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1. Introduction 

In  recent  years, there  has been a  growing interest in the use  of  distance functions in 

production  theory.
1  The pioneering  theoretical work  on  distance functions in  production  

theory  dates back  to Shephard  (1953, 1970) and the recent  extensions can be found e.g.  in 

Färe, Grosskopf and Lovell (1994),  Färe and Grosskopf (1994),  and  Fare and Primont 

(1995).  However, it is only  in the last few years that empirical applications of distance 

functions have  become  more widespread. 

The flexibility and generality of the distance function as an analytical  tool is  

demonstrated in the number of  different applications.  For  example,  the  studies showing  how 

to use  either input or  output distance functions to measure  technical or  allocative efficiency  

or  productivity  are already  numerous (e.g.  Caves et al. 1982 a,b,  Chavas and Cox 1994, 

Fare et al. 1989, Fare et al. 1990, Färe  et al. 1994  c).  Chambers et al. (1994, p.l) showed 

that  "the distance function is  the  unifying  notion which links efficiency  measures,  quantity  

indexes and productivity  indexes."  Studies using  distance functions to compute shadow 

prices  of  either inputs or  outputs in regulated industries or  services  include e.g.  Coggins  and  

Swinton (1994),  Grosskopf and Hayes  (1993),  Färe et al. (1993),  Althin (1994),  Hetemäki 

(1994  a,b).  Furthermore, Lovell at al. (1990)  demonstrate how to use  distance functions to  

study  income distribution and  quality of life. Indeed, there are a number of factors (see 

below)  which suggest that empirical  applications  of  distance functions will increase rapidly  in 

the  near future. 

In empirical  applications,  the  great virtue of  input and output distance functions is  that 

they  readily model multiple output production  technologies  and do not  necessarily require  

price  data to  compute the parameters; only  quantity  data is  needed. This is  especially  useful 

e.g. in  production  processes producing outputs,  of  which some are  "bads" (pollutants)  and do 

not have market prices. Further, distance functions do not impose any  behavioural 

hypotheses (such  as  profit  maximization or  cost  minimization) and allow production units to  
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operate below  the production  frontier (i.e.  to be  inefficient). The latter property has proved  to 

be particularly  useful for the study  of regulated  industries and public services  (such as 

hospitals  and police).  Finally,  the duality results  between the distance functions and the more 

conventional cost,  profit and  revenue functions provide flexibility for various empirical  

applications  (Färe  and Primont 1995). 

Most of the empirical applications of distance  functions have been based on  

deterministic nonparametric or parametric linear programming,  and very few econometric 

studies exist.  For example,  the bulk of the applications  in  which the derivative properties  of 

the distance function have been used  for deriving  shadow prices  for inputs or outputs  have  

been based on  the translog  linear programming  model (e.g.  Althin 1994, Clement, Grosskopf  

and  Valdmanis 1994, Coggins and  Swinton 1994, Färe  et  al.  1993). The  deterministic linear 

programming approach does not  require any  distributional assumptions,  is relatively easy  to  

use  and, in principle,  allows for the computation  of  a large  number of parameters even  with 

a small number of  observations. The major weakness  of  the approach is that it does not  

allow random disturbances and  provides  no statistical criteria for the consistency  of the 

results.  Thus, in  order to justify  the approach, one has to assume  that measurement  errors 

can be neglected  or  that they  are  all  of  the same sign  (negative).  Moreover,  the efficiency  of  

these estimators  is  an open question, since expressions for their asymptotic  covariance 

matrices have never  been devised (Green  1993 b). On the other hand, the econometric 

approach allows  for random disturbance and provides information about the statistical 

significance  of the results, but  at the cost  of  assuming  a specific  distribution for the error  

term. However, the  relative merits  of the  deterministic  and  stochastic  approaches is  not  only  

a  theoretical issue but  also an empirical  one. 

The comparison  of the different approaches is  hindered  by  the fact that there have 

been no empirical  applications  comparing  the different approaches  for computing  distance 

functions. One  purpose of  this study  is to provide new empirical  evidence of the relative  

p 
performance of  deterministic and stochastic  parametric  distance functions. In particular,  the 
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relative  strengths of  the parametric  deterministic distance function (DDF)  and the stochastic 

distance function  (SDF)  approaches are  examined using a particular  case  study.  A real world 

data set is  used, rather than controlled or  Monte Carlo data. This is  because the purpose of 

the study  is also to provide new information  about the  particular  case  involved. The DDF 

and SDF  approaches are applied  to examine the impact of water  pollution control on the 

production technology of  the Finnish  pulp  industry  and  to derive a  measure  for  the cost  of 

reducing  different water  pollution effluents. The theoretical framework of  the  present study  is  

based on Färe et al. (1993).  In the empirical part  of  their study,  Färe et al. analyse  the effects  

of pollution control in the US  pulp and paper sector  using  a deterministic parametric  linear 

programming  approach and plant  level cross  section data (30  plants).  In  the present study,  

the data is  based on observations  from eight  pulp  plants  in Finland over  a period of 19 years 

(1972-90), i.e. plant level balanced panel data is  used. The models are  estimated using both 

pooled data and panel data specifications. Furthermore,  in  order to see how sensitive the 

results  are  to the choice of  functional specification,  a restricted translog  and  a Cobb-Douglas 

function are  used. Although,  the primary  purpose of the study  is to analyse  the comparative  

performance  of the two methodologies  and the different model specifications,  the study also 

produces new results on the impacts  of  pollution control on  plant revenue  and  performance. 

These results are  interesting  in that they  can be interpreted to  provide support for the 

recently widely  discussed  and  controversial "Porter hypothesis" (Porter  1990, Oates et al. 

1993). 

The paper is organized  as follows. Section 2 briefly sets out the concepts and  

theoretical  framework. In section  3 the two different empirical  approaches are outlined. 

Section 4 discusses the data and choice of empirical  variables. Section 5 presents the 

empirical results  and their implications.  Concluding remarks  are  given in  section 6.  
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2. Theoretical model 

A production technology  transforming factors  of  production x  =  (x,,x 2
 ,x

n
)eR"  into 

outputs  y = (y 1,y2 ....,ym)eß+ can  be  modelled by  the output set  P(x).  This set  contains all  

technically  feasible output vectors  for the input  vector  x,  i.e.,  P(x)  = {y e R™:  x  can produce  y}. 

It  is  assumed that the technology  satisfies the axioms of an output distance function (e.g. 

Fare and Primont 1995, Chp.  2). In particular,  outputs are assumed to be only  weakly  

disposable. Conventionally,  the  assumption  of  strong  (or  free)  disposability  is  made.
4  The 

output distance function is  defined on  the output set  P(x)  as  

Equation (2.1) gives  the largest  radial expansion of the output vector, for  a given input 

vector, which  is  consistent with that output vector  belonging to  P(x). The axioms regarding 

the output set  P(x)  impose a set  of properties on the output distance function (e.g.  Fare and 

Primont 1995).  The  value of  the output distance function must  be less than or  equal to one 

(D  0 <1)  for  any  feasible output. Further,  the value of the  distance function is  the reciprocal  of 

the Farrell output-based  technical efficiency  index (Fare, Grosskopf,  and  Lovell 1994). 

The revenue function  defined by  (  Shephard 1970, Färe and Primont 1995), 

can also completely describe the production  technology, where the output price  vector  is 

denoted by  r  = (r-| ,r
m ) and  it  is  assumed that  r  can be nonpositive. The revenue  function 

describes  the  maximum  revenue  that can be  obtained  from the given technology at output 

prices r.  Shephard (1970) showed that the revenue  function and output distance  function are  

dual. Consequently, we can define the revenue  function in  terms of  the distance function and 

vice  versa.  Formally,  

(2.1)  D
o

(x,y)= min{o:(y/o)eP(x)}  
6 

(2.2) R(x,r)  =  max[ry:y  eP(x)] 
y 
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Thus, the revenue  function can be  derived from the  output distance function by  "maximizing"  

revenue over  output quantities and that the output distance function is obtained from the  

revenue function by  maximizing  over  output prices.  

Following  the analysis  of Fare et al. (1993),  it can be shown that the revenue  deflated 

output shadow prices  for each observation can be  derived as  the derivative of the distance  

function (using  dual  Shephard's  lemma). These are  relative output shadow  prices.  In order to  

obtain absolute (undeflated)  shadow  prices,  additional information regarding  the revenue  is  

required. Fare et al. (1993)  show that the absolute  shadow prices can be computed when 

maximal revenue  R(x, r)  is known.  The assumption  which  allows for the computation of  the  

absolute shadow prices is (following  Färe et. al. 1993): One observed output price  equals its 

absolute shadow price.  This assumption  implies  that  at least  one shadow output price  equals  

its  market price and it allows  different plants to face different competitive  markets. 

Alternatively, one could assume that in one output market observed revenue equals  

maximum revenue.  Let output 1 denote the good  output and assume  that the observed good 

output price  (r,°)  equals  its  absolute shadow price  (r,s

),  i.e. for m =l,  r,
s

 =  r°.  The absolute 

shadow prices  for each observation of undesirable outputs (m = 2,...,  M) can now be  

computed as  

In equation  (2.4) the ratio of  output shadow prices  reflects  the relative opportunity cost  of  the  

outputs in  terms of foregone  revenue,  i.e. it is equivalent  to the marginal  rate  of 

transformation. It  may be noted that the above expression does  not  require information on 

regulatory  constraints. This  is  important because often data on regulations  are  not  available, 

(2.3  a) R(x,r)  = max{ry:D
o
(x,y)<l}  

y 

(2.3  b) D (x,y)  =  max{ry:R(x,r)<l}  
r  

(2.4) r=  =  R' (x,r
s

).ODo(x,y)/30(x,y)/3y
m)  = r,

0  .  
3D

o
(x,y)/3y 1 
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and  even if such data is available, the plants  rarely operate exactly  at the  level of the 

constraint. Moreover,  there may be  incentives  for the  firms to reduce pollution which are  not  

related to the  environmental regulation (see  Porter 1990). Thus, "shadow prices reflect the 

tradeoff between desirable and  undesirable outputs at  the actual mix  of  outputs,  which may 

or  may  not  be consistent with the maximum allowable under regulation"  (Fare  et.al. 1993, p.  

376). 

The result of  equation  (2.4)  is  also illustrated in Figure 1., in which the output set  P(x) 

consistent with weak disposability  of  bad output (pollution) is shown. Consider three possible 

points: A, B and C. Each of them are below  the frontier (i.e. production  is technically  

inefficient), and one cannot  compute the  shadow  prices  at these points, since there is no 

tangent hyper plane to support the points.  Instead, the shadow prices  have to be  calculated 

"as  if" they were  on the  boundary.  The inefficient points  are  radially  (proportionally)  scaled up 

to hypothetical observations on the frontier (points  A*, B*,  C*).  By definition,  the  output 

distance function seeks  such a scaling.  Therefore, the derivatives  of equation  (2.4)  can be 

calculated for the observed inefficient points  and  they  yield the same  mutual relation as  the 

derivatives for  the hypothetical  observation,  since  radial scaling  does not  affect the shadow 

price  relation. At point  A*,  the shadow price  of  bad is negative,  at point B* it is  zero, and  at 

point C* positive. The plant  may be operating  at point  A*, because of environmental 

regulation  or  "constraints" originating from consumers  preferences  ("green values").  At point  

B*,  the bads do not  affect plant  revenue.  Finally,  point C*  may  be possible  if,  for example,  the 

measures  which increase the productivity  of the production  process also  reduce bads, e.g. 

by  reducing material waste  and/or saving energy (c.f.  Porter hypothesis).  
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Figure  J.  Technology  P(x)  and revenue  R(x,r)  with weak disposability  of  Y1  

3. Empirical  Models 

The output distance function can be "estimated" in several ways;  see e.g. Hetemäki (1994 

a,b),  Grosskopf  and Hayes (1993) and  Lovell et al. (1990).  First,  there is  the  choice between 

a  nonparametric and parametric model. For the present paper the nonparametric model is 

excluded  because it is  piecewise linear and  thus not  differentiable (especially  at the comers)  

and  therefore the shadow price parameters cannot  be determined directly. The second 

choice is  between deterministic and stochastic  parametric  models. Below both of  these types 

of models  are  presented. Further,  one has to choose from a number of different functional 

forms and  estimation methods.  
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3.1  Parametric linear programming  model 

In  order to estimate the  deterministic output  distance function, a parametric  functional form is  

defined. Following the earlier studies  in  this  literature  (e.g.  Althin 1994, Färe et ai. 1993), the  

translog  function is used. As is well known, the advantage  of this form is its flexibility. 

Moreover,  it  does not  impose  strong disposability  of  outputs.  

In  (3.1), v  =  (v  1 v
m )  denotes  desirable (good)  outputs,  w  = (w-, w M ) undesirable (bad) 

outputs,  and x  = (x 1
,...,xn

) inputs.  The  following symmetry  (S)  and homogeneity  (Hl-H4)  

restrictions are  imposed  

(S) a
s =aji, Vi,  j=  1 m 

p,  = Pp. Vi,  j  = 

Yij  =  Yji. Vi,j  =  1,..., n 

m M n m m 

(3.1) lnD
o

(x,v,w)  =a
0 + i lnvi  + i lnwi + i  

i=l i=l i=l i=l j=l 

MM n n 

+ l/2X  XM nwi )(|nw i) +1/2  X  X^i( |nxi)( |nx i)  
i=l j=l i=l j=l 

m M m n 

+ X vi)(,nx i)  
i=l )=1 i=l j=l 

+z  i^ij(|nwiK |nx i) 
i=t j=i 
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The parameters of equation (3.1) are computed using the linear (or goal) programming 

formulation suggested  by  Aigner  and Chu (1968).  From the theory  (Chp.  2) it is known that 

for  each  observation  the  value  of the distance function must  be  less  than or equal to 1, i.e.  

lnD
0
 must be less than or equal to zero (assuming  there are no measurement  errors). 

Formally,  

where K denotes the observation. By adding  a non-negative  "error" term, one can rewrite 

(3.2)  as  

where e(e  > 0)  denotes the error  term. It  may be noted that it  is customary  in  the literature to 

interpret  the non-negative  "error" term as  the reciprocal  of  the Farrell output-based  technical 

efficiency  index. Next  we choose the "fitting"  criteria  to be the  minimum absolute error  (MAE)  
K  i i 

criteria,  i.e. E£  
>
 e> 0.  MAE fits  lnD

o
so that the sum  of  errors  is  as small  as  possible. 

The complete parametric  linear programming problem, with restrictions,  can be expressed  as  

m M 

(H  1) E ai  +  EPj =  1 
i=i j=i 

m M 

(H  2) Eaij  +  Ehi=o Vi = 1 m 
i=i i=i 

M m 

(H  3) EPij  +  EUji  =0 Vi =  1 M 
I=l j=i 

m M 

(H4) EH, + Vi  = 1 n 
I=l I=l 

(3.2)  lnD*(x,v,w)<o Vk  = 1,...,  K  

(3.3)  lnD£(x,v,w)  +e
k  =0 
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In addition to the  above restrictions, the symmetry  restrictions (S) and homogeneity  

restrictions (Hl-H4) are  imposed. The homogeneity constraint also ensures  that the  

technology  satisfies  weak disposability  of  outputs.  The constraint (i)  restricts  observations  to 

be on or below the frontier technology.  The constraint (ii)  imposes strong disposability of 

inputs, i.e. increasing  inputs  can never reduce outputs  (congestion  is not  allowed).  Finally,  

constraint (iii) ensures  that the desirable output shadow  prices  are  greater than or  equal to 0.  

It  may be noted that compared  to the model of Färe et ai. (1993), model (3.4) differs in 

three respects.  First,  in the present study  no restrictions are  imposed on the  shadow prices  

of undesirable outputs, whereas Färe  et al. set  the shadow  prices of undesirable  outputs to 

be negative  or zero  (3lnDo
(x

k
,v

k
,w

k
)/9lnw

k
 <0).  Secondly, Färe  et  al.  do not  impose  

constraint (ii)  above,  i.e. they allow input congestion. Thirdly,  equation (3.4)  is  estimated as  a  

panel data model (Fare  et  al. 1993 use  cross section data with 30 observations).  The panel  

data model in this context  is called by Lovell (1993)  the "inter temporal goal programming  

approach".  This approach has been used by  Nishimizu and  Page (1982)  in a single-output  

production frontier context. In principle, the approach allows the calculation of technical 

efficiency  and shadow prices  for each producer in  each time  period,  as  well as  the shift  in the 

production frontier  over  time (technical  change). 

K  

(3.4)  max^[lnD o
(x

k

,v
k

,w
k

-Inl]  
k-1  

S.t. 

(i) lnD
k

(x
k ,v\w k

)<o k  =  1,...,K 

....
 dlnD

0
(x

k ,v\w k) 
„

 
n —ll <0 
'
 ainXi  

dlnD
n
(x

k

,v
k

,w
k)  

„

 
("0 >o 

dlnv. 
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3.2 Econometric model 

In order to transform the deterministic equation  (3.1) into a stochastic one, a random 

disturbance term has  to be added. Random disturbances may arise,  e.g. because  of 

measurement  errors  in the data, randomness  of  the efficiency  distribution between the plants  

over  time, luck  etc. In  the present  study,  an error  term (e
k

),  assumed to be  independently  

and identically  distributed as was added to equation  (3.1). The estimation of a 

stochastic  distance function is  not as  straightforward  as, e.g.  the estimation of a production,  

cost  or  profit  function. The basic  problem  with distance functions, as concerns  econometric 

estimation, is that one  does not  usually  observe (have  data on)  the dependent variable. 

Further,  if one sets  the distance  function equal  to its efficient  (frontier) value, Dg  = 1, the 

left-hand side  of the distance  function is  invariant,  an intercept  cannot  be estimated, and 

OLS  parameter estimates will be biased. Further,  if the distance function is expressed  in 

logarithms,  the left-hand side of the  distance  function will be zero  for all  observations (i.e. D 

= ln(1)  = 0).  

In the present  study,  the approach  of  Grosskopf  et al. (1992) and  Lovell  et al. (1990) is  

used to  estimate  the stochastic  distance function. This procedure  imposes the value of 1 on 

the distance function and uses  the homogeneity  property (i.e.  outputs homogeneous  of 

degree  +1) to solve  the invariance problem  of the left-hand side of the distance function. 

Thus, the  procedure  amounts  to estimating  the  technology  frontier, i.e. it is  assumed that the  

fitted values of the distance  function deviate from 1 only  due to stochastic error  term. 

Homogeneity is  imposed  by  multiplying  all  output values on the right-hand  side and  the value 

of  the distance function on the left-hand side by  a numeraire variable. This  transformation 

causes the multiplicative  variable to  appear on both sides of the equations,  which may result  

in endogeneity  on the right-hand side. Therefore one has to test whether the errors  are  

correlated with the regressors,  and if this is the case, use  the instrumental variables 

estimation method. 
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In  order to transform equation  (3.1)  to estimable form, the dependent variable and the 

output terms of equation (3.1) were  multiplied  by X = 1/SS,  where SS is the amount  of 

suspended  solids in the waste  water  (i.e.,  the transformation is first  computed  in levels  form, 

after  which  the logarithmic transformation is taken). This transformation imposes the 

homogeneity  of  outputs restriction and weak disposability  of  outputs. 

Finally,  it may  be noted  that although  the distance  function can be  used to study  

effects  such as elasticities of substitution, economies of  scale,  and technical change,  the 

primary  concern  here is  the shadow  prices of  undesirable outputs.  

4.  Data  and variables 

The empirical  analysis  is based on data from the Finnish sulphate pulp industry.  The 

institutional background and  the water  pollution regulations concerning this sector  have 

been  discussed in more detail in  Hetemäki (1994 a,b.). It  suffices here to say,  that sulphate 

pulp  mills are  usually  classified as integrated  pulp  and paper plants  or  non-integrated pulp 

plants.  The first group consists  of plants  in which the production process  is integrated  with 

the production of paper or paperboard and the latter group comprises  plants that produce  

only sulphate pulp (to export or to sell to domestic  paper plants). In 1990 there were 

altogether  17 sulphate  pulp  plants  in Finland, of which 7  were non-integrated.  The sulphate  

pulp  industry represents a  typical  process  industry,  whose inputs  and end products are 

relatively  homogeneous  in comparison  with most other industries. Thus, the inputs  and 

outputs  are also  relatively  accurately  measurable. A major part of the output is used 

domestically;  of total output, exports  were 34 % in 1972, 38 %  in 1980 and  26 % in 1990. 

However, of the  end  product (paper/paperboard)  approximately  90  % is exported.  The  main 

water  effluents produced  jointly  with pulp  are  biological  oxygen demand (BOD),  suspended  

solids (SS),  nitrogen  (N),  phosphorous (P),  chemical oxygen  demand (COD),  and  absorbable 

organic  halogens (AOX). 
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In order to keep the sample  as homogeneous  as possible, the empirical  analysis  

includes only  those plants which  were operating during the whole  period  studied. By  this 

procedure the bias involved in comparing  plants with different vintages  of  production 

technology is  reduced, although not  totally removed.  The data set used  in  the empirical  

analysis  is  based on a balanced panel containing annual data from 8  sulphate  pulp  plants 

over  the period 1972-90. All the plants  are non-integrated,  except one, for which  it was 

possible to separate the sulphate  pulp production  from the paper/paperboard  production  (in  

terms of  the data needed). The plants in the sample have  accounted for more than a half  of 

the total production of  the  sulphate pulp industry  during 1972-90. 

The data used  for the estimations consist  of observations on quantity (Q) and  gross 

value (GVP)  of sulphate  pulp  output, net  fixed capital stock  (K), hours worked (L),  value  of 

materials input  (M),  biological oxygen  demand (BOD), total waste  water  flow  (FL), and 

suspended  solids  (SS) (see  Appendix  I).  Although,  the waste  water  flow has not  been 

regulated  by the  water  authority,  its reduction has nevertheless been perhaps the most 

important means by which  the plants  have tried to reduce different water pollution  

substances. Moreover, the constraint need not  originate from the regulating authority but 

may come from the consumer  preferences.  This has recently  been evidenced by  the "green  

marketing"  strategies  of  pulp  and paper manufacturers. 

The standard deviations, means,  minimum and maximum values, skewness and 

kurtuosis  are shown in Tablel. The standard deviations for  all the variables are less than 

their mean values, indicating that  the  mills are  a  relatively  homogeneous group. 
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Table 1. Descriptive  Statistics 8 sulphate  pulp  mills observed annually between 1972 -  
1990  (Sample Size = 152) 

Q  = pulp output;  GVP = gross value of  output in 1990 prices; M = value of materials 

input in  1990 prices; L  = hours worked (productive  and non-productive workers); K  = net 
fixed capital stock  in 1990 prices; FL = waste  water  flow; SS  = suspended solids;  BOD 
= biological oxygen  demand. 

5.  Empirical  results  

The initial estimation results  showed that the complete translog  model could not  be estimated 

for  the stochastic  model due to multicollinearity  (singularity  of  the Hessian  matrix).  Although, 

the deterministic approach  allowed the computation  of this model specification,  the "fitted" 

values were  all equal to 1 and the  parameter  values were  extremely sensitive  even to minor 

changes  in model specification or  data. Thus, it was  thought to be more appropriate to 

compare functional forms, which could be regarded as not  suffering from these biases.  

Consequently,  the empirical  results are  based on two  functional forms:  (i)  a special  case  of  a 

translog  function,  with a first-order approximation in  the input quantities and second -order 

VARIABLE UNIT MEAN  ST. DEV  MIN MAX 

Q 1000t 224.9 94.3 87.3 511.8 

GVP mill. FIM 602.9  231 209.7 1200 

M mill. FIM  420.2 165.4 137.6 848 

L 1000 h 811.4 353.1 209.7 1803 

K mill. FIM 974.2 372.3 273.2 1797 

FL mill. m3 42.1 20.4 15.2 126.7 

SS  t  1978.3 1569.3 277 9950 

BOD 1000 t 6034.8 2988 554 15370 
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terms in  the output quantities (eq.  5.1),  and  (ii) a  Cobb-Douglas  form (eq. 5.2).  

where x  denotes inputs (capital  (K),  labor (L),  and materials  (M)); v  denotes desirable outputs 

(quantity  of  pulp  produced  (Q)), and w undesirable outputs (biological  oxygen demand (BOD) 

and waste  water flow (FL)). In  some  model specifications,  the plant-specific  (a
p

)  and period  

specific  (a,) fixed or random effects were included (see  below). The plant  and time 

subscripts  are  deleted for  simplicity  from eqs.  (5.1-5.2);  the observations run  across  plants  (p  

= 1 ,8) and over  time (t  = 1,...,  19), i.e. for  a total of 152 observations. Finally,  in the 

stochastic  model, an error  term was added to equations  (5.1)  and (5.2)  and the dependent  

variable and  the output terms were transformed in order to impose  homogeneity  and  allow 

for the estimation (see above).  

Since,  a  priori, there is usually  not  enough  information which enables one to choose a  

stochastic specification  which approximates  the data generating mechanism the best, a  

number of  different specifications  has to be estimated. In present study,  the stochastic  model 

was estimated using  the  following  specifications:  pooled data without plant-  and period  

specific  effects, and five different panel data specifications  (one- and  two-way fixed and  

random effects models and a random coefficients model). The deterministic linear  

programming model was  computed  both for  the pooled and  fixed effects  specifications.  To 

test whether plant- and period-specific  effects  are  present,  we employed  an F-test for  the 

fixed  effects model and  the Lagrange  multiplier test of Breusch and Pagan  for  the  random 

effects model. Moreover, the Hausman test was  run  to test  whether the fixed or  random 

m M n m m  

(5.1) lnD
o
(x,v,w)  =a

0  +a
p  +a

t  +  £a,  InVj  + InWj  +^Yi lnx,  +  1/2]  T   
i=l i=l i=l i=l j=l 

MM m M 

+ l/2X  X(¥lnwi wi)+]£  £h( |nvi)( |nwi)  
i=i j=i i=i j=i 

m M n 

(5.2) lnD
o

(x,v,w)  =a p+ao  +  a t  + + + nx i 
i=l i=l i=l 
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effects  specification  should be used. Finally,  a chi-squared  test of the random coefficients 

model  against  the alternative of the classical  regression (no randomness  in  the  coefficients)  

was computed.
7 Of  the different model specifications,  the  two  factor fixed effects  (or  

covariance)  model (TFFE) proved  to be preferable  in terms of model diagnostics  (see Table 

5.). However, the results  showed that the fixed and  random effects models (but  not  the 

random coefficients model) produce  rather similar estimates. Consequently,  whether the 

individual- and time-specific  effects  are  treated  as fixed or random does  not  change  the 

results  significantly.  

In the TFFE specification,  the intercept is  allowed to vary  from plant to plant and  period  

to period,  while the slope  parameters are  assumed to be constant  over  both plants and time 

periods.  The plant-  and  time-specific  effects  are  typically  assumed to arise from the omission 

of variables whose explicit  inclusion in  the model is not possible.  For example, factors  such  

as  environmental regulations, management and infrastructure differ across  plants  and  may 

affect the efficiency  of the  plants.  These  affects  are  captured by  adding a dummy  variable  for 

each plant  (PL2-PLB).  Also,  it is likely  that plants  are  affected  by,  e.g. macroeconomic factors 

(oil  price  shocks)  and  general  environmental attitudes of society,  which vary over  time. The 

latter effects  are  captured  by  the time dummies that  vary  over  time but not over  plants (Y73-  

Y9O), i.e. it is  assumed that similar  factors "hit" every plant in  each time  period. In the  TFFE 

model the plant- and  time-specific  factors are allowed to be correlated with inputs and 

outputs,  and the model is  estimated consistently  by  OLS.  

The  results  reported in Table  2. show that in the stochastic models the measures  of 

goodness  of  fit (R
2

)  were  high.  However, the parameter restriction test  rejected  the Cobb- 

Douglas  specification. Also, the Cobb-Douglas  and  translog model without fixed effects  

suffered from various specification  problems (see Appendix II).  

The shadow prices  were computed only  for waste  water  flow in the  stochastic  model, 

since  the  parameters used for computing the shadow price for BOD were either  close  to zero  

or insignificant.  However, it should be  added, that the shadow prices  of FL in the stochastic  
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models were not  sensitive to the  exclusion of BOD from the models (for  the deterministic 

model the shadow prices  for BOD  were  computed  for illustrative purposes, see  Table 3).  The 

most  significant  feature of the  shadow price  estimates,  shown in Table 3. is  that for bulk  of 

the observations,  the FL  shadow prices  are  positive. It  should be stressed  that this does not  

mean that the effect of  environmental regulation  is positive. The output distance function 

measures  the effect of  pollution  control,  not the effect of regulation.  The regulation  is always  

an exogenous restriction on the production, but control of pollution may be a  free  choice of 

the firm  for various reasons  (see Porter). 

In the  restricted translog  two-way fixed effects  models, 3  out of the 152 observations 

were negative when stochastic  approach was used, and  9 observations were  negative  when  

deterministic approach  was  used. In terms of  Figure  1., these results  would imply  that the  

plants  have most of the time been operating  around the point  C*  (either  on the frontier or  

below it). The positive  shadow prices  for FLOW are  probably  due to the fact that the  internal 

process  changes  in the production  of pulp  have simultaneously  decreased the  amount of  

waste  water effluents and  improved productivity.  The long-run  strategy of the pulp  plants  in 

developing the production  process  has been to aim  at closed-loop water  systems,  which 

simultaneously  improve  efficiency  in the control of production  systems  and reduce water  

pollution. As  a result  of  this strategy, the production  of one ton of pulp  in  1990 generated on 

average  three times  less  waste  water  than in the 1972. 

It  is  important to note  that the pollution  control  may  have occurred  either  independently  

of  the regulations or  as  a result of  the  regulation (or  due to both of these). In the  first  case,  

waste  water  reduction may have emerged as a by-product of productivity  improvement 

measures  or  "green marketing strategies".  In the latter case,  regulation  forces  firms to adjust 

production  process  and reduce pollution,  which, however, may  also lead to improvements  in 

productivity.  Thus, there may be  potentially  significant  learning  by  doing"  effects  associated 

with environmental regulations. This  type of  argument has  recently  been  put  forward by  
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Table 2. Parameter estimates (152 obs.)  

**

 and 
*

 indicate the heteroskedasticity-consistent  t-values of  the parameters that are  

significant at  the 5% and 10% level, respectively.  

Cobb-Douglas Cobb-Douglas  FE Restricted Translog  FE  
deter. stoch. deter. stoch. deter. stoch. 

constant -0.94 0.03 
**  -0.51 0.01 -0.21 -0.02 

K -0.28 -0.08 -0.19 -0.14 t* 
-0.20 -0.15 **  

L 0.00 0.06 
*

 -0.20 -0.16 ** -0.23 -0.17 " 

M -0.58 -0.75 
"

 -0.50 -0.67 
»■* 

-0.48 -0.66 
**

 

Q 0.78 0.88 " 0.90 0.88 *  0.83 0.89 
"

 

BOD -0.03 0.05 ** -0.03 -0.02 -0.18 -0.01 

FL 0.24 0.06 0.13 0.13 
** 

0.36 0.09 * 

Q2 0.12 0.06 * 

BOD2 0.02 -0.01 

FL2 0.31 0.04 

BODFL -0.10 0.02  

BODQ 0.09 -0.01 

FLQ -0.20 -0.06 " 

PL2 -0.21  -0.08 
**  

-0.22 -0.04 

PL3 0.13 0.09 ** 0.16 0.15 
**  

PL4 -0.07 -0.14 ** -0.07 -0.09 

PL5 0.02 -0.04 0.05 -0.00 

PL6 -0.03 -0.10 
**  

-0.03 -0.05 

PL7 -0.24 -0.21 
**  

-0.29 -0.15 " 

PL8 -0.41 -0.35 ** -0.41 -0.32 " 

Y73 -0.05 -0.06 ** -0.05 -0.06 * 

Y74 0.05 0.07 ** 0.05 0.08 
**  

Y75 -0.05 0.26 ** -0.06 0.27 **  

Y76  0.15 0.31 
* *  

0.16  0.31 " 

Y77 0.18 0.30 **  0.21 0.31 
**

 

Y78 0.11  0.09 **  0.13 0.11 ** 

Y79 -0.16 -0.01 -0.09 0.01 

Y80 -0.09 -0.01 -0.05 0.01 

Y81 -0.08 0.01 0.00 0.03 

Y82 0.10 0.15 **  0.17 0.16 **  

Y83 -0.01 0.02 0.03 0.03 

Y84 -0.08 -0.00 -0.05 0.00 

Y85 -0.04 0.01 -0.01 0.02 

Y86 -0.08 0.03 -0.06 0.02 

Y87 -0.24 -0.03 -0.18 -0.04 

Y88 -0.22 -0.08 -0.18 -0.09 

Y89 -0.20 -0.07 -0.17 -0.08 

Y90 -0.19 -0.06 -0.15 -0.05 

adj. R2  0.95 0.98 0.98 
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Table 3. Waste water  flow shadow prices  

CD = Cobb-Douglas,  CDFE = Cobb-Douglas  function with  plant  and period specific  fixed 

effects,  RTRFE = restricted  translog  function with plant  and  period  specific  fixed effects. It 

may be  noted that the  mean value  for  the computed BOD  shadow price  in  the RTRFE 
deterministic model is FIM 1521.6 (min.  -33.1  and max.  585.9).  

Porter (1990). Indeed, in  their  analysis  of  the  "Porter hypothesis",  Oates et al. (1993)  argue  

that the most  likely  reason  that regulations  might  generate positive  effects  on firms' profits  is  

that there has been inefficiency  and unrealized opportunities  for cost-savings  and product 

enhancement before the regulation and that the regulations  induce the realization of these 

opportunities. 

If  the above argument is  correct, one may ask  why the  firms utilized the positive  

spillover effects only  after the regulations  forced them to do so. One possible answer  is  

related to the information cost argument. There are  many potentially  ways by which 

production  efficiency  could be enhanced, and firms are uncertain about which of the 

possibilities  will result in benefits that exceed the (research and  development) costs. 

However, analyzing a wide range of possible  new ways  to  increase productivity is costly,  

and the firms may not utilize these possibilities  until regulations  force them to do so. Oates 

et al. 1993 list a number of other possible  reasons  why firms do not  realize the potential 

Model Mean shadow 

price,  FL 

Standard 

deviation 

Minimum Maximum 

CD deter. 840.1 114.8 522.2 1176 

CD  stoch. 171.4 23.2 106.6 240 

CDFE deter. 392.7 53.6 244 549.8 

CDFE stoch. 406.5 55.5 252.7 569.2 

RTRFE deter. 759.4 453.8 -269.3 2169 

RTRFE stoch. 278.1 108.8 -33.14 585.9 
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gains  in the absence  of regulation 

The results  obtained in  the present study  are  in accordance with those  obtained  in  

Hetemäki (1994b),  using  the same theoretical framework and data set  but applying  a "two  

stage method" to estimate a stochastic  distance function. In  contrast, the present results  are  

rather different from those  obtained by Fare et al. (1993)  using a  deterministic output 

distance function  and cross-section  data for  pulp mills operating  in  Michigan  and Wisconsin 

in 1976. The results obtained by Färe et al. showed  that the absolute shadow  prices  of 

different measures  of  water  pollution  were large and negative  and that there are wide 

variations in shadow prices  across  the different mills.  For  example, the mean of the plant -  

specific absolute shadow price  of BOD indicated that reducing  one ton of BOD emissions 

diverts enough resources  to have produced over  two tons of paper, and the standard 

deviation of  the plant -specific shadow prices  was higher than their mean. If these 

differences in the  results of  the two studies could be  regarded  as  reflecting  purely  country  - 

specific differences, it would indicate that Finnish and  US pulp mills are  using very different 

production  technologies  or/and that  they are  operating  in a  strikingly different environment. 

However, it would seem more plausible to consider that a significant  part  of  the difference is  

a result  of  differences in the data bases  (homogeneous  panel  data vs.  heterogeneous  cross  

section) and in the fact that the parameter restrictions differ in  the two studies (e.g.  Fare et 

al. impose  negative  shadow price). Indeed, the study  by Evans and Heckman (1988) 

showed, in a different context, that the parametric linear programming approach is very 

sensitive to  the constraints imposed on the technology. 

5.1 Comparing the results  

How do the estimates using the  two different methods compare? If we simply  compare the 

columns  for deterministic  specification  with columns  for  the stochastic  specifications in Table 

2., we can see that the  differences in  the coefficients between the  three deterministic model 
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specifications  are  larger  than the respective  differences between the  stochastic  models. That 

is, the computed  coefficients of the linear programming  models are  more sensitive to small 

changes  in specifications;  in the stochastic  models they are  rather stable. For  the stochastic 

approach, alternative model specifications lead to  essentially  the same conclusions 

concerning shadow prices,  but  for  the deterministic approach minor changes in the 

specification (or  data) lead to major changes  in the inferences (see  Table 3). One would 

usually  prefer  the most  flexible a functional form, which in the present study  is the  translog.  

However, using the results from the stochastic model estimations, the multicollinearity 

problems associated with this specification  became  apparent; the data simply  do not  contain 

enough information to enable the identification of all the  parameters in the translog model. 

Since the model diagnostics  for the stochastic  specifications indicated that the 

restricted translog  model with the  fixed effects  performed the best,  it  is  interesting to  examine 

more closely  the differences between the two approaches  for this specification.  The shadow 

prices  for waste  water  flow (FL) for the two  approaches  are shown  in  Figures  2 and  3.  In 

Figure  2 the mean shadow prices,  measured on the y-axis,  are  given  in Finnish marks (FIM) 

across  the plants  over  time (1972-90).  For  both approaches,  the shadow price  follows a 

similar downward trend, except for  the last  two  years (89-90), when the shadow price  for the 

deterministic model increases. Also, the level of  the  shadow prices  differs: it is  on  average 

2.5 times  higher for  the deterministic model. In Figure  3 the waste  water flow shadow prices 

scaled by  the respective  mean values are shown for the whole sample; observations 1-19 

show  the values for  plant 1, observations 20-38 show  the values for plant  2, etc. The figure 

shows clearly  that for the deterministic model, both the scale and  frequency of variation in 

the shadow price  is larger than for the stochastic model. 

In summary, both approaches show the same general downward pattern  over  time for 

shadow prices  and both are positive.  However, in the  deterministic model the level  of the 

shadow price is much higher and the variation wider. The decreasing shadow prices 

probably reflect the general  change  in the production  process  towards a closed-loop  water  



24 

Figure 3. Waste  water flow  shadow  prices  scaled by  mean values  (obs.  1-152) 

On the horizontal axis, the observations for each plant are  shown,  thus  obs. 1-19 
for  plant 1, obs.  20-38 for plant 2, obs. 133-152  for  plant 8. 
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system  and the fact that the positive  spillover  effects (efficiency  gains)  associated with this 

process  change  get  smaller at  the margin (in terms of  Figure 1, plants  are moving  from 

points like  C* towards  B*  or  A*).  Against  this evidence, it would seem unrealistic that  the 

shadow prices  for  flow have increased significantly  in 1989-90, as  indicated by the 

deterministic model. Also, the absolute  values of the shadow prices  from the deterministic 

model appear  unrealistically  high  (the maximum shadow price  is FIM 2169, which is  almost 

equal to the  mean of the gross value of  pulp  output per ton  FIM 2728). 

Finally,  there is an important  question  which arises  with the  use of  the deterministic 

model. Namely, if only  the deterministic approach  had been used (as  in the  bulk of the 

previous  studies), which model specification would  we have ended up with? Probably  the 

complete translog  (because  of  its  flexibility) as  in so many of  the  previous  studies.  However, 

as  the results  indicated, for  the  data used in this  study,  the complete translog form suffered 

from serious multicollinearity,  due to which the parameters could not  be  precisely  identified 

(and the stochastic model not even estimated). Moreover, how could have we  chosen 

whether  to  include or  exclude  the plant and  time specific  fixed effects  in  the model? These 

questions bring  forward the important  drawback with the parametric  linear programming  

approach, i.e. the lack  of  tools  to  guide the model specification  search.  

6.  Conclusions 

The implications  of  the present study  are  of  two  kinds: those related to the  effects  of pollution 

control  on the sulphate pulp  plants and  those related to methodological issues.  The  

substantive  implications  are  summarised  first.  

The results of  the  two approaches used are  coherent in that both indicate that water  

pollution  reduction by  Finnish pulp  plants  has been, for most of  the  plants and for most  of  the 

period studied, associated with  the increase  in  revenues.  For some plants  and some years, 

the effects  have been either slightly  negative or  close to zero. However, the positive  shadow 
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prices  should  not  be interpreted  to show that environmental regulations  cause plants'  profits 

to increase.  Rather,  the result  indicates that  control  of emissions is part  of  the control of  the  

whole pulping process. Recycling  waste water and closing the water circulation 

simultaneously reduces  material waste, improves  the production process  and reduces  water  

pollution.  In  other words, environmental regulation  is not  the only  factor which has caused  

these plants  to reduce water  pollution, but also the fact  that pollution control measures  and 

improvements in the production  process appear to be strongly  positively  correlated. How well 

the above result can be generalized  to other production  processes  is an empirical  issue. 

Nevertheless, the result  indicates  that one should not  a  priori rule out the possibility that 

pollution control may be positively  correlated with increases in firms' revenues.  

In order to summarize the methodological implications  of the  present study,  it is  

useful to  first  remind ourselves  of  the nature  of  the data in applied  production theory  studies. 

In particular,  the fact  that a great majority of  the empirical  production  theory studies are  

carried out using non-experimental data has important implications also for the approach 

used. Data are usually  collected by  central statistical offices or  other  authorities for various 

purposes, of which  one may be research.  As a result,  primary  data construction is rarely  

under the researcher's control. This lack of control and  the fact that the data has not  been 

collected for a  particular research study often causes  a lack of  data precision and 

measurement  errors.  The stochastic approach allows measurement  errors  and random 

shocks to enter  the model. Indeed, the particular  characteristics of  the data usually  have an  

important influence on the specification  of the econometric model, on the choice of  the 

estimator, on  the properties of the estimates and  on inference. Moreover, the great 

advantage  of  the  stochastic  method is  the possibility  to use  standard statistical tests to guide 

the model selection.  On the other hand, the deterministic approach either assumes  that  there  

are  no errors  in the data or that they  are one- sided. Moreover, the possibilities  for 

"specification  search" are  very  restricted for the deterministic approach. 
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The results  of  this study  confirm the above problems  for  the deterministic approach.  

For  the data used in the present study,  the results  for the  deterministic model were  unstable 

and sensitive to  small changes  in specifications. Consequently,  the methodological  

implication of  the present study  is  that sensitivity  analysis  should play  a much more important  

role in  deterministic parametric  linear  programming  models than has been the  case so  far. At 

the least,  a number of  different model specifications  should be  tried and  the sensitiveness of 

the results to small changes in the data should be examined. 
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Footnotes 

1. Distance functions have also been used in consumer theory  (e.g. Malmquist 
1953, Deaton 1979, Cornes 1992), but their applications  have not  yet gained  as wide 

popularity  as  in production  theory. 
2. It may  noted that  Charnes et al. (1988)  and  Evans  and  Heckman (1988) have  

compared the parametric linear programming and econometric approaches in estimating a 

translog cost  function. 
3. Also, as  is  well known, Monte Carlo simulation is sensitive to the design of  the 

experiment  (e.g. Davidson & MacKinnon 1993). One objection to the use of  Monte Carlo 
evidence is  that  the sample  design  can make the differences between the techniques one  is 
comparing more similar or  extreme  than they might be  with  data from an  actual survey.  

4. Outputs  are  called weakly  disposable  if y e P(x)  and 9  e [o,l]  and 0y  e P(x) ;  and 

strongly  disposable if v<yeP(x)  then veP(x). According  to the weak disposability  of 

outputs assumption it  is possible  to  reduce one output at least  in a way that the  other outputs 

are reduced in the same proportion,  with inputs  held constant.  For example, it is at least 

possible to reduce water  pollution  (output) by  one-third, with a  simultaneous decrease of pulp  

(output)  by  one third. However, it is  also possible  to reduce water pollution  by  one-third and 

pulp  output by  two thirds, or  vice versa.  Finally,  and most importantly,  weak disposability  
does not  rule out  the possibility  that undesirable output is reduced  simultaneously  with an 

increase in desirable output. Thus, also positive  shadow prices  for pollution  are consistent 
with the weak disposability  assumption.  

5. See Fare  et.al. (1989)  for a nonparametric  distance function approach  which 

computes shadow prices  for pollution. 

6. The parametric  linear programming  models were  computed using the  GAMS 2.25 

program, and the stochastic  models using the LIMDEP 6.0 and GAUSS  3.2  programs. 

7. The random coefficients estimation method and the test for the model (under  the 
null hypothesis of  parameter constancy)  has been suggested by Swamy,  P. (1971),  
Statistical Inference in  Random Coefficients Regression  Models, Springer-Verlag. The test 
statistic is  algebraically  the  same  as  the standard  F  statistic  for testing (see Greene 1993): 
H

o:p,=p 2 =...= p
n

.  
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Appendix  I: Data and  variables 

The data was  collected from two different sources;  Industrial Statistics collected by the 
Central Statistical Office of Finland (Teollisuuden  Yleislomake ja Energialomake)  and water  

pollution statistics collected by the National Board of Waters and Environment 

(Vesiensuojelun  A ja  B lomake).  Both type of statistics  are  based on annual questionnaires 
sent  to all plants.  Because the questionnaires  sent  by  two  different authorities for collection 
of different information were not  necessarily  coherent, some of  the figures  were  checked and 
corrected by directly contacting  the plants involved.  Since the data is confidential and its  
collection requires permission from  each of  the firms,  code numbers are  used for the plants 
in order to make them unidentifiable. 

Output. The pulp  and paper output series include information on the value and 

quantity  (tons)  for sulphate  pulp.  The implicit  price  index for output is  derived by  dividing the 
value  of  output by the  quantity  of  output. 

Water Pollution. The principal aim of  water pollution monitoring is to  assess  the 
waste  water  ingredients,  their  quantity  and  toxicity,  to control the compliance  with permit  
conditions and to assess  treatment  efficiency  and factors  affecting  efficiency.  The  monitoring  
is done according  to a program approved  by  the supervising  authority,  i.e.,  the local water  

authority.  The monitoring  is  carried out  by both the official water  laboratory  (of  which there 
are  around 20 in the  whole country)  and by the pulp  plants  themselves. The local water  

authority  gives limiting values at the  plant level  for  the  discharge in terms of total load per 
time  unit  or  specific  load per ton  of product. In general,  the limits must be attained as  mean 
values  for 1,3, or  6 months, depending  on the size and type of plant.  The water  pollution 
statistics  concerning  the quantities  of effluents of  the pulp plants  is considered to be of  good  

quality by  the  National Board of  Waters and  Environment. 
The  water  pollution statistics used in the present study  consists of information on 

the flow of waste  water  (m3/a),  biological oxygen demand (BOD 7)  (t/a)  and  suspended solids 

(t/a).  

Labor. The information on labour input consists  of  data on both production  and non 

-production  (white  collar) workers total numbers, hours worked, and wages and social 

security  costs. Social security  costs are not  available for 1972-73  and so were estimated 

using  the  procedure outlined  in  Mäisti (Tulonjako paperiteollisuudessa vuosina  1955-1977, 

Työväen Taloudellinen Tutkimuslaitos,  tutkimusselosteita 8:1979). The quantity  of labour 

input  is measured as  the hours worked. Since there may be differences between production 
and non-production workers  that is not  reflected  in the number of hours worked, the  Divisia 
(or  discrete  time Törnqvist)  index was  used to  compute an aggregate index of  hours worked.  

Capital.  As  is well known,  the construction of data series  for capital stock  and  price 

(user cost)  of  capital  poses fundamental difficulties. For a clear exposition of  these issues,  

see,  e.g., Berndt, E.  (1991). The Practice of  Econometrics,  Addison-Wesley.  
The capital  series consists of  information on annual (1974-1990)  purchases of 

capital goods (a),  basic  improvement costs (b),  sales  (c), and  rented capital  goods (d)  of 6  
different classes of capital assets (1. residential buildings, 2. non-residential buildings,  3. 

machinery, instruments  and tools, 4. transportation  equipment, 5. land and  water  structures, 
6.  other material investments).  The gross investment series (e)  is  constructed as  e  = a + b + 
d -  c. From 1972-73 there are  also data on  the fire insurance  values of the  different classes  

of capital  assets. The  6  different classes  of capital assets were first aggregated into two  

groups,  namely, buildings =l+2  + 5  and equipment and machinery = 3  + 4 + 6.  

The replacement cost values of fixed capital assets were calculated from the 
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perpetual  inventory  formula, K(  = (1  -5t)Kt_-| + l(_i where Kj  is the  capital stock at  the 

beginning of  time  t, Bis  the constant  rate  of depreciation, and is investment in period  

t-1.  In order to obtain the starting  (or  benchmark)  values for the capital stock we assumed 

equality  of  fire insurance  cost  and  historic cost  valuations of  the capital  stock  in the first  year 
of the data (1972) (Nickell  et. al. 1992) have noted that "the choice of an accurate  
benchmark may be largely irrelevant" in  a fixed effects  panel data model). 

In  order to calculate the constant exponential rate  of depreciation, the procedure  

given in Kuh, E. and R. Schmalense (An Introduction to  Applied Macroeconomics,  

North-Holland, 1973) was used. According  to this procedure  the depreciation rate is 
calculated using the equation, (1-S)L  = X, where L is the average service lives of  capital  

assets and  X is  the value of  capital  assets as a percentage of  their initial values at the end of 
their  average service lives. It was assumed that, of the initial value of equipment  and 

machinery, 10 percent is left after 32 years  in  the paper industry  and after 25  years in the 

pulp  industry.  The corresponding figure for buildings was  assumed to be 65  years for  both 

industries. These figures  for the service  lives  of  capital  assets are  higher  than those reported 
in  the National Accounts. The figures used here are  based on Simula (Tuottavuus  Suomen 
metsäteollisuudessa. Licentiate thesis, University  of Helsinki, Department  of Social 
Economics of Forestry,  1979) rather than the more simple calculations of  the Central 
Statistical Office. However, the  figures should still  be  regarded  as  crude approximations. The 
above  assumptions imply  values of 5  of 8.8% for equipment and  machinery and  3.5% for  

buildings  (For comparison, e.g.,  Nickell  et. al. 1992 use  the values 8.19% and 2.5%, 

respectively  for the  UK  manufacturing  industry).  Finally,  the replacement cost valuation of 
total fixed capital assets is  calculated as  the simple sum of  the fixed capital assets of plant 

and  machinery and  buildings. 

Materials. The data on intermediate materials consists of information on the  value 

of  materials. This is a  "catch-all" variable which  includes data on various inputs  with different 
units. The important problem  in constructing  a  materials input  variable is  that, as  usual,  there 
is  no data on the quantity  or  price of  this "input". Since it is  essential to determine how much 

change in  value  can be considered  a result  of  changes in  quantity over  time  and  across  

plants rather than in the prices, relevant  price  indexes or  deflators must  be  found. In  the 

present study  the production price  index for  manufacture of  paper and paper products  was 
used as  a deflator. 
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Appendix  II:  Model Diagnostics*  

Autocorrelation. In order to check the residual autocorrelation, the  

autocorrelation functions and Ljung-Box  Q-statistic  were computed. The Q statistic tests the  

hypothesis that all of the autocorrelations are  zero (three  lags in  the present case).  The  
residual analysis  was carried out  for each plant separately.  The  results showed that  the null 

hypothesis  of no autocorrelation (at  the 5% sig.  level)  was  rejected  for 5  plants  out  of the 
total of  8 plants  in  the Cobb-Douglas  model, for 3 plants  in the Cobb-Douglas  fixed effects 

model, and  only  for  one plant in  the restricted translog  fixed effects  model. Thus, it appears 
that the  likely  cause for  the autocorrelation problems  in Cobb-Douglas  specifications  is the 

unsatisfactory  functional form  specification,  since autocorrelation is  not  a serious problem in 
the restricted translog form. 

Heteroskedasticity.  The heteroskedasticity-consistent  standard errors  were 
used. However, in turned out that, they do not  differ significantly  from the "raw" standard 

errors.  Also, the  White test  indicated that the residuals are homoskedastic. 

Normality.  The Shapiro-Wilk  W-test of  normality was computed for the whole 

sample  and for residuals from each of the model specifications.  The null hypothesis of 

normality  could be accepted  at the  5% significance  level for the  whole sample and for all the 
model specifications.  The  results  from  testing  for normality  for  each plant  separately  showed  
that normality  could be accepted  in the TRFE and CDFE models  for  all of them, except  for 
two plants,  at the 5 % significance  level. However, when 2 outlier observations for plant  5 
and one  outlier for  plant 7  were removed, the residuals were normally  distributed. The  null of 

normality  was rejected  in half of  the cases  for the Cobb-Douglas  specification.  

Orthogonality.  The results  in Table 5.2 maintain the assumption of  orthogonality  
between the error term and the regressors. In  order to  check whether the potential  
correlation of the right-hand side variables with the error  term is great enough  for the results  
of  model 5  to be  biased, the Pearson correlation coefficients (r)  and  the significance level  (or  

probability level, p) of the respective correlations were computed and the Hausman 

specification test was  run.  In addition the relationship between the residuals and  the right  

hand side variables was examined by looking  at the slopes of the regression  lines from 

regressing the residuals on each of the exogeneous variable in turn. Variables that  are  not  
correlated are not necessarily independent, except for  the case  of the joint normal 

distribution, in which a  lack of correlation does imply independence.  The correlation 
coefficients showed  that the correlation is rather low, the maximum  value  being  0.12, and  
none of  the  correlation coefficients was significant  at  the 1% level. 

The  Hausman specification  test was consistent with the above results (Greene  

1993). The test indicated that OLS is an efficient estimation method, in contrast  to the 
instrumental variables estimator.  

Multicollinearity.  Multicollinearity  led  to  rejection  of  the  full translog specification. 
Due to  the  singularity  of  the Hessian  matrix,  this specification  could not  be estimated. The 

severity  of  multicollinearity  in the remaining model specifications was  examined using various 
methods (e.g.,  stepwise  regression,  redundant variable tests  and  ridge regression).  These 

analyses  showed that the  shadow price  results are  not very  sensitive to the  possible  

remaining multicollinearity.  

Testing  parameter restrictions. The parameter restriction tests (F-test  and  Chi2- 

test)  were carried out  to examine  which of the  functional forms  should be preferred and  to 
see whether the homogeneity restriction is  valid. The test results rejected the Cobb-Douglas  

specification in  favour  of the restricted translog specification.  The homogeneity  restriction 
M 

consists  of  four different parts  since there are  three outputs,  i.e.,  one part  imposes £Ym =l, 
m=l 
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M 

and three parts  set XYmm'  = The f' rst  restriction is  the maintained hypothesis,  since it also 
m'=l 

transforms the dependent  variable and  imposes the weak disposability  of outputs. On the 
other hand, the latter  three restrictions were rejected on  the basis  of the F-test at  the  5% 

significance  level but not at  the 10%  significance  level. The estimation results  are  based on a 

specification  where the three latter restrictions are  set. Although  the statistical test indicates 

problems  with this restriction,  if one were  to relax it, the remaining  function would not  be fully  
consistent with a well-defined output distance function. Moreover, the  results  from a model in 
which  the homogeneity restriction was  imposed in one  part,  i.e. 

YBODFL  + YBODQ  + TBOD2 + YFLQ + VFL2  + YQ2  ~ 0 - 

showed that  the  shadow prices are not  very  sensitive to the specification  of the restriction 

(the restriction was accepted  by  the F-  and Chi2 tests).  

Functional form specification.  The RESET test due to Ramsey  was  used to  test the null of 
correct  specification  of  the original  model against  the alternative that the squared fitted 
values have been ommited. The coefficient for the squared  fitted term was  not  significant,  
thus giving support to the restricted translog  form. 

*The detailed results  of  the plant  specific  diagnostics  tests are  available from the author 

on a  request.  
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Table 4. Hypothesis  tests for restricted translog  fixed effects  model 

1. H
0 :  Cobb-Douglas  technology  

F
6114 = 2.61 (reject  at the 5%  level)  

2. H
0 :  Homogeneity  of  degree  +1 in outputs  

F
3114 = 3.40 (reject  at  the 5%  level;  accept  at the 10% level) 

3. H
0

: Outputs  are  exogeneous 

Hausman test  X3 = 0.31 (accept  at the 5% level)  

4. H
0

: No autocorrelation in residuals 

Box-Ljung  Q-statistics  (accept  at the 5% level,  see  Appendix)*  

5. H
0 :  Residuals normally distributed 

Shapiro-Wilkins  W-test = 0.98 (accept  at  the 5  % level,  see Appendix)*  

6. H
0 :  Residuals are  homoscedastic 

White -test yj
8
 = 55.7 (accept  at  the 5%  level) 

7. H
0 : Functional form correctly specified  

RESET  test,  F1l12 = 1.36 (accept  at  the 5%  level)  
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Table  5.  Panel model specification  tests  

Test  Statistics  for  Panel Data Model Selection (see Greene 1993 a) 

Model Log-likelihood  Sum of R
2 

Sqr  Resid 

(i) Constant term only -154.2  67.7 0 

(ii)  Group  dummies only -91.0 29.5 0.56 

(iii)  Pooled model without  plant or 

period effects 86.5 2.8 0.96 

(iv)  Fixed Effects 105.7 2.2 0.97 

(v)  Two Factor Fixed  Effects 178.2 0.8 0.98 

(vi) Two Factor  Random Effects  5.1 0.92 

Lagrange  multiplier -test: model (vi)  vs.  model (iii)  LM
2 = 77.9 

Hausman  test: model (v)  vs.  model (vi)  X12 = 1 4.8 

Random  coefficients  model vs.  model (iii)  xli  =  364.7  ("Swamy  test")  
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