6"(0)=f6 "'(s)=o.  Thus s=o  is  a  zero  of  f6(s) with multiplicity  four. By  lemma 1, 

there can exist  at most one additional zero, whose multiplicity then is one.  However,  

f
6""(0)=2(a-l)p5(5-p)2(5-  p+ap)/a2<o,  implying  by  Taylor's  theorem that f6(s)  must be 

negative for small s>o.  But then we have shown  that f6(s)<o Vs>o.  This implies  that  

(9rVt?m>o  and <9s/<?m>o.  

iii)  Next we  study  <9s/^p|  m_Q-  From  (Al)  

<9r  1 1  dp  I  m=0
=c

ps/a
(c

lss
-1  )(px-w)  {ess/a+ps  [a(p  s- 1  )+<ss-ps]  +  

aePs/a
}/[ap(e&/a+^s/a

)2].  

The denominator of  <9ry<9p|
m_Q  is  clearly  positive.  The  term  eps^a(e^s

-1  )(px-w)  in  the  
numerator  is  positive.  Dividing  the  term  e^a+ps

[a(ps-l)+ss-ps]+ae ps/'0:  by yields  
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(iv)  For  studying  ds/dw,  differentiation yields  

v)  Next  we  study  ds/dp.  Differentiation and some  rearrangement yields  

vi)  The claim that m=o and w=o  implies  ds/dp=o  follows immediately  from (A  8).  

viii) Differentiation and  (A  8) yields: 

e
(ss-ps)/a+ps  .]) +ss-ps]+a=u8 .  Since uB |  g_p=a[e^

s
(ps-l)+l]>0  and  

<9u
g
/<9<s=s 2e^s  rs^a+rs  (ap+s-p)/a> o,  the  numerator  of  dT\ldp\  

m_Q  is  positive.  Thus  

dT\!dp\  m_0
>0.  

dr,/<?w={öe
Bs,a+P s

+cPs/a
[P(cc- l)-e

&
(ap+M]  }/[P(I-a)(e

&/a+pS-ePs/a)]. 

The denominator of  dr|/dw  is  positive.  Define the numerator  as u3=e
s^a

z3(s),  where 

Z3(s)=p(a-l)+öe^s  P s)/a+Ps
.

e^s

(ap+ s_p)  xhis  yields  Z3(0)=0.  Since  (8-p)la+p>S,  z3(s)-»<»  

as  s-w>.  In  addition,  zi'{o)=-S[a 2p+a(s-2p)-s+p]/a  implying  that  z 3 '(o)|  g_p=p
2(\-a)>o and  

(9[a2p+a(<s-2p)-s+p]/<9<s=a-l<o.  Thus z 3'(o)>o  V B>p.  By  lemma 1 we then obtain that 

Z3(s)  and U3  are  positive  Vs>o.  Thus dTi/<9w>o  and ds/dw>o. 

<9r|/dp=e  P s [mpe^a-1  )+se^
s
(m-pw)-m(ap+s-p)]  -e^a

{  e^s  [e^
s

(m-pw)  

(ap+s-p)-sm]  +pc^
s

(a-1  )(pw-m)]}  j/[p2p(  1 a+^s a
)]  = (A  7)  

-dr\/dw(vj/p)-dT  |/sm(m/p). (A 8) 

Since dr\/dw  and <9F\/dm  are  positive,  dr\/dp<o  if  w and  p  are  not  both zero.  

vii)  (Al)  and  (A  8)  yield ]/^p|  w_<y  p=<9F\ldp+o\dr\ldv/=-dT|/<9m(m/p).  Since  we 
have shown that dTi/dm>o,  the proof  follows immediately.  
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dr |/<9p  |  w_

(
_ =dr\/dp+o\dr i/(?m=o.  

m=&ip  

ix)  To study  dslda, we  define k=p+(<s-p)/a.  Computing  yields  

<9r  1/(sa=-(c 0/p)(l-e®
s
)/(l-a)2+a(c 0/p)(5-p)se®

s
/[(l-a)a2]+a(l-e°

s

)(c0/p)(5-p)[l-kse"'cs
/ 

(1  -e"
ks

)]  /  [(1  -a)k«2]  =(co/p)f4(s)/  [(1  -a)(e
ks

-1)],  

where f
4(s)=<s/  [k(  1  -a)]  -s(5-p)/o£-ö(e

ks +e^s

)/  [k(  1  -a)]+{s/  [k(  1  -a)]  -s(<s-p)/a)  e^+k^s .  We 

obtain f4(o)=f4(0)=f4"(0)=f4 '"(0)=0  and  f4""(0)=-2(l-a)5(5-p)2k/a3<0.  In addition,  f4(s)->-°°  

when s-i±«>.  By  lemma 1 we know that the sum  of  multiplicities  cannot  exceed  5. Of  these 

s=o,  is  a zero  with multiplicity of  four. The fact that f4""(0)<0  and f4(s)-»-°°  when s-t-°°  

implies  that there must  be  one zero  with s<o.  Thus f4(s)<o Vs>o  and ds/da<o.
m 
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