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Preface 

The symposium  "Simulation of  forest  development"  brought  together  
Finnish  modellers of forest  processes  from various disciplines.  The goal  of  

the symposium  was  exchange  of  ideas on modelling  tree and  forest  stand 

development  and to explore  the possibilities  of  using  the methods of 
information systems  science in it. Different  aspects  of  simulation and 

modelling  were  covered in 12  presentations,  4 workshop  sessions, and a  

general  discussions.  

The four workshop  sessions concentrated on the needs for  a  simulation 

system.  Each group had to study  the problem  from a  different perspective.  

Group  A discussed the needs of  forest  management  planning  and 

forestry  practice imposed  on simulation  models. They  mentioned several  
models  which  should be  included in a simulation system.  New  models  to 

be built deal with, for instance,  the early development  of  trees,  birth, death,  

peatland  growth  and yield,  forests  in Northern Finland,  and multiple-use  
forests  (parks,  recreation areas  etc.). Better models for describing  the 
technical quality  of  stems are needed. It  should also  be possible  to make 

the estimation of  stem distribution tables more accurate by  means  of  

additional local measurements. Furthermore,  all  models should also  be 

logical  outside their normal application  area.  From the practicing  forester's  

point  of  view, the models should also be as  user-friendly  as  possible.  

Group  B presented  the needs of  system  developers  and growth model  
lers.  According  to them,  to develop  a  system,  both the need and  the purpose 
for  it must exist.  Further, to facilitate  communication among  modellers and 

with the users  of  the system,  common terminology  and concepts  have  to be 
defined. This could be assisted  by  the  formation of  a common forestry  

repository.  

Once the need has been recognized,  tools and data are  necessary to 
build a system. Lack  of  reliable component  models is  an obstacle to the 

development  of  simulation systems.  It  is  difficult  to  judge  the usefulness of 
models  coming  from different sources  and representing  different traditions 
of  modelling.  Agreed  general  guidelines  to test  models would increase  their 
usefulness as  components  of  a simulation system.  

Group  C  covered some needs  of  forest  health  monitoring  studies.  Health  

studies  diagnose  disturbances and deviations in the development  of  
forests.  They  concetrate on finding  the causal relations and making risk  
assessments.  In addition to stand models,  robust  tree-based models with 

24-hour time intervals  are  needed. Especially  in entomology,  object  
oriented modelling  is  to be preferred.  

Group  D  defined the needs of  ecological  research  and process-modellers  
in  three paragraphs,  which clarified the  relations between traditional 

growth  and yield  and ecophysiological  process-based  studies. The group  
stated their  mistrust in a  universal  simulation  system  meeting  everybody's  

needs, because different models are  built  for solving  different problems.  

Such a  universal  approach  also  necessitates a  high  level of  standardization 
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and that,  in turn, presupposes a  good  knowledge  of  the phenomenon  under 

study.  Furthermore,  group D did  not think that carbon  balance models will 
be usable in forest  management  planning  in the near future,  since they  

produce  mere relative  rather than absolute figures.  Process-based  model  
lers  offer qualitative  forecasts for planning  of  field experiments,  overall  

shapes  for  growth  and yield  models,  and rugged  versions of  process  models 

(long-term  trends,  essential factors  affecting  growth,  rules  of thumb e.g.  the 

3/2-square-law).  Ecological  research does need some information from  

growth  and yield  research; proper  development  series  including  different 

components  of  trees, leaf-area-indices and natural  losses. These series 

should preferably  begin  from the year 0. In  addition,  process  models need 

calibration data from long  term field experiments  and from very  old field 

experiments.  

In past  decades,  there  has  been  a  serious gap between traditional growth  
and yield  modellers and process  modellers. The growing need for more  

accurate and flexible models,  and the  availability  of  better  tools and 

methodologies  for  constructing  complex  systems  and processing  large  data 

sets,  will lead to better  co-operation  between researchers representing  
different  traditions of  modelling.  

Mr Risto  Sievänen originally  presented  the idea for  holding this  sympo  

sium. He developed  it further with Dr Hannu Saarenmaa and Mr Hannu 
Salminen. The symposium  was funded by The Finnish Academy  and 

organized  by  Mr Hannu Salminen at  the Rovaniemi Research Station of  the 

Finnish Forest Research Institute.  Mr Martti Varmola,  an experienced  

organizer,  gave valuable advice.  Mrs Helena Poikajärvi  and Mr Jouni 

Hyvärinen  took care  of  the practical  matters. Mr Juha Huhtala and Mr Eero 
Siivola helped  with technical arrangements.  

The lay-out  was  designed  and  the  reports  were made up by  Ms  Tuija  
Katermaa, who also  assisted  in the editing  work.  My  sincerest  appreciation  

to all  mentioned. 

Nine out of  the invited twelve  speakers  delivered their  report  also  in the 

written form.  In  addition,  two  other  reports  were  contributed;  one from the 

opening  session (page  7) and one  without a  presentation  in symposium  

(page 49).  

Rovaniemi, March 31, 1992 

Hannu Salminen 
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Growth  and yield  models  in  simulation:  

Some historical  perspectives  

Hannu Salminen  

The  Finnish  Forest Research  Institute  

Rovaniemi  Research  Station 

P.0.80x 16, SF-96301  Rovaniemi,  Finland  

Hannu.Salminen@metla.fi  

Modelling paradigms  

Predictions  of  future  forest  growth  have traditionally  been based on past  

growth.  Historical  bioassay  models (HB)  are  constructed from field meas  

urements with statistical  methods. This  is  probably  the best  approach  to 

yield  prediction  if  the future  growing  conditions are the same  as  those of the 

past  and time span is  moderately  short. The record of  past  growth  

integrates  the effects  of  all  the factors  that have influenced the trees on the 

site  over  the entire  rotation. Growing  conditions  are  summarized  in the site  

index and in some  climate  indicators  (temperature  sum etc.).  If  fertilization 

and draining  are  excluded,  the physical  environment may be assumed to 
be constant. A model selection  criterion is  the goodness  of  fit  of  the model 

to the data. A primary  interest is  stand development  with time. Since  the 

early  1970'5,  new approaches  have emerged.  One way to increase the 

explanatory  power of  the model is  to base it, instead of property-time, on 

property-property  relations.  Different  kinds  of  interdependencies  (compe  

tition-density,  self-thinning,  height-diameter  etc.)  offer  more  knowledge  on 

which to base predictions  (Leaiy  1988). 

Assmann  (1970)  concluded that forest  yield should be predicted  by  

explanatory  models showing  how the process  influencing  determinants of  
forest  growth  will change  in the  future, instead of  using  past tree growth.  

Since  then,  several process-based  growth  models have been constructed. 
The importance  of  these approaches  becomes emphasized  in a  situation 
where environmental changes,  especially  man-caused, are more  rapid  
than ever.  

The  difficulty  in constructing  process-based  forest  growth  models is  in 

how to choose proper level  of  detailness. If  a  model is  too  simple  to account  

for  all  the significant  factors,  it is inflexible,  while choosing  too  complicated  

model components  will lead to extremely  complex  systems,  which then are  
difficult to apply  in practice. It  is  also possible  that the chosen factors  fail  

to account  for  all  major  growth  determinants that  may  change  in  the future,  

and the model  is  as  short-lived  as  HB-models (Leary  1988). 
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In theory,  process  models can be applied  to forecast  growth  and yield  
under different future conditions. Lack of  adequate  calibration data, poor 

understanding  of  how to build a  complex  and flexible  information system, 
and limited computing  facilities have prevented  process  models from being  

accepted  as  tools for  forest  management  planning.  All of  these constraints 
can be more or  less  overcome, although  there is still  some essential  

knowledge  yet to be discovered,  especially  in below-ground  processes.  

Using  growth  and yield  models  in simulation 

The development  of  forest  stands consists of  many concurrent processes.  

Combining development  algorithms  and programs with real or  artificially  

generated  data  in a  computer  system  (i.e. simulation)  is  useful  in managing  

complex systems.  It  is  also  possible  to make experiments  and test  theories 
as  well  as predict  forest  development  far  to  the future in simulated  forests.  

Simulation of forest  development  has usually  been based on either 
statistical  or  process  models. 

According  to Kimmins et al.  (1988),  the hybrid  simulation approach  
involves  combining  HB and process  simulation approaches  and uses  the  

major  strength  of  each approach  to compensate  for  the major  shortcoming  
of  the other.  FORCYTE-1 1 simulation  system  uses  HB-models to forecast 

growth  in stable conditions and process  models to predict  the effect of  
future environmental  changes  and to modify  the results  of the HB-models. 

In FORCYTE-1 1, both model-types  (HB  and process)  are in different 
modules. If  "data structures" in a simulation system  are  imitated from 

nature, it is  possible  to apply  a  wide range  of  development  models at  the 

same  time and  in the same  system  in at  least  three ways:  in basic  growing 

actions,  as  controllers  monitoring  each other  in parallel  use,  or  in  combi  

nation (e.g. feeding  parameters  to each other).  Flexibility  for the system  
could  be achieved through  object  oriented approach.  

Future directions 

A vast  amount of  different kind of  growth  and yield  models has  been 
constructed  during  the past  decades. Each of  them has  more or less  

knowledge  built  in to it. The use  of  these models can  be  supported  with large  

data sets and remote monitoring  systems.  In theory,  all  data, knowledge  
and information  we have should be always  available for decision making 
and research. On of  the "bottle-necks" of  intelligent  forecasting  and 

planning  systems  seems  to be the integration  of  knowledge  representing  
different levels and  coming  from different sources.  

Computers  offer  such  an  integration  platform,  and information system  

science  has  methodologies  and tools for representing  complex  systems.  
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The  questions  to be asked include;  What is  the domain we  are  interested 

in?  What are  the 'things'  (objects,  entities etc.)  in it? What are  the attributes  

and behaviour/functions  of  the 'things'?  and What are their relations to 
each other? (Shlaer  & Mellor 1989). 

Managing  complex systems  requires  formal,  well  defined approaches.  
Jeffers (1978)  introduced systems analysis  as a research strategy  for 

ecological  sciences.  Lately,  general  paradigms  of  artificial  intelligence  and 
information systems  has  been adapted  into forest  research (e.g.  Bossel  & 
Schäfer 1990, Kaila & Marshall 1992,  Kolström 1989,  Moore 1990, Plant 

&  Stone 1991, Saarenmaa 1990). Growth  and yield  modellers  should 
consider the object-oriented  approach  as a  potential  way of presenting  

systems.  It is  obvious  that innovative generation  of  simulation systems  

using  the techniques  of  artificial  intelligence,  GIS and 00-approach,  will 

arise before the end of  this decade. 
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Growth  models  for  predicting  stand  development  

Kari  Mielikäinen  

The  Finnish  Forest Research  Institute  

Unioninkatu  40 A, SF-00170 Helsinki,  Finland  

Kari.Mielikainen@metla.fi  

Introduction 

Models are  made for  describing  reality,  growth  models for  predicting  stand 

development  or explaining  the  effect  of  single  predictors  on it. Predictions  
needed in  forest  management  must  be at  the right  level both regionally  and 

over  a long-term  time horizon. The latter  demand is  very  difficult  to fulfill.  

The  ongoing  environmental change  makes  accurate long-term  predicting  of  

stand  development  impossible  when using  traditional  growth models. 

The history  of  growth  modelling  

Yield tables are  the simplest  way  to predict  stand development  by age.  The 
first  Finnish  yield  tables are  those drawn up  by Blomqvist  in 1872. Today,  
yield  tables are  available for  natural and planted,  thinned and unthinned 

Scots  pine,  Norway  spruce and birch stands (Koivisto 1959, Vuokila  & 
Väliaho 1980). Most of  the tables  are  made by  smoothing  data from 

temporary  plots.  Thus,  the tables do not describe the  development  of stand 
characteristics  in one stand,  but  they  only  show the mean of  a large,  

heterogenous  material. This must be taken into consideration when 

comparing  simulated stand development  to yield tables.  

The use  of  regression  analysis  since  the beginning  of  the 1960's has 

made it possible  to examine tree and stand growth  as  a function of  
characteristics  other than age.  In regression  models, growth  variation is  
evidenced by  tree and stand variables correlating  with growth.  Although  

independent  variables are  not the real causes of increment, choosing  
variables is  made keeping  causality  in mind. 

The aim of  process models is  to describe the biological  processes  behind 
tree growth.  The models result  in biomass produced  by  photosynthesis.  
This  biomass  will be allocated betweed different parts of  the tree. The main 

advantage  of a  process  model is  the possibility  to  test  the effect  of changing  

environment on tree growth,  if  the necessary  processes  are  included in 
model. The problem with process  models is their need for complex  
measurements and computer  capacity  on practical  level,  which  makes  
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them unsuitable for use  in forest  management  calculations. In the near  

future, the so-called  hybrid  models (which  attempt  to combine the simplic  

ity  of regression  models and the causality  of  process models)  will be the 

most promising  way to bring  these  models closer  to one another. 

Growth models for  single trees or  the whole stand? 

In the oldest  Finnish growth  models (Kuusela  &  Kilkki  1963),  the relative  

volume increment of a stand depended  on stand variables like age,  stem 

volume,  site  type  and the mean dimensions  of  the trees. Growth models for 
the whole stand were  easy  to use  in  forest  management  in which  only  ocular  

estimation of  stand characteristics  was made. Tree models were believed 

to be of  minor value because of  restrictions  in computer  capacity  and the 

unknown diameter distribution of  the stand.  The weakness in  the use of 

stand models is  the fact  that the allocation of  growth  to different dimen  

sions is unknown. 

During  the recent years  the prediction  of  stand growth has  been based 
almost  exclusively  on tree models (Mielikäinen  1985, Pukkala 1988,  

Ojansuu  et ai.  1991).  The reasons  for this include  improved  computer  

capacity  and models for  predicting  stand diameter distribution using  easily  

measurable stand characteristics  (Päivinen  1980).  

Growth models for  single  trees are  divided into two  groups:  1. distance  

dependent  and 2.  distance-independent  models.  Distance-dependent  (spa  

tial) models presuppose that the coordinates of  single  trees are  known or  

they  can  be generated  by  computer  (Pukkala  1988).  Using  tree coordinates,  

it  is  possible  to estimate variables to describe competition  between trees.  
The so-called competition  indices are  usually  based on tree size and 

distances  between individual trees. 

Distance-dependent  competition  variables  do not lead to a marked 

increase in the accuracy  of  stand-level  growth  predictions.  The  stand basal  

area  and the relative  size  of  trees are  almost  as effective independent  

variables as  the most complicated  competition  indices. Distance-depend  

ent growth  models show their strength  when they  are used to simulate 
stand development  after  exceptional  stand treatments. The effect  of  strip  

roads and row thinnings,  as  well as the development  of  uneven-aged  

stands,  can  be mentioned as  examples.  

Simulating  the development  of  uneven-aged  stands  presupposes first  a 

variety  of  tree models to describe the  regeneration  and early  growth  of  

plants  based  on the production,  spreading  and germination  of  seeds.  The 

main task  of  the tree growth  model is  to predict  the reaction of  trees after  

very  exceptional  thinnings.  The simulation  of  logging  includes the moving  
of  machines in the stand and the calculation of  logging  costs  and damages  
caused by  them. 
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Challenges  of  growth modelling  in the near future 

It is  important  that a  stand simulator can  simulate the  development  of  real 

single  stands in a realistic  way.  This  sets  high demands on  the accuracy  of 

all models in  areal  and treatmental respect.  The worth of  a  simulator  that 

is able to describe only  the mean development  of  a  yield  table is  like  that 
of  a hand-drawn line  on paper.  A  growth researcher  is  mainly  interested in 

modelling  the causes  of  variation around the mean development.  Thus, the 

growth  models must fit  with empirical  data.  The data can be the basis of  

modelling  itself  or  test material  for  a  theoretical model. 

The changing  environment is  one reason  why  earlier  yield  tables or  

growth models are  not capable  of  predicting  future stand development.  The 

effect  of  changes  in the atmosphere  and climate  can be positive,  negative  
or  both at the same time. 

The safest,  but at  the same  time the  most expensive  way of  taking  the 

risk  of  possible  growth  trend into consideration is  to  make predictions  only  

for short  periods into the future and to make new yield  models at  short  

intervals  based  on new data. A  more tempting  way to solve  the problem  is  

to try  to use  climatic variables as  predictors  in the  models. Models with  

causality  are  better  suited  for  careful  extrapolation  of  stand development,  

too. These models  must,  however,  fit with existing  and measurable data of  

today.  

A compromise  of the  methods mentioned above  is to be seen  in 

traditional growth  models that  are  constantly  calibrated according  to 

continuously  measured data. These models, too, must be rebuilt after  a 

certain number of  years. At present  this method is  best  suited to forest  

management  where predictions  do not reach  very  far  into the future. 

The peatlands  of  Finland consist of  a very heterogenous  group of 

growing  conditions. Ditching,  fertilization,  thinning  and nutritional prob  
lems make growth predicting  very  complicated.  Modelling  tree growth  on 

peatlands  is  a demanding  challenge  of  the  near future. 

Despite  numerous  experiments  in young  stands,  modelling  regenera  

tion  and the early  development  and mortality  of  young plants  is  still  limited.  
The early  development  of trees is,  however, one  of  the key  factors  in 

predicting  stand production  over  the whole rotation. That is  why  modelling  
of  young stands  is  one of  the most  urgent  tasks  of  today. 

The simulation of  stand growth  

Individual models  describing  small  fractions  of  stand growth  each get  their 
value only  if  they are  put  together  to  predict  the development  of  different 
stand characteristics.  The complexity  of  a complete  stand simulator is  
characterized in Figure  1. Stand treatment is  the only  one among many 

factors  affecting  tree growth  that can  be studied by field experiments.  The 
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effects  of  changes  in soil  and atmosphere,  as  well  as  genetics,  are  still  far  

from being  solved in growth  modelling.  In  addition to tree growth,  different 
kinds  of  damage, the quality  of  stems and the technology  of  wood 

processing  and transport  also influence the economy of timber growing.  

At  present,  the simulator most applied  in Finnish forestry  is  Mela 

(Siitonen  1983). It has been used  in predicting  the timber production  

potential  of  the whole  country.  Some new simulators are  under  construc  

tion at the Finnish Forest  Research  Institute and at  universities,  too. The 

programming  of  new simulators  is  no longer  the biggest  problem.  The  

greatest  gaps  still  exist  in growth  modelling,  i.e. the substance of simula  

tions. 

Figure 1. Basic  idea  of a  nation-wide  simulation  model  (Vuokila 1986) 
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Introduction 

The carbon balance approach  to tree growth  makes  it  possible  to work  on 

a very  detailed level  with  regard  to the  processes  generating  tree growth.  

Consequently,  the resulting  growth  model may  be  very complicated,  it may 

have many parameters,  and it may work  with such short time steps  that 
simulation over  a period  of  a  week consumes  a considerable amount of  

computing  time. It is  a  good  means  for studying  the effects  of  physiological  

parameters  and/or  environmental conditions on forest  growth  rate. How  

ever, if  the primary  interest is  only  in the output  of  the growth process  

(stand  and tree growth  in terms of  volume),  then the above  growth  model 

may be too heavy  for  such purposes.  One has to resort  to other kinds  of  

growth  models,  or  the complicated  process-based  model has to be simpli  
fied. 

The present  paper gives  a  brief description  of  a  model (Sievänen  1992)  
where  the carbon  balance approach  (cf.  Landsberg  1986)  to tree growth  has 
been used in a  simple  form which is  makes  it  possible,  on  one hand,  to keep  
the model simple  for  potential  forest  management  applications  and, on  the 
other hand,  to convey  as  much information as  possible  from the process 

level to stand growth  level.  The model is  based on photosynthetic  relation  

ships  and provides  predictions  in terms of  tree dimensions. In it,  simple  

expressions  have been used for  photosynthesis,  other aspects  of  physiol  

ogy,  and tree structure. The model is  formulated in continuous time to 
facilitate mathematical derivations. As a result  of these derivations,  the 

final growth  model can  be presented  in a  concise  form,  which also allows 

the parameters  to be combined into fewer aggregated  ones.  

The carbon balance 

In  this  model, a  tree corresponds  to a  number of  similar  trees  in the  stand 

(members  of  a  size class).  Stand  growth can be aggregated  from the growth 
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of  individual trees and the number of  members in each size class.  Distances  

between trees are not considered;  hence,  this model can be termed a 

distance-independent,  individual-tree growth  model. 
The  growth  model of  an individual tree is  based on the standard carbon 

balance approach  to tree growth  (see e.g. Landsberg  1986) where the 

changes  in the tree dry-weight  W are  determined by  the balance between 

photosynthesis,  P,  maintenance respiration  requirements,  M,  and senes  

cence,  S (of  leaves, branches and fine roots):  

The  time resolution of the above equation  is  one year; that is,  no  within  

year changes  are  included in  the right-hand  side  terms. The tree is divided 

into five  diy-weight  compartments:  foliage,  branches,  stem, stump  with 

coarse  roots and fine  roots,  with dry-weights  Wf, Wb , Ws ,  Wu , and Wr
,  

respectively.  

Tree  photosynthesis  is  expressed  as  a  combination of  tree  photosynthe  

sis  in  a closed stand,  Pc
,  and photosynthesis  of an isolated tree, PQ

.  It is  
assumed that there is a  threshold leaf  area,  Lt ,  above  which  the stand can 
be regarded  closed in terms  of  radiation interception and photosynthesis.  
If  the stand leaf area,  L

s ,  is  less  than L
t
 then actual photosynthesis  is  a 

linear  interpolation  between P
c
 and P

Q
.  these  considerations  yield:  

The closed and open condition photosynthesis  rates are  given  by the 

equations  

where  p
m

 is  the maximum photosynthetic  production  per  unit ground  area  

(which  accounts  for the effects  of  the  photosynthetic  properties  of  trees, 

amount of  radiation  and growth  respiration),  L  is  leaf  area  of  the tree, and 
k

e
 is  the light  extinction  coefficient.  
The amount of annual maintenance respiration is assumed to be 

proportional  to the respiring  biomass  (sapwood)  in each compartment,  Wgj
:  

f. P. M-S 

L
s L

s
 

P  =  min[l, P
c  +(1  -  min[l,jj-]  }P0 (2) 

p
c =  pm r (1 " e_keLs)  

S 

P
o  =  P m

a

p

k
e
L (4)  

M =  I  rj Wsi (5) 
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where  r,  are  parameters.  The respiring  biomass  consists of foliage,  branch  
es, fine roots  and sapwood  in stem,  and stump  with coarse  roots.  

Senescence  is  treated in the similar  manner,  and it  occurs  in the  foliage,  

branches,  and fine roots, with parameters  Sj:  

The structural equations  

To complete  the growth model in terms of diy-weight  requires  that 

dynamical  equations  be specified  for the compartments'  dry-weights.  This 

is  usually  accomplished  by  deriving  partitioning  coefficients  of  photosyn  

thesis,  and then establishing  a  carbon balance equation  for  each compart  

ment. The values of  the partitioning  coefficients  can be obtained,  for 

example,  from  the requirements  that the growth  of  various compartments  

obey  equations  which describe structural  relationships  in the tree (cf.  
Nikinmaa in  this  volume). Here also,  such  equations  are  specified  which 

would allow  derivation of  the partitioning  coefficients.  This line is  not 

followed,  however.  Instead,  the structural  equations  are  used to express  

tree  growth  in terms  of  diameter D (at  relative  height  0.2),  height  H  and 

height  of  the crown  base,  H c .  The  following  is  a  summary of  the  structural  
equations.  

First,  the dry-weights  of  branches,  Wb,  and fine roots,  Wr
, depend  on  the 

dry-weight  of  the foliage,  Wf .  Furthermore,  the dry-weight  of  the stump  with 
coarse  roots,  W

u
, depends  on stem diy-weight,  W

s
.  The relationships  are  

expressed  as  

where ab ,  gb ,  a
r
 and a

u
 are  parameters.  The foliage  mass  is  related to stem 

cross-sectional  area at  the crown  base,  (p/4)D
c
 2,  via the equation  

where a
f

 is  a  parameter. The diameter at  the crown  base,  D
c

,  can  be  obtained 
from D  by using  a  taper  function. Stem dry-weight,  diameter and height  are  

related via the equation  

where v
s
 is  a  parameter  and r  the density  of  stemwood. Finally,  it is  assumed 

that the growth  rates of  the diameter and height  are  related by  the function 
f

h
 which is  defined by  the equation  

S = E Sj  Wj (6) 

w
b =a

b W
r
=a

r
W

f and W
u
 = a

u

W
g
 (7) 

W
f  =  «f  (J) (8)  

W
s
 =  pv

g
D

2
H (9) 
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where ej  and e  2  are  parameters.  

With the aid of  these equations,  it is  possible  to make the necessary  
derivations to express  tree growth  in terms  of  diameter, D, height,  H,  and  
the height  of  the crown  base,  H

c , as  follows:  

These equations  comprise  the dimensional growth  of a  tree in  a stand 

when the height  of the crown  base and its  rate of  increase are  determined 

at  stand level  (see  below)  and obtained as  input  for  these equations.  The  

parameters  mf,  mg
,  cf,  and cs  are  combinations of  the carbon  balance model 

parameters  and the parameters  in the structural  equation  (Sievänen  
1992).  They  summarize the  effects  of  physiological  and biometrical  prop  

erties  of a  tree on its  growth.  See  Sievänen (1992)  for  a  discussion of  these. 

Crown base,  tree survival  and  stand growth  model 

In this  model  it is  assumed (referring  to  an even-aged  stand)  that the height  
of  the crown  base is  the same for  all trees (except  those for  which the relative  

height  of  the crown  base would exceed the maximum; their  crown  base  is  
lower down) .  The recession  of  the crown  base is  treated in the present  model 

as  a stand  process that is  controlled by  the crowding of  trees; when 

crowding  -  measured as the stand basal  area  at  the crown  base -  increases,  
the crown base recedes. This  is  accounted  for  by  the equation  

where  Gco is  the critical  stand basal  area at  the crown  base at  which crown  
base recession  starts.  Inspection  of  Eqn  (8)  indicates  that the foliage  mass  
of  the stand is proportional  to stand basal area at  the crown  base.  It  is  thus 

dH dD_
f
 dD 

dt "  le i  + e2H
J dt ~*h dt 

(10)  

p H
c D dH

c 
dD p -  (1--H)  DK+mH)s  +  cf  fc)  Jj~  
dt  = r H f

h
D HI (U) 

cfb  -H"  +  (IT -  irJ +c
s  (fh D  +  2H)  

dH dD 

dt "  *h  dt (12) 

dH
c 

"dt"  =  max  [pc  ( G c  -  Gco)-°l (13) 
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a  substitute  for  foliage  mass;  hence,  implicit  in Eqn  (13)  is  that the amount 
of  foliage  controls  the recession  of  the crown  base. The reason  for using  
basal  area  instead of  foliage  mass  is  the desire to use  solely  dimensional 
variables in the model. 

The number of  trees  in each  size  class  is  governed by  the equation  

where N is the number of  trees in a size class,  and dl and d 2 are 

parameters.  The term containing  dD/dt in the denominator accounts  for 
the tree vigour:  large  diameter growth  rate makes  the death rate smaller.  
The term with D  2 represents  the  fact  that big  trees tend not to die even  if 
their growth  rate is  slow.  

The above  equations  specify  the growth  model for an even-aged  stand. 
When there are  n size  classes,  the stand is  described using  the variables 

Dj,  Hj  and Nj,  for  each  size  class  i  =  1,..,n  together  with Hc .  In  other  words,  
these are the state variables of  the stand growth  model. The dynamic 
equations  for them are  given  by  Eqns  (11)  -  (14).  

Concluding  remarks  

The equations  (11)  -  (14)  define a  growth  model for  an even-aged  stand. It 

is  based on the functioning  of  individual trees. It contains a  relatively  low 
number of parameters  which can be  estimated using  measurements of  
forest  growth  (Sievänen  &  Burk  1992  a). Since both  height  and diameter of  

trees in  the size  classes is included in the model,  it  can  provide  much detail 
information about stands; for  example,  it  is  possible  to predict  the current 

stem volume yield  by  product  class  components  from the value of  the state. 
Given the initial conditions (i.e. values of  the state variables)  and the 

parameter  values,  stand conditions can be simulated  for any future time 

(within  the rotation period).  The initial  conditions for  a  particular  form  of  
diameter distribution are  not always  available. In this  case,  it  is possible  to 

use a model for predicting  a diameter distribution from stand level  

information;  e.g.  mean diameter, dominant height,  and total number of  

trees. This  widens the  range of  applicability  of  the  stand growth  model. 
The model was tested using  stand level  data and it seems  to reproduce  

the basic  growth  patterns in unthinned stands  (Sievänen  1992).  The  model 

is under development,  and it is  being  tested with treewise  stand growth  
data (Sievänen  &  Burk  1992b).  It is  likely  that some of  its  components  will  
be replaced  as  it has turned out that they  are not valid  descriptions  of  real 

phenomena  taking  place  in the forest.  One such  model component  may  be 

Eqn  (13)  for the rising  of  the crown  base with the associated assumption  
of  common height  of  the crown  base. If  the model is  going  to be applied  to 

dN -N  

dt  
=

 l + s,f  +  82
D

2 <"> 
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mixed stands  this  model component  has  to be  modified in any case.  Other  
model components  to be rigorously  tested are photosynthesis,  height  

growth,  and tree mortality.  

One possible  application  of  the present  model is  to investigate  the 

potential  effect  of  certain environmental changes  on stand growth.  This  is  

possible  because many of the model's parameters  have a biological  

meaning  and represent  a  measure  of  some  property.  Changes  in  environ  
mental  conditions are  likely  to result  in corresponding  changes  in these 

parameters.  Examples  of  parameters  that are  likely  to be affected by  
environmental  changes  are  maximum photosynthetic  production,  leaf 

longevity  and amount and productivity  of  roots. 
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Introduction 

Allocation or  partitioning  of  carbohydrates  has a central role in process  
based stand and tree growth  models,  (e.g.  Thornley  1976, Hari  et  ai. 1982, 

McMurtrie &  Wolf 1983, Mäkelä & Hari 1986,  Mohren 1987, Bossel 1986, 

Iserbrands et ai. 1991).  This is due to the direct influence that allocation  

has on the amount of  productive  organs in comparison  to non-productive  
ones.  For  example,  when McMurtrie & Wolf  (1983)  changed  their  partition  

ing  coefficients  for  foliage,  wood and fine roots  from 20:20:60 to 30:30:40,  
the total stand  biomass  after  50 simulated years  was  about 30% more in 

the latter case  than in the former one. 

In  the carbon budget  models,  allocation refers  to the proportion  of  the 

carbohydrates  that  can be used for new  growth  of  different biomass 

compartments  after  the respiration  of  already  existing  structures  has been 

subtracted from the  photosynthetically  fixed carbon. Especially  in  models 

that use  short time steps,  the use of  the concept  allocation  may be 

misleading.  It forces  us  to view a  plant  as  an  entity  having  strategies  instead 

of  focusing  on the processes  bringing  about growth.  
As  the growth  and development  of  perennial  plants  is  modelled with  

longer  time steps,  such  as  the growing  season,  then allocation or  partition  

ing focuses on the slow,  structural  acclimation of the plant  on the 
environmental conditions.  Allocation in that case  is  the integral  of  various 

input-output  processes  and the  associated  intraplant  regulation  reflecting  

the genetic  information of  the plant.  When the genetic  information is  viewed 

as  a species  strategy  for survival,  then the  use  of  the term allocation may 

be,  at  least  partially,  justified.  However, it  is  my  opinion  that much  of the 
confusion could  be avoided if we  were to talk about different ways  of  

modelling  the growth  of  different parts  of  trees instead  of  allocation.  

The growth  of  organs  consist  of  differentiation of  meristematic cells;  

their division and expansion  and of  the secondary  cell  wall thickening.  
Growth naturally  depends  on the  availability  of  the building  blocks  of  

organic  matter (i.e.  carbohydrates  and different other  elements)  normally  

called nutrients. The reactions require suitable environmental conditions;  

adequate  water  supply  to act  mainly  as the media for the reactions and 
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acceptable  temperature.  On  top  of  this,  there are  the growth  regulators,  or  

hormones,  such as gibberellins,  auxin and cytokinin,  that play  a very  

important  role,  especially  in the phases  of  cell  division  and differentiation, 

carrying,  among  other things,  positional  information on the plant  level and 
information about the growing  season.  

A realistic  process-based  growth  model would require  that we could 

quantify  the effects  of  the above factors on  the meristematic cells  and how 
the different substances  are  transported  within the plant.  In trees it is  not 
uncommon to have the main sites of  the  carbon fixation and nutrient 

uptake  more  than 50 meters apart from each other  which are  connected by  

two very  different transport  systems in phloem  and xylem.  The whole 

question  is  further  complicated  by  the role  of  reserves  and those substanc  

es  that are  retranslocated  from senescing  structures  to still  functioning  
ones. 

Thus,  the growth of  a plant  is a result  of  complex  combination of  

interacting  processes  and it  is  most likely  these  processes  that determine 
the main characteristics  of  plants.  Despite  the long  tradition of  plant  

physiology,  we  still  do not understand many of  the key  processes  involved 

to the point  that we  could  distinguish  the  most important  ones  that would 

predict  the major  part  of  the outcome. However, for many reasons, there 
has been the need to be able to estimate the growth  of  plants  based on their 

physiological  functions. 

The information base  concerning  the input-  output  reactions,  especially  
those of foliage,  has been rather good  and it has facilitated the beginning  
of process-based  growth  modelling.  On  the other hand,  the long  tradition 
of  dimension measurements in forestry  provides  us  with quite a solid 

knowledge  of  the outcome of  the growth  processes  in the conditions 

prevailing  when the measurements were  done. Thus,  the poor knowledge  
of the processes controlling  growth has led modellers  to search for 
alternative methods to describe it as  realistically  as  possible.  It is most 

likely  that since  virtually  all  process-based  models stem from the descrip  

tion of  the  input-output  reactions,  also  the growth  has become a process  
of partitioning  or allocation.  

Different  approaches  to model distribution of  carbohydrates  for 

growth  

In the literature  one can  identify  at  least  five different approaches  to tackle  
the problem of  allocation.  Perhaps  the most straightforward  method is to 
use  so-called allocation keys.  Empirical  constants are  used (e.g.  Thornley  
1976,  McMurtrie  &  Wolf  1983,  Iserbrands et al.  1991),  which can  depend,  
for  example,  on the position  of  the trees in the stand (Hari  et  al.  1982)  or  
the developmental  stage  or  age  of  the  stand (Mohren  1987).  The use  of  this 
method is  complicated  by  the limited  data on allocation and,  on  the other 

hand,  by the big  variability  of  allocation  depending  on the  environmental 
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conditions (e.g.  Ingestad  1979, Under &  Axelsson 1982)  or the size  or age 

of  the trees (Ovington  1957, Cannell 1985,  Shepard  &  Ford 1986) and the 
tediousness  of  carrying  out measurements on a  large  scale  (Iserbrands  & 
Dickson 1990, Arovaara  &  Ilvesniemi 1989). 

Another possibility  has been the assumption  that there  would exist  

certain allometric  ratios  between different parts  of  trees (Landsberg  1986).  

Generally  it has been assumed that  the size  of  one plant organ can  be 

expressed  in terms of  size  of  another organ  (Landsberg  1986,  Santantonio 

1990,  Sievänen (1992)).  If  one  is  using  biomasses  then the ratio can be 

expressed  as  follows: 

where  W stands for  biomass  of  a  compartment  and a  and b  are  empirical  

constants. If  it  is  now assumed  that the ratios remain unchanged  from time 

to time, or  the change  is  known, in which case it is  possible  to derive the 
distribution of  total photosynthetic  production  for the different biomass 

compartments  after  respiration  has been subtracted. Another way is  to 

compare the different aspects  of  size  as  has been done in the pipe  model by  
Shinozaki  et  al.  (1964).  A  related approach  is  that used by Schäfer et  ai.  

(1990)  where empirically  derived amounts  of  biomass  are  used in different 
biomass  compartments  as  a  function of  total  stand biomass,  which  is  then 
utilized as  a "goal"  for allocation. 

The problem  with this general  method is  that it relies  heavily  on the 
relative sizes  of  different components,  which have to be empirically  

determined. On the other hand, it is still  not clear how constant the 

relationships  between different  parts  actually  are, and how they are 
affected by different environmental conditions (e.g.  Long  & Smith 1988,  

Espinosa  Bancalari et  al. 1987, Geron &  Ruark 1988). The good  thing  is 

that the model structures can be made rather simple  and that this 

approach  describes a great  deal about the internal dynamics  of  forest  
stands (e.g.  Sievänen (1992)).  

A rather similar approach  to  that of  the allometric  ratios is  the 

assumption  of  the functional balance between the parts  of  a  tree .  Basically,  

this  approach  rests  on the assumption  that  the different structures  within 

trees have certain primary  functions and that the connections between the 

structures and functions  are  quantitatively  known.  It is  then assumed that 
instead of  always  having  constant ratios between the structures,  the 
functions  of  different structures  have to be in balance. Perhaps  the most 

well known formulation of  this principle,  originally  presented  by White 

(1937), is  the derivation  of  the shoot :  root growth  by Davidson (1969):  

where  pN and pC are  the specific  nitrogen  and carbon assimilation  rates,  
Wr and Ws are the shoot and root biomasses and J3 is a parameter 

Wj=  a  Wjb (1)  

pN
W

r
=j3pc

W
s (2) 
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describing  the ratio between nitrogen  and carbon used in structures.  The 
weak point  of  this method is  that it assumes  that  the nitrogen  to carbon 
ratio  would remain constant although  it has been shown to vary (e.g.  

Ingestad  1979).  Reynolds  &  Thornley  (1982)  developed  a more detailed,  

dynamic  model of  the partitioning  to shoots  and roots,  which accounted for 
the  variation in the mentioned ratio,  but  which still  described  the function  

al  balance. Mäkelä &  Sievänen (1987)  showed that the  less the substrata 

can  compensate  each other in the structural  growth,  the more constant 
should  the parameter  $  remain when changing  the ratio pN/pC in  the 

optimum  growth  version of  the Reynolds  &  Thornley  model. 

Later on,  the implications  of  the pipe  model approach  were  also  used to 

derive growth  between foliage,  branches and stem (Mäkelä  1986, Valentine 

1985, Hari et ai. 1985). The functional interpretation  of  the pipe  model 

could  be that  the foliage required  for their mechanical  and physiological  

support  an  infrastructure which consists  of  functional basic  units and the  

amount of  these units in any cross-section  should  be:  a)  proportional  to the 

amount of foliage  above the point and b)  the structure of  these units. A 

simplification  of  this would be  that there is  a constant ratio between the  

amount of  foliage  and the functional wood area  below in branches,  stem 
and transport  roots,  respectively  (e.g.  Mäkelä 1986) which yields  the 

following  equations:  

where Aj  stands for the cross-sectional  area of  sapwood  of  a biomass 
compartment,  i=f,s,b,t are the biomass compartments:  foliage,  branches,  

stem and transport  roots  respectively,  n4 is  the proportionating  coefficient 
and Wj is the foliage  biomass. Ludlow et al. (1990)  have used a similar 
principle  but they  assumed that  the new basal area growth  would always  
be proportional  to the new biomass  formed above that point.  In a  way,  this 
would resemble more the approach  in which the growth  of  the stem 

depends  on the photosynthetic  capacity  of  needles above  the reference 

height  as  first  suggested  by  Pressler  in the 1860's (cited  by  Assman 1970). 
The  problems  involved in using the pipe  model related approaches  are  dealt 
with in more detail in the  example  of  this  kind  of  model given  later  on. 

Perhaps  a  step  towards a  more mechanistic  model would be that of  the 

use  of  the so-called priority  principle.  Essentially,  this  approach  assumes  

that different parts  of  trees have some predetermined  maximal growth  
which is  restrained by  the availability  of  growth  substances  (e.g.  Loomis et  
al.  1979).  If  the substratum supply  (in carbon budget  models the carbon  

supply)  is not adequate  to facilitate  the growth  of  all  compartments  with 

their  unrestrained  growth  rate,  the substratum supply  is  limited  according  

As= ns
W

f (3)  
A

b
= nb

W
f (4)  

\=nt
W

{ (5) 
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to empirically  derived "priorities"  in which each class  of  organs  is given  a  
different response function for  substratum dependence  (cf.  Loomis et  al. 
1979 p.  350). Thornley  (1976)  has explained  the application  of  the 
Michaelis-Menten type functions  for dependence  between growth and 

substratum level. As  these functions  are  compared  between organs,  one 

can  derive the priority  between organs (Loomis  et  al.  1979).  This  approach  
has  been used to model the growth  of  agricultural  plants,  but  Waring  (1987)  
has derived the priorities for trees as  well. Also Bassow  et al. (1990)  and 
Bossel  & Schäfer  (1989)  used  priority within the year. The main problem  
of this approach  is  that priority  will  most likely  vary  during  the growing  

season  depending  on  the internal regulation  of  the annual cycle  and also  

depending  on the different environmental conditions and the processes  
involved in this control  that are  not yet  fully  understood. Therefore,  quite 

a lot  of  empirical  work has  to  be done before  the priorities in  different  
conditions are known. 

Perhaps  the most mechanistic  approach  to the distribution of carbon  is  
that of  the transport  resistance model by  Thornley  (1972).  The transport 

resistance model assumes  that the growth  of  different compartments  (i.e.  
the substrate consumption)  depends  on the substrate  supply  at  the growth  
location.  The latter  depends  on the  substrate  uptake  in that compartment  
or  in some other compartment  plus  the transport  between compartments.  
The transport  rate, on  the other hand,  depends  on  the concentration 
difference between the compartments.  Thus,  one  needs a  description  of  the 
substrate  uptake  as  a function of  organ size  and environment, substrate  

transport  as  a  function of  concentration difference between the compart  

ments, and the properties  of  the transporting  media  and the substrate  

utilization  as  a  function of  the substrate  supply.  

According  to the model,  an  equilibrium  situation is  reached when there 

is a  balance between uptake,  substrate consumption  on growth,  and 

transport  rates between the  compartments.  Dixon et al.  (1978)  utilized  

basically  the same approach  to determine the distribution of  carbohydrates  

in their stand model.  The main problems  of  this  approach  are  partially  the 

same  as  in the previous  approach.  The rates of  supply,  transport  and 
utilization are  all  affected by the internal factors  controlling  the annual 

cycle.  On the other hand,  too little  is  still  known  on how the  substratum 

supply  actually  affects  the activities  on the cambial regions  and,  as  was  
mentioned earlier, the transport  system  in trees can be quite complex.  

The different approaches  used  are  not necessarily  contradicting  ones  
and  in many models several  of  the presented  approaches  can,  in fact,  be 
used  (e.g.  Schäfer  et al. 1990).  The use  of  the  pipe  model theory  within the 
framework of  functional balance for  example,  could also  be interpreted  as  

being  an utilization of  the  observed empirical  allometric  ratios between 
different  parts  of  trees. However, one  can see  that there is a  general  trend 

towards shorter  time steps  and perhaps  more  detailed hierarchy  level  of  the 
models  as  one proceeds  along  the presented  list.  An exception  is  the use  of  
the  allocation keys,  which are more reflecting  of  the poor present  day  
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knowledge  of  the processes  involved at  any  hierarchy  level. 

The  change  in hierarchy  level  also  reflects  the objectives  of  the models. 
The models by  Sievänen (1992)  and Ludlow et al.  (1990) are clearly  
intended to be eventually  used in  the  forest  management  decisions,  
whereas the very  detailed models of  Thornley (1972)  and that of  Ford & 

Kiester (1990)  could serve  more in helping  one to understand the role of  
different processes  in tree growth  and perhaps  to indicate the critical  points  

where the  present  environmental change  will affect  tree functioning  up to 
harmful limit. 

Example of  distribution of  growth  utilizing  the functional balance 
principles  

Abiomass compartment  growth  model was  constructed which followed the 

functional balance principle  described in  the previous  chapter.  The main 
difference with the outline was  that the allocation  between foliage  and fine 

roots  depended  also  on the amount of  nutrients retranslocated from dying  

structures. In order for this to be  included the functional balance had to be 

reformulated;  the nutrient uptake  and retranslocation from senescing  

structures  would  have to be equal  to the amount of  nutrients used up  in 
the formation of  new structures. 

A  couple  of simplifying  assumptions  were  made in the model.  As  pointed  

out by  Mäkelä  (1988), the specific  nutrient uptake  rate and the fine root 

specific  senescence rate can compensate  for each other in this type  of  

approach.  Therefore,  they  could be replaced  by one parameter.  This  would 

mean that the root nutrient uptake  efficiency  describes the amount of  

nutrients taken up annually  per  unit amount of  carbon. In other words,  it 

is  assumed that all  the fine  roots  formed during  one  year  would die during 

that year. On the other hand,  it is also assumed that most of the 

retranslocated nutrients would come from the senescing  needles. From 

these assumptions,  the growth  of  new fine roots can be expressed  as  a 
follows: 

where pr  is  the annual nutrient uptake  per  unit amount of  carbon used  for 
fine roots, _oi  is  the  nutrient concentration in the dry  matter of  different 

biomass compartments  (here  only  foliage,  wood and fine roots  are  consid  

ered, but the wood could  also be further sub-divided into branches,  stem 

and transport  roots  as  is  done in the model),  mi is  the new growing  biomass 
of the different biomass  compartments,  rt  is the parameter  describing  the 
retranslocation of  nutrients from the senescing  foliage,  and sf  is the 

prmr = J3fmf+j3wmw+j3rmr-rt]3fsf 
<=> 

mr  = (J3fmf+£wmw-rtJ3fsf)  /  (pr-j3r) (6) 
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biomass of senescing  foliage.  
The allocation between the  woody  biomass and the foliage  is  done 

according  to the pipe model principle  (see  derivation e.g.  Mäkelä 1986 or 
Nikinmaa 1990).  Based on that  principle,  the growth  of  woody  tissue can 

be  written as  a function  of  growth  of  foliage  as  follows:  

where h is  the length  of  the woody  path  from foliage  to fine roots,  d is the 

density  of  wood,  n is the  proportionating  coefficient  between foliage  

biomass and stem cross-sectional  area, and sw is  the senescence of 

sapwood  (i.e.  the formation of  heartwood) .  In the presented  version of  the 

model  wood is  sub-divided into branch, stem and transport  root compart  

ments,  each of  which have different proportionating  coefficients.  

The above equations  can  be joined  together  by  the carbon  balance (i.e.  

that the annual  photosynthetic  production  is  consumed by  respiration  and 

growth).  Also, a  storage  component  could be added into the analyses,  which 
would yield  the following  formulation: 

where P is  the annual photosynthetic  production  of  the tree, R is the 

maintenance respiration  of  the existing  structures,  G; is  the growth of 
different  biomass  compartments,  rgj  and rrrij  are  the growth  and mainte  
nance  respirations  of  the new  growing  structures,  and T

n
 and T

0
 are  the 

carbon allocated to being  stored  and the amount of  carbon released from 

being  stored.  In the presented  results,  it is  assumed that no  net change  

occurs  in the stored carbon; thus, the latter term can be omitted. 

As  can  be seen  from equation  (7),  one  also  needs to model the senescence  

of  foliage,  the  growth  in length  of  the  pipe  "infrastructure"  and the turnover 
of  sapwood  into heartwood. In the presented  model,  a  simple  approach  was  

used. Foliage  mortality  was  simply  assumed to be a  constant proportion  of  
the total foliage.  For  the height  growth  a  model similar  to that presented  by  
Sievänen (1992)  was used. In that model it was assumed that the ratio 

between height  and diameter would  remain unchanged  in open grown trees 

and  that stand density  would modify  this ratio. The density  of  the stand was  
described with  the steepness  of  the light  gradient  of  the tree crowns  in trees 
of  different  sizes.  

The turnover  of  sapwood  into heartwood was assumed to be proportion  
al  to the amount of  foliage dying  below  the new pruning  limit  of  the  trees. 

Additionally,  a  constant fraction of  senescing  foliage  within  the crown  was  
assumed to be associated with the turnover of  sapwood  into heartwood. 
The pruning  limit  was  assumed to depend  on the production  conditions at 

=  (h-d/n)(m
r

s
f
)+s

w
 (7) 
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I
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0
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the pruning  limit  of  the trees (mainly  depending  on light)  and the  average 

production  efficiency  of  the needles of  the whole tree. The exact  equations  
used to determine allocation as  well  as  photosynthetic  production,  respi  

ration, nutrient uptake  and senescence,  and whole tree mortality, are 

presented  in detail by  Nikinmaa & Hari  (1992).  

Simulation results 

Some typical  simulation results  are  presented  in the following  figures.  A 

more detailed study  of  the model behaviour in different conditions is  

presented  by  Nikinmaa  (1992).  Figures  1 a  and b  show  the development  of  
the needle and stemwood biomass  for Lapland  (Muddusniemi),  Southern 

Finland (Hyytiälä),  East Karelia (Petrosavodsk)  and South  Russia.  The 
simulations for  the different locations were  performed  by using  the same  

basic  set  of  parameters  and by then multiplying  the functional parameters  
with the relative  growing  season  length (1.0 for Hyytiälä).  The  functional 

parameters were the annual photosynthetic  production  of unshaded 

conditions,  annual specific  respirational  losses of  different parts  of  tree, 
and annual nutrient uptake  efficiency  per  unit weight  of  carbon used to fine 

roots.  In addition,  the structural  parameters  (the  n 4 of  the equations  3-5,  
average  number of  branches per whorl  and the mortality of  needles of  

different age classes)  were changed  according  to the measurements 

performed in these locations.  

When interpreting  the results,  it must be  noted that the needle biomasses  
are the biomasses  after  the growing  season  (i.e.  those from which  the  

annual senescence  has already  been subtracted).  The overall  shapes  of  the  

curves  both for  needle mass  and stem mass  seem  quite  realistic.  Albrektsson 

(1980)  reports  a  sharper  peak  in the needle mass  of  young stands  than was  
observed here. On  the other  hand,  the model quite  nicely  predicts  the much 
slower  development  of  the northern stand as  compared  with  the southern 

stands. 

The simulated  and observed  growth  of  stands on different site  types  is  

compared  in central Finland and in Lapland (figure  2a  and b). The 
simulations were  done so  that the root nutrient uptake  per  unit weight  was  
varied within the range that corresponded  with  the observed site  type  range  
while keeping  the other parameters  constant. In these simulations, both 

height  and stem mass  were  used as  the comparison  criteria. The simula  

tions were  repeated  for  Lapland  the same  way  as  was  explained  earlier;  i.e. 

by  changing  the structural  parameters  according  to the measurements 
done in Muddusniemi and the functional parameters  by multiplying  the 

Hyytiälä  values  with the growing  season  length  ratio between Muddusniemi 
and Hyytiälä  (see Nikinmaa (1992)).  In the simulations for Hyytiälä,  my  

intention was  not to obtain  exactly  the development  observed by  Ilvessalo  

(1920,  based  on temporary  sample  plots).  I  was  more  interested to see  how 
well  the model predictions  corresponded  with the shapes  of the observed 

development  curves.  
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Figure 1. Simulated  a)  needle and  b) stem dry mass  development at four locations 

Figure 2. Comparison between  simulated stem dry  mass  development assuming varied 
nutrient  uptake per  unit  carbon consumed  to  fine roots  and  growth and yield  table 
results  for different site types at a)  Hyytiälä  (Ilvessalo's  yield tables for Southern 
Finland  1920) and  b) Muddusniemi (Ilvessalo's  yield tables  for Northern Lapland 
1970). 



30 

The application  of  the model for  the conditions in Lapland  was  also  a  test  
for  the model, since those values (from  Ilvessalo  1970)  represented  a  totally  

independent  set  of  data which had not in  any way  been utilized  when the 
model  was  fitted.  As  can  be seen,  the fit  is  quite  satisfactory.  It  would have 
been interesting  to see  how well the model could have predicted  growth in 

the South Russian conditions; unfortunately,  no growth  and yield  data 

from there was available. 

Figure  3 shows how the allocation changes  with the development  of  the 
stand  in the dominating  trees. The main feature is  the very  strong  shift  from 

productive  biomass  (i.e.  the foliage  and fine roots) to woody  biomass (stem, 

branches and transport  roots)  in the  beginning  of  the  stand growth  which  

is  then followed by a  more or  less  stable phase.  Especially  the  proportion  
allocated to stem  increases  first  strongly  and then starts  to decline  slowly.  
This follows as  the total foliage  is both  growing  and shifting  strongly  

upwards.  From the pipe  model theory  it then follows that the stem has to 

grow exponentially  to maintain the structure. In nature, the changes  may 

not be quite  so  strong  since  there is  evidence that the xylem  structure is  also 

changing  towards a  more conductive  one as  the tree matures (Carlquist  

1987).  However, Ovington  (1957),  Cannell (1985),  Albrektsson  &  Valinger  

(1985)  and Mohren (1987)  have reported  results  which would appear to 

support  the simulated trend. 

Figure 3.  The development of  carbon  allocated  to  different biomass compartments of  trees  
forming the dominating canopy.  
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Another strong  change  occurs  in  the proportion of  fine root growth.  

From its  initial high  proportion,  it comes  down sharply,  and stabilizes  more 

or  less  at the same time as  the canopy closes.  The sharp  drop  can be 

explained  by  the decreasing  ratio between the growth  of new foliage  and 

foliage  senescence.  This  means  that a  bigger  proportion  of the total  nutrient 
demand of  the tree can be derived through  internal circulation  of  the 

nutrients.  However, it  is also  assumed that the nutrient availability  per unit 
of  soil volume will  remain constant during  the rotation. 

As  can be seen, there are  numerous  ways  of  deriving  the growth  of  the 

different  parts  of  a  tree from its  the photosynthetic  production.  While the 

presented  approaches  are  all  associated  with the carbon balance models, 

they  are  used in models which have very  different time scales  and thus also 
different  degrees of  detail.  As  was  mentioned earlier,  the  objectives  of  the 

model  (i.e.  the purposes for which it  is  intended to be used)  also  determine 

to a  great  extent which approach  is  rational to use  when determining  the 

growth  of  the different parts  of  a  tree. The selection  of  the hierarchy  level  
should  be done so  that it  is  in accordance with the time dynamics  of the 

phenomenon  which is  intended to be  analysed.  

The carbon balance approach  has been criticised  and it  has  been said  
that growth is  not that much  carbon  driven,  but  is  merely  controlled by the 

availability  of  nutrients at  the  shoot level. However, the  presented  example,  
which is clearly  based from the carbon balance principle,  can  also  be 
turned upside  down to make it run  on the nutrient balance  principle.  From 

equations  (6)  and (7)  it follows that the growth  of  foliage  depends linearly  

on the amount of nutrients available for  growth  of  the above-ground  parts.  
However, the slope  of  this  dependence  changes  from year to year  depending  
on the size  of  the woody  part,  its  senescence  and the senescence  of  foliage. 

This, of  course, takes place  within the limits  of  carbon availability.  

It is clear that the nutrient dynamics  within the tree are  described very  

simplistically  here. It  is  assumed that  growth  depends  linearly  on  nutrient 

availability  or  (to  use  the carbon balance  terminology)  the nutrient concen  

tration in the biomass remains constant. On the other hand,  nutrient 

recycling  is  assumed to take  place  only  from  the dying  needles. In addition,  
the structural  growth  of  the below-ground  parts  is still  rather coarsely  

modelled.  Thus,  more work  is  needed to  improve  the treatment of  those 

parts  in this  approach.  

Apart from  nutrient dynamics,  also height growth  and turnover of  

sapwood  into heartwood need more  attention. In the case  of  the former,  one  

possibility  is  to apply  the optimality  principle  (Mäkelä  &  Sievänen 1992)  or  

that combined with  modular growth  as described by  Nikinmaa  (1990)  and 
Nikinmaa &  Hari (1992).  Heartwood formation is a more complicated  

matter,  but the observations by  Kaipiainen  &  Hari (1985)  give  a  promising  

starting  point.  

Finally,  as  was mentioned earlier  on,  the pipe model theory  only  coarsely  

approximates  the functions of  woody material.  As  shown by  Hari et ai. 

(1986),  there are  strong  changes  in the ratio between the needle biomass 
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and sapwood cross-sectional area in Scots pine  when moving  from the 

smallest  twigs  to the main stem and transport  roots.  These observations 

coincide with the hypothesis  about the  hydraulic  architecture of  trees as  

proposed  by Zimmermann (1983)  and later by  Tyree  et  al. (1985)  which 

being mainly  based on the observations made by  Huber already  at the 

beginning  of  the century  (Zimmermann  1983)  and later  on  by other  authors 
for  different species  (e.g.  Ewers &  Zimmermann 1984).  According  to that 

hypothesis,  the woody  structure is  constructed in such  a way that the 

resistance imposed on the water flow is  at  its  highest  in the distal parts  of  

the "pipes"  which  then guarantee  that (in  case  of  severe  water stress)  the 

cavitations would be restricted mainly  to these regions  thus securing  stem 
conduction. This  theory  is  supported  by the observation of  Sanio in the 
nineteenth century  (according  to  Aloni 1987) that the tracheidal size 

normally  increases  when going  from distal  parts  of  branches  to the lower 

part  of  the stem. Thus,  the pipe  model theoiy  should be modified to also  

include these ideas if  the functional aspect  of  the  woody  growth  is  to be 
used. 
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Introduction 

The soil  stores  nutrients and water essential  for  tree growth.  It modifies the 
chemical  composition  of  rain water  on  its  way to groundwater  and surface 

waters. The soil  is thus an important  link between the atmosphere,  

vegetation  and surface  waters,  a link which cannot be ignored  when 

modelling  forest growth or surface water chemistry  under changing  

atmospheric  conditions.  This paper presents  the basis  of soil  models,  gives  
a brief overview  of selected soil  acidification models, and raises some 

questions  that need to be addressed  in the future. 

Soil  processes  and a changing  environment 

The soil  is a  system  of  three phases:  solid,  aqueous and gaseous.  The 

largest  element  pools  are found in the solid  mineral and organic  fractions 
of  the soil.  The amounts of  elements adsorbed to the mineral and organic  
surfaces  are  one  to three orders  of  magnitude  smaller  than those. The pools  
of elements dissolved in soil solutes  or  in gaseous form are  again  one to 

three orders  of  magnitude smaller than those adsorbed to the surfaces.  

Only  the elements in free-ion  form in the soil  solution,  and adsorbed to the 

large  reactive  surfaces  of  the solid  phase,  are  directly  available to plants.  
The proportions  of  elements stored  in the different pools  change  over  time. 

This happens  as a result  of  the transport  of  elements  through  soil  with 

water  and air,  and the concurrent transfer  of  elements between the storage  

pools  by  biogeochemical  soil  processes.  There  is  a  large  variation in the time 
scales  of  the soil  processes.  Chemical  equilibria  are  more  or  less  instanta  

neous  processes,  whereas the changes  in the hydrological  and heat regimes  
show diurnal and annual cycles.  Growing  vegetation  and changes  in land 

use influence soil  chemical  and hydrological  properties  on  time scales  of  

decades to centuries,  whereas soil  formation  operates  over  thousands of  

years.  The study  of  the complex  biogeochemical  interactions that generate  
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certain conditions for  tree growth,  and give  rise  to a  certain  composition  of  

the leachate to surface  waters,  is  facilitated by the use  of  dynamic  process  

oriented models,  especially  now as  we  face a changing  environment. 

Forest ecosystems  are  experiencing  manifold environmental  changes,  
both natural and anthropogenic.  A growing  forest  stand induces changes  
in  the cycling  of  nutrients and in  the  rates of  evapotranspiration  and 

percolation.  Forestry  management  practices  ( e.g. ,  ditching  and clearcutting)  

amplify these changes.  The external load of  acidifying  substances that 

originates  in the burning  of  fossil  fuels  alters the chemical  properties  of  

forest  soils,  and may lead to unfavourable growth  conditions through  

increased concentrations of  aluminum and increased leaching  of  calcium 

and magnesium.  Coupled  with an increased deposition  of  nitrogen,  these 

changes  can  result  in nutrient imbalances. Changes  in global  climate  may,  

in Finland,  be reflected in warmer  annual average temperatures,  dryer  
summers  and wetter winters. This  would also imply  chemical  changes  in 

soils  and changes  in the composition  of  leachates  from  soils.  

Forest soil  acidification models 

The lack  of  long-term  quantitative  time series  of  soil  chemical  properties  

has  contributed to the preference  for the process-oriented,  non-statistical 

approach  in soil  systems  modelling.  Often the  testing  of  soil  models has  to 

be performed  in the light  of  water  quality  data and laboratory  experiments.  

The basic  components  of  soil  models are  the transport  of elements,  mainly  

in water,  and the retention/release  of  elements by the soils  through  various 

biogeochemical  processes  (Fig.  1). Terrestrial  models, designed  for study  

ing  forest  growth,  mostly  focus  on carbon  and nitrogen  cycling  and include 

soil  processes  such  as  litter  formation  and decomposition,  mineralization, 

root nutrient uptake.  Soil  acidification  models,  the main interest of  this 

article,  describe  cation exchange,  weathering,  precipitation and dissolu  

tion reactions.  

Roughly  a  dozen different attempts  to simulate the acidification  of  soils  
have been made since the late 1970's (Table  1). Reuss  (1980)  formulated the 

ideas upon which many later  soil  acidification  models are  based.  His model 

was  one of the first  that utilized established principles  of  soil  chemistry  to 

predict  the most likely  effect of  rainfall  acidity  on  leaching  of  base cations 

from noncalcareous soils.  The model (Reuss  1980) is based on the 

assumption  of there being  a chemical  equilibrium  between solution ions 
and adsorbed ions. The  sorption  processes  considered are   
and Ca2+

-H
+ exchange.  In solution,  the  equilibrium  concentrations of H +

, 
Al

3+
 and HCO

s  are  calculated.  Furthermore,  to preserve electroneutrality  
of  the solution,  the total equivalents  of  cations (Ca 2+

,
 Al3+

,
 H +)  and anions 

(SO2-
,  HC0

3 ,  CI")  must  be  equal.  With this model,  Reuss  (1980)  predicted  
that changes  in soil  acidity  and base cation status may occur  much later 
and continue far  longer  than the  major acid input,  due to the dampening  
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effect  of the soil's adsorbing  properties.  The model results also 
confirmed that soils well  supplied  with  bases  are  more  susceptible  to base  

loss.  Model simulations  by  Reuss  &  Johnson (1985)  showed that,  whereas 
the pH  of  the  soil  solution  (at  elevated (C0

2
)
g  levels)  will  be  only  moderately  

affected  by  an increase in strong  acid  anions,  the pH  of  the leachate (after  
C0

2 equilibration)  will be strongly  affected.  This is  a  good  example  of  how 
models can advance science: with a simple  modelling  exercise Reuss  &  
Johnson (1985)  solved the apparent  paradox  of  how acid deposition  on  

naturally  acid  soils  can lead to stream water acidification. 

Figure 1. Basic  components  of soil  models 
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Table 1. Selected forest  soil acidification models. 

Short-term variations in streamwater chemistiy  in response to acid 

deposition  were  first  modelled by  Christophersen  et  al. (1982).  Their model 

was  calibrated and tested with  precipitation  and runoff  data from Birkenes,  

southern Norway,  for  the years  1973 to 1978. The Birkenes  model  is based 

on a two-reservoir  hydrologic  model,  which predicts  quickflow  from the 

upper soil horizons and baseflow from the lower reservoir,  using  data on 

precipitation  and mean daily  temperature.  The chemical submodel ac  
counts  for  adsorption,  desorption  and mineralization of  SO2

",  the  concen  
tration of which is  assumed  to determine the sum of  concentrations of the 

cations  H +

,  Ca2+
,  Mg

2+ and Al3+.  The partitioning  of  cations is  calculated by  

assuming  equilibrium  between Al(OH)
3  and H +

,  and Al3+

,  and by assuming  
the relationship  between Ca2+

,  Mg
2+ and H +

,  to be  controlled by cation  

exchange  equilibrium  according  to the Gapon  equation.  

The assumption  of  there being  an  equilibrium  cation exchange  was 

abandoned by  Oksanen et al.  (1984).  They  developed  a dynamic model 

describing  the kinetic  exchange  of  monovalent cations (K+

,  Na +), divalent 
cations (Ca2+

, Mg2+) and protons  (H
+

), in which the reaction rate is 

proportional  to the amounts of  the reacting  ions. The time constants of  the 

exchange  are evaluated from experimental  data. lonic concentrations in 

equilibrium  are related as  in  the Vanselow  equation.  Convective flow of  

water in the soil  profile  controls  the transport  of  ions between consecutive 
soil  layers,  1 cm thick.  The applicability  of  the model is hampered  by  the 

non-constant nature of  the ion-exchange  coefficients.  

A  modified version of  Oksanen's  model (Holmberg  et al.  1985)  was  later 

simplified  to deal with only  one soil  layer  and the exchange  of  Ca2++  Mg2+ 
and H++A13+

.  In this model,  cation exchange  is described by  kinetic  

equations  that correspond  to the Gaines-Thomas equilibrium,  and the  

Characteristics Model Main  reference 

1) Basic  equilibrium model  Reuss  1980 

2) Streamwater chemistiy  Birkenes Christophersen  et al.  1982  

3) Soil and  lake  steady-state  Arp  1983  

4) Kinetic model Oksanen  et al. 1984 

5) Distributed kinetic model Holmberg 1984 
6) Lumped equilibrium model  MAGIC Cosby  et al. 1985 

7) Integrated lake  watershed  model  ILWAS Gherinl et al. 1985 

8) Kinetic lumped model Holmberg et al. 1985 

9) Decision  support framework RAINS Kauppi  et al. 1985 
10) Kinetic  weathering  PROFILE Sverdrup &Warfvinge 1988 

11)  Kinetic lumped  multi-layer ETD Nikolaidis et al. 1988 

12)  Kinetic  lumped model Gobran &  Bosatta  1988 

13)  Finnish integrated HAKOMA Johansson et al.  1989 

14) Lumped kinetic  one-layer MIDAS Holmberg et al. 1989  

15) Lumped equilibrium one-layer SMART De  Vries  et al. 1989 
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equilibrium  between H+ and Al3+ in solution is calculated from the 
dissolution of  aluminum hydroxide  (Holmberg  et  ai.  1989).  The model has 
been used to explore  possible  paths  of  recovery  of  soil  base saturation 

following  decreased acid deposition  (Holmberg  1990). 

The MAGIC model (Cosby  et  al.  1985)  describes  soil  water  and streamwater 

chemistry  based on soil  cation  exchange,  dissolution of aluminum hydrox  

ide, and solution of  carbon dioxide. Cosby  et al. have extended the 

conceptual  approach  by  Reuss  &  Johnson (1986)  to include Mg
2+

,  K+

, Na+

,  

F",  N0
3  and CI",  and to include  important  complexation  reactions involving  

dissolved aluminum (such  as  hydration  and complexation  with SO|"  and 
F").  Soil cation exchange  is  described using  Gaines-Thomas expressions.  
The  chemical  concentrations are  calculated from equilibrium  expressions.  

A  regionalized  version of  MAGIC, in which  the model is  incorporated  into 

a Monte Carlo simulation framework,  has been successfully  used to 

reproduce  the observed distributions of  water quality  variables derived 
from  a  regional  survey  of  lakes  in southern Norway  (Cosby  et  al.  1989).  

As  a  result  of  the Integrated  Lake-Watershed Acidification Study  

(Goldstein  et al.  1985),  a  general  mechanistic  theory of  lake-watershed 
acidification  that takes into account  the production  and consumption  of  

acidity  by  watershed processes,  as  well as  atmospheric  inputs  of  acidity,  
was formulated in model form. The ILWAS model (Gherini  et al. 1985) 

routes  precipitation  through  the forest  canopy, soil horizons,  streams and 
lakes  using  mass  balance concepts  and equations  which  relate flow to 

hydraulic  gradients.  The concentrations of  H +

,
 Ca

2+

,
 Mg

2+

,
 K+

,
 Na

+

,
 NH+, 

Al3+
,  SO 2

",  N0
3,  CI",  F~,  inorganic  and organic  aluminum complexes,  organic  

acids  and dissolved organic  carbon are  simulated.  Mass  transfer  of  these 

components  between gas, liquid  and solid phases  is formulated in kinetic  
and equilibrium  expressions.  

The soil  submodel of  the RAINS  model (Kauppi  et al.  1985,  Alcamo et  al.  

1987) is  based on the concept  of  buffer  ranges (Ulrich  1983).  Acid stress,  

input from the atmosphere, changes  in soil  pH,  and the amount of  

exchangeable  bases  according  to equilibrium  expressions,  specific  for  each 
buffer range.  The buffer ranges  are  characterized by  soil  pH, mineral  

weathering  rate  and the amount of  exchangeable  base cations. In the 
Finnish integrated  acidification  model (Johansson  et  al. 1989),  the RAINS 

soil impact  model  is  implemented  to simulate  the development  of base 
saturation under various scenarios  of  acid  deposition.  For  small  values of  
base  saturation, however,  the model is not realistic  because of  the linear 

expression  describing  cation  exchange.  

The  PROFILE  model (Sverdrup  &  Warfvinge  1988)  simulates  the concen  

trations of  the major  anions and cations in soil  solution in equilibrium  with 

silicate  weathering,  cation exchange and biochemical  processes.  The 

weathering  rate is  calculated using  a  separate model,  which takes into 

account  the exposed  surface  area  of  the  mineral,  the activity  of the species  

in solution,  partial  pressure of  carbon dioxide in  solution,  the soil  moisture 
content and the fraction of  the year when the ground  is not frozen. 

Temporal  development  of  soil  solution chemistry  is  calculated by  incorpo  
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rating  the  equilibrium  model in a dynamic  framework (SAFE) .  

The ETD model (Nikolaidis  et al.  1988)  is  based on the principle  of  

continuity  for  alkalinity.  It  includes a  general  hydrologic  submodel which  

accounts  for  snowmelt, interflow, overland  flow,  groundwater  flow,  frozen 

ground processes,  seepage,  and evapotranspiration.  The  alkalinity  balance 

is affected  by  cation exchange,  chemical  weathering,  sulfate sorption, and 
sulfate reduction in lake sediments. The model is  driven by  daily  input  data 

on  precipitation,  evaporation,  acidity, and CI"  deposition.  

The model of  Gobran &  Bosatta  (1988)  uses the approximate  kinetics  
method by  Bosatta (1983)  to calculate the concentration of  ions at  any 

equilibrium  point.  This method mimics the kinetics of  the chemical 

reactions. The chemical  reactions accounted  for are  carbon dioxide disso  

ciation, aluminum dissolution and hydrolysis,  Ca
2+-Al3+ , exchange,  and 

SO 4"  adsorption  and precipitation.  Leaching  occurs  at a  rate that is  
determined by  the element concentrations and the constant specific  

leaching  rate.  Gobran &  Bosatta (1988)  define the time at  which the shift 
to Al dominance in soil  solution occurs, as  the time at which the fraction  

of Al  equivalents  in the soil  solution is  0.5.  They  select as  a  measure  of  
the soil's  sensitivity  against  depletion  of  cations,  and define the soil  

leaching  sensitivity  as  the inverse of ln their  model results,  soil  leaching  

sensitivity  increased with the rate of percolation  of water and with 

decreasing  CEC. By  analyzing  the model's behavior under  different acid  

deposition  regimes  and different values of  the key  parameters,  the authors 
conclude that pH  is  not an  appropriate  variable to  be used as  an  indicator 
of  soil  changes.  

The SMART  model (de  Vries  et  al. 1989)  simulates  base saturation, pH,  

the concentrations of  divalent cations,  Al
3+

,  NH+, N0
3 ,  SO 2 " and HC0

3
 in 

soil  solution.  It  is  based on a  set  of  equilibrium  expressions,  which  describe 
carbonate weathering,  silicate  weathering,  aluminum hydroxide  weather  

ing,  cation exchange,  nitrification, immobilization and uptake,  and a  set  of  

mass  balance equations,  which describe the flow of anions and cations 

through  the soil.  Simulations with SMART give  results that are  consistent 

with Ulrich's  concept  of  buffer ranges, but  they  indicate that cation 

exchange  is  important over  a wider range of  soil  conditions than Ulrich 

(1983)  suggested .  The model's response depends  mainly  on  the soil's  initial 
conditions: the amount of  calcium carbonate in calcareous soils and the 

amount of exchangeable  base cations in slightly  acid soils. 

Table 2  summarizes some general  properties  of  the selected forest  soil 
acidification  models iisled in  i.abie 1. Most of  Lhe models are  one-layer,  

lumped parameter  models, with static hydrology.  In the majority of  the 

models,  forcing  functions or  equilibrium  equations  are  used to describe 

cation exchange,  weathering,  aluminum chemistry,  sulfate  adsorption  and 

the biological  cycle.  No  model in operation  today calculates using distrib  
uted variables and parameters.  Very  few use  kinetic  formulations  for the 
chemical processes.  Only four models include nitrogen  chemistry  and 

organic  compounds.  
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Table 2. General properties of  selected forest soil  acidification models.  Numbers  refer to 

models in  Table 1. 

Comparing  models 

A Nordic  project  was  conducted to compare the performance  of  four models 

at  three sites  with  differing  acidification histories  (Wright  et  al. 1991).  The 

sites are Birkenes,  southern Norway,  acidified already  in the 1950'5;  

Stubbetorp,  east  central Sweden,  with a  present  day  stream pH  of  6,  and 

in the process of  acidifying;  Yli-Knuutila,  southern Finland,  with a  good  
resilience  to acidification.  The four models  (MAGIC,  SAFE,  SMART,  MIDAS) 

were  calibrated to present-day  soil and stream chemistry.  Four different 

deposition  scenarios were  used to predict  soil  base saturation and 
streamwater chemistry  up  to the year 2040 (Wright  et  al. 1991).  

For Birkenes, all  models indicated that a  reduction  of  more than 55% in 

sulphur  is needed for the soil  base saturation to recover.  A likely  future  
acidification of  soils  and waters  at  Stubbetorp  was  predicted  by all  models 

with all  scenarios.  All  models gave only  small  changes  for the high  base 

saturation values of  the thick  clay  soils  at  Yli-Knuutila for  all the scenarios. 

Variables and 

Lumped 

One-layer 

1,3,8,9,12,13 

Multi-layer  

2,4,6,7, 

Distributed  

5 

parameters 14,15 10,11 

Hydrology 

Static  

1,3,4,6,8,9,10 

12,13,14,15 

Dynamic  

2,5,7,11 

Forcing  
function 

Equilibrium Kinetic  Not included  

Cation 3,9,13 1,2,6,7, 4,5,8,11 

exchange  10,15 12,14 

Weathering 3,5,6,9, 

13,14,15 

1.2 7,10,11 4,8,12 

Biol, cycle  5,6,7,8,10,13 

14,15 

I,2,3,4,9 

II,12 

Aluminum 1,2,6,9,10, 7,12 3,4,5,8,11 

chemistry  13,14,15 

Sulfur 1,2,6,7 12 3,4,5,8,9,10 

adsorption 11,15 13,14 

Nitrogen  

chemistry  

6,15 7,10 I,2,3,4.5,8.9 

II,12,13.14 

Organic  

compounds 

6,7,10 I,2,3,4.5.8,9 

II,12,13.14,15 
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Despite  differences in predicted  absolute values,  the simulated  trends were 
similar for all  sites for all  the scenarios. 

In a series  of  papers documenting  a  rigorous  comparison  of  ETD, ILWAS 

and MAGIC, Rose  et al. (1991  a)  point  out  the importance  of  ensuring  that 
the models to be compared  are  sufficiently  different and not only  different 
formulations of  the same  hypotheses.  Only  then can  agreement  between 

model results  increase our  confidence in the models (Rose et al. 1991 a, 

Rose  et al.  199 lb,  Cook et  al.  1992).  They  developed  a  collection  of  rules  and 

algorithms  to transform  a  common set  of  information into the specific  input  
values  for each of  the models. Thus they  were able to avoid the effect  of  

investigator-dependent  configuration  and  calibration procedures  on  the 

model results.  By  analyzing  mass-balance  budgets  for acid neutralizing  

capacity, they  evaluated the relative importance  of  the soil  processes 
included in the  three models. Through  Monte Carlo analysis,  they  identified 
the sources  of  the variability  of  the  predicted  acid neutralizing  capacity.  

They  concluded that the three  models are structurally  different  and that 

predictions  of changes  in acid neutralizing  capacity  were  more  similar  than 
the predicted  absolute  values. 

Future development  

In order to assess  the influence of  forest  land use,  acid  deposition  and 
climate  change,  a  better  knowledge  of  the  behavior of  organic  matter,  N, Al 
and Fe in forest  soils  is  needed. Quantitative  estimates of  the amount and 

the quality  of  organic  matter in Finnish podzolic  soils are still  few. The 

importance  of  organic  matter in retaining  Ca
2+ and Mg

2+ through  cation 

exchange  is well  known,  but  detailed knowledge  of  how the cation exchange  

capacity  of organic  matter changes  is  lacking.  Also,  the rates of  organic  

matter decomposition,  mineralization  and nitrification  under varying field 
conditions are  poorly  known.  The fate of  aluminum and iron in forest  soils  

is of  importance  when assessing  the combined effect  of  the changing  

environment. Not  enough  is  known about  the ability  of  Al3+  and Fe3+ to form 
organic  complexes  and the role of  these ions in cation exchange.  The 
mechanisms of  feedback from soil  chemistry  to root functioning  and 

uptake  are  still  unclear,  and therefore lacking  in all  models. Until  these 

questions  have been properly  addressed by  soil  science,  so  that they  can 
be included in the models,  forest soil models will continue to fail in some 

conditions. 

Process-oriented  models are  today the best  tool for  exploring  the impact of  
different deposition  and climate  change  scenarios.  As  regards  acidification,  

modelling  can  provide  an insight  into  the combined effect  of  sulphur  and 

nitrogen deposition  on  soil chemistry  and through  that on water  quality  
and forest  growth.  In  view of  a future climate  change,  soil  models can  
illustrate  the water quality  consequences of  changing  hydrological  and 
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temperature  regimes.  We cannot, however,  rely  on the predicted  absolute 
values.  Instead,  more  emphasis  should be put  on  studying  the sources  of  
the  variability  in the predicted  values and trends. 
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Background  to the study  and the  study  problem  

In Finland,  the future mean  annual temperature  is  expected  to be two to 
three degrees  higher  than the present  values,  the temperature  rise  being  
the greatest  in winter  with  a  consequent  lengthening  of  the thermal growing  

season.  Furthermore, the annual precipitation  will nearly  double, the 

increase being  at  its greatest during  wintertime. The climatic  change  

increases  the uncertainty  of  the future management  of  the forest  ecosystem.  

This  study  aims  at  outlining  the ecological  and silvicultural  implications  
of  the changing  climate  with  regard  to (i)  how the expected  climatic  change  
could modify  the functioning  and structure of  boreal forest  ecosystem,  and 

(ii)  how the silvicultural  management  of  the  forest  ecosystem  should be 
modified in  order to maintain sustainable forest  yield  in changing  climatic  
conditions.  The biological  and silvicultural  implications  of the computations  

are  utilized  in outlining  the options  for  timber  production  in changing  the 
conditions  based  on model computations.  

Outlines  of  modelling  

The model  is  based  on the assumptions  that the climate  change  has  direct  
effects  on (i) the amount of  radiation and its  distribution into direct and 

diffuse radiation,  (ii)  the air temperature  and its annual and diurnal 

distribution,  (iii) the amount of  precipitation  and its  distribution into rain 
and snow,  and (iv)  the wind  velocity  and its  variability.  Similarly,  the 
climate  change  is  assumed to modify  indirectly  (i) air humidity,  (ii) soil  

temperature,  (iii) availability  of  soil  water,  and (iv)  availability  of  nutrients. 
The availability  of  nutrients will  be modelled based on  the annual time step.  

In other  cases,  the time step  will be  matched as  closely  as  possible  with time 

constant  of  the process,  the shortest  time step  being  one hour (Fig.  1). 
The physiological  processes  of  the plants  link  the plant  community  and 

the environment with  each  other,  the linking  factors  being  photosynthesis,  

respiration,  transpiration,  nutrient and water uptake  and acclimation. All  

linking  factors  act  the year-round,  acclimation  being  the process  copying  
the  other processes  into the annual cycle  of  the climate.  
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Figure 1. Outlines of the  processes  used  to model  the  interaction  between  trees  and  the  
climate and the  soil. 
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The effects  of  different processes  on community  dynamics  are  extended 

over  the life span  of  trees with a  consequent  output  of  the model in terms 

of  the succession  of  the tree stand and the within-stand environment. In 

this context,  the silvicultural  management  of  the tree stand modifies 

directly  and indirectly  the community  and, consequently,  the growing 

conditions,  thus enabling  one to copy the forest ecosystem  into the 

changing  climate.  

Outlines of  the implementation  

The study  problem requires  a  model describing  the  effects  of  the climatic  

change  on  the functioning  and structure of  the boreal forest  ecosystem  and 

its silvicultural  implication  in terms  of  a proper  management  and the 

subsequent  timber  yield.  Consequently,  the model incorporates  the following 

compartments.  

Physical  environment 

The simulation  of the weather pattern  includes  solar  radiation,  temperature,  

precipitation,  air  humidity,  wind  velocity  and carbon dioxide concentration 

representing  the annual  and year-to-year  variation around a  given trend.  

Similarly,  the simulation of  the soil  conditions includes temperature  and 

water as  determined by the physical  structure of  the soil profile.  The 
nutrient pool  available for tree growth  is  linked with the soil  type  and the 

quality  and amount of  organic  matter and its  decomposition.  

Biological  processes  

The simulation  of  the recruitment of  trees includes the formation and 

germination  of  seeds,  the  establishment and growth  of seedlings  as  
controlled by  the physical  conditions,  and it  is  influenced by  the presence 

of  competing  trees,  ground  vegetation  and pathogenous  organisms.  The 
simulation of  growth  is  based mainly  on  modelling  principles,  which allow 

the growth  of  individual trees  being  controlled by  radiation,  temperature,  
soil  moisture and nutrient supply.  A separate  model for  the growth  and 

development  of  ground  vegetation  is  prepared  assuming  that the tree layer  
controls  the growth  and development  of  the ground  vegetation  through  the 
modification of  their  growing  environment. The simulator  for  death is  based 
on the  modelling  principles,  which relate death to the growth  efficiency  and 
life  span of  trees. The simulation includes death due to strong  winds and 

snow  accumulation.  Fungal  and insect  damages are modelled by  assuming  
that the outbreaks of  epidemics  are  a  function of  site factors,  stand 

structure,  the time elapsed  from the preceding  outbreak and random 
factors.  The simulator for decomposition  of  litter  and humus is  based 
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mainly  on  the modelling  principles,  where the quality  of  litter  and humus,  
soil  temperature,  moisture and nutrients are  the factors controlling  the 

decomposition  rate. 

Silvicultural  management  

Silvicultural  management  includes  regeneration  (natural,  artificial), tending  
of the young stand (control of  density  and tree species  composition),  

thinning,  fertilization  and soil  treatment (scarification,  control burning).  

All these measures  change  the structure of  the forest  ecosystem  and,  thus,  

result in changes  in the processes  (birth,  growth  and death)  controlling  the 

dynamics  of the forest  ecosystem.  

Model input  and output  

The input  of the model include the properties  of  tree stands in terms  of  the 
characteristics  of  the trees, soil,  climate and management.  Trees are 

characterized  by  species  and diameter;  these are  used  to derive the initial  

values  of several  other parameters  of  trees. Climate includes radiation,  

temperature,  rainfall,  and wind,  and several  other  factors  derivable from  

the above parameters.  Soil  is  characterized by  the chemical  and physical  

properties  of  humus and mineral soil,  these parameters  being  used to 
derive other parameters  needed in simulation. In addition,  the input  of  the 

model will include the management  of  a  tree stand and soil  as  specified  in 

different silvicultural  measures.  

The model is expected  to produce  the values of  the parameters,  which 

are  further needed in evaluating  the  consequences of  the changing  climate  
for  the dynamics  of the forest  ecosystem  and the measures  needed to adapt  

the silvicultural  management  with the changing  conditions. The  values of  

the different parameters  can  be further converted into the values  of  other 

parameters  needed in evaluating  of  the effects  of  climate  change  on forest  

production.  
The aim  of  simulating  forest  dynamics  at  a  regional  level  requires  from 

the model  that it is  capable  of  utilizing  spatially  differentiated information 
about the properties  of  the biological  community  and the physical  

environment. Therefore,  the simulation  model for  the forest  ecosystem  will 

be a  part  of a  larger  system,  which includes also  systems  to handle spatially  

organized  data files. In this context,  several  data files  on the properties  of  

biological  community  and physical  environment are used as  input  files,  
which are also  capable  of  storing  the output  values of  the simulation model 
for the forest  ecosystem  or  its  submodels. 
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Introduction 

When analyzing  the dynamics  of  stand growth  processes,  it is  useful to 

distinguish  between four basic  phases  affecting  biomass  production:  (1)  

supply  rate of  resources  (radiation,  water,  nutrients),  (2)  resource  capture,  

(3)  efficiency  of  resource  use  in biosynthesis  and (4) allocation of fixed 
carbon within trees. Traditionally,  the emphasis  in forest  growth studies  

has been on monitoring  biomass accumulation  (phase  4)  as  a  function of  

age. The results  were  formalized in the form of  growth  and yield  tables, 

which  express the development  and growth  potential  of  a particular  

genotype  under a particular  set  of  growing  conditions. This  approach  is,  

however,  inflexible  and the  predictions  are  true only  if  growth  conditions 

remain unchanged.  Accordingly,  process-based  mechanistic  approaches  

have recently  become  more  and more popular.  Process  models attempt  to 
simulate the basic  growth  processes  (in  phases  1-4). However, building  

process  models of  entire ecosystems  has  proven to be an extremely  

demanding  task,  not least  because of  the gaps in the existing  data  basis.  

When studying  the relationships  between biomass  and production,  the 

existing  studies  on stand development  can,  however,  be  further utilized  by 

combining  the empirical  data from earlier studies with process models  of  

forest  functions (Kimmins  et al.  1986).  The idea is  to  compare the measured 

long-term  stand development  data (phase  4)  against  simulated estimates 
of  resource  supply  and/or  capture (phases  1 and 2, see Fig.  1). The 

advantage  of this approach  is  that it allows one  to analyze  the implicit  

complexity  of  growth  and yield  data (trees integrate  over  the rotation all  the 
effects  of  all the factors that determine their  growth  rate)  in relation to the 
simulated behavior of  some  of  the  driving  variables of  forest  production.  
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Figure 1. The  basic components and  steps of the  analysis  in which the  measured long  
term  stand development data are  compared against  simulated  estimates  of  radiation  
interception. 

An example:  stand development  in relation to radiation interception  

Although  the central  role of  canopy characteristics  and processes  in forest  

production  is  widely  acknowledged,  relatively  little is  known about the 

long-term  changes  in total  stand biomass,  leaf mass  (area) and radiation 

interception  as  related to production  in northern Scots pine  forests.  One 

reason  for  this is  that forest  development,  especially  in northern latitudes, 

is  an extremely  slow process.  Another reason  is  that many  of  the earlier 

studies  focused on  stemwood characteristics  owing  to their  forest  mensura  

tional point of  view. 

The aim of  the study  (Kuuluvainen  1991)  was  to analyze  the long-term  

development  and relationships  of  three basic  components  of  northern 
boreal Scots  pine  forest  production:  1) needle biomass,  2)  interception  of  

photosynthetically  active  radiation (PAR)  and 3)  stemwood production.  
This  was  accomplished  by  completing  Ilvessalo's  (1937)  classical  study  on  

the growth  and development  of  Scots  pine  in central  north Finland with a 
biomass equation  and a process  model of  radiation interception.  

Since  the study  by Ilvessalo  (1937)  did not take into account foliage  
characteristics,  the needle biomass  of  the stands at  a  particular  age was  
estimated using  the needle biomass equation  of  Albrektson et  al. (1984). 
After  comparing  the site descriptions  of  Albrektson et  al.  (1984)  and  those 
of  the stand development series  of  Ilvessalo  (1937),  the rather fertile  

Empetrum-Vaccinium  -site was  chosen as the reference site type.  This 
enabled one  to outline the development  of  stand needle biomass  in relation 

to other characteristics  of  stand structure and stemwood  production  over  
a period  of 150 years, from stand age 50 to 200 years. 



51 

Figure 2(ab).  Analysis  of the development of specific  properties of structure and 

productivity  of  Scots  pine stands  on  Empetrum-Vaccinium  -site  type in  northern boreal 
zone  in  Finland, (a) Simulated  stand  needle dry mass  in  relation current  annual 

volume increment  of stemwood excluding  bark  (CAI)  as  given by  Ilvessalo (1937); (b) 
Needle efficiency  in stemwood production, i.e. the  annual amount of stemwood  

produced per  unit  needle mass  (derived from curves  in  Fig.  2a).  
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Figure 2(cd). Analysis  of the development of  specific  properties of structure  and 

productivity  of  Scots  pine stands  on  Empetrum-Vaccinium -site  type in  northern  boreal 

zone in Finland, (c)  The simulated  vertical distribution of  needle area and  interception 
of  photosynthetically  active  radiation  (PAR)  during growing period (GP)  at stand  age  

60  years; (d)  The development of  simulated annual PAR  interception in  relation to 
stand  needle  dry  mass  with  stand  age (Kuuluvainen 1991). 
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Finally,  a  model outlined by Nilson (Hari  et ai.  1985)  was  used to 
simulate the interception  of  photosynthetically  active  direct and diffuse 
radiation (PAR)  in the canopy during  growing  seasons.  To facilitate  this,  the 

canopy structure was modelled by  utilizing  the computed  needle masses  
and the stand characteristics  given  by Ilvessalo (1937).  All  the computations  
were  carried out at  latitude 67°, which approximately  corresponds  to the 
locations  of  Ilvessalo's  (1937)  sample tree stands  in northern Finland.  The 

growing season  was  assumed to range  from the beginning  of May  to the 

beginning  of  October (Julian  days  150-270).  The poisson  distribution of  

trees and Poisson distribution of  foliage  within the needle bearing  crown  

volume was  assumed. 

Discussion: shortcomings  and advantages  of  the method 

The applied  method enables  one to analyze  the pattern  of  stand development  

in relation to the most important  driving  variable of  forest  production,  i.e. 
solar radiation. This kind of  a long-term  analysis  would  not be feasible 
otherwise. However, the method involves inevitable uncertainties. For 

example,  no  accurate  method exists  for  the estimation of  needle biomass,  

because both stem and needle characteristics  are  known to  vary  considerable 

in Scots  pine  (e.g.  Broms &  Axelsson  1984).  The needle biomass model  of  
Albrektson et al.  (1984)  was  selected,  because the available Finnish  needle 

biomass equation  (Hakkila  1971)  requires  crown  ratio (crown  length/tree  

height)  as an  input  variable, which was  not measured by  Ilvessalo (1937).  
Also  the  mean tree method may introduce some  uncertainty  to the stand  
level needle biomass estimates (Zavitkovski  et al.  1974). 

When calculating  radiation  extinction,  the canopy cover was  assumed  

to be constant,  although  in reality  the degree  of  canopy cover may  change  

and it probably  declines with stand age  as the stand breaks  up. Also,  
random tree distribution was  assumed, which is  apparently  unrealistic  

especially  in  older  stands.  However, the effect of  these  factors on  intercepted  

radiation is,  although  obvious,  apparently  rather small  in  fully-stocked  
coniferous stands (Pukkala  & Kuuluvainen 1987). 

In  spite  of these inevitable shortcomings  of  the method,  the estimates of  
stand needle mass  and PAR interception  were  regarded  as  being  reliable  

enough  for the present  purpose for three reasons.  Firstly,  older  naturally  

regenerated  and undisturbed Scots pine stands in northern Finland are  

typically  rather homogenous (Ilvessalo  1937). Secondly,  the values for 
mean diameter and mean  height,  which were used as  predictors  in the 

needle biomass equation,  were computed  by  weighing  with basal area 

(Ilvessalo  1937);  this  method should lead to rather reliable results.  Thirdly,  

although  the actual  values of  needle mass  and PAR interception  may  not 

be reliable,  the long-term  pattern  of  changes,  of  which we lack  knowledge,  
should be predicted  fairly  accurately.  

In conclusion,  the assumptions  needed for  the  calculations  cause  an  

inevitable  shift  from quantitative to more qualitative  predictions.  Therefore, 

the results  presented,  although  valuable as  such,  can  be taken only  as  first  
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approximations  of  the long-term  relationships  between the studied  variables. 

The availability  of  a  region-  and site-specific  needle biomass  model,  and 

additional information concerning  tree and stand structures,  would 

obviously  have resulted in improved accuracy  of  the derived estimates. 

Some conclusions 

It is obvious that the presented  method of  analysis  can  produce  such 
information of  long-term  stand dynamics  as  cannot be obtained otherwise. 
For  example,  the cited  analysis  of  the long-term development  of  undisturbed 
Scots  pine  stands growing  on Empetrum-Vaccinium  -site types  in  the 
northern boreal zone demonstrates that,  within their endogenous  

developmental  cycle,  these stands  undergo  periods  of  severe  stress  due to 

competition  and, most probably,  time-lags  in the nutrient cycle  (Pastor  et 
al. 1987). It is well known that stressed trees have limited resources  for 

defence and repair  and are, therefore,  more susceptible  to pollution  

damage and various pathogens  than unstressed trees. This  emphasizes  

that endogenous  changes  in stand development  should be  taken into 

account  when assessing  pollution  effects  on tree growth  (Loehle  1988). 

The cited analysis  further points  out that the efficiency  of  foliage  in 

radiation interception  and/or  biomass production  could be a useful 
indicator  in monitoring  the development  and stress  stage  of  forest  stands.  

The possibility  of identifying  stands undergoing severe  stress  would  
facilitate the implementation of  silvicultural  measures  to diminish the 

stress  and risk  of  damage  due to air pollutants  and/or  biotic  pathogens.  
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Introduction 

Artificial  forest  regeneration  always  leads to the establishment of  both 

planted  seedlings  as  well  as  naturally  born seedlings.  A  stand composed  of  

planted seedlings  is usually  the goal  of  artificial  regeneration.  Most of the 

naturally  born seedlings  are unwanted (shrubs  etc.).  Therefore,  this  is the 

stage  at which the silviculturist  has to ensure  the future development  of  

planted seedlings.  The usual tending  methods at  this  stage  are  cleaning,  

beating  up, and controlling  of  ground  vegetation.  On  the other hand,  the 
silviculturist  must have a  goal  for  his  decisions. Usually  the silviculturist  

has in his  mind a  picture  of  the desired young stand.  The stand might  be 

20 -  30 years  of  age,  of  a  certain density,  and with  a  certain  mixture of  tree 

species. 

However, human decision-making  can not take very  many facts  into 

account. It  is  also subjective  by  nature. Computer-assisted  decision  

making  has advantages  which improve  human decision-making  in this 

respect.  It is capable  of  handling  an unlimited amount of  information, of  

picking  out the essential  facts  from a vast  amount of  information,  and of  
even  solving  problems  by  itself by  using  a knowledge-based  model of  the  
area  (Kaila & Saarenmaa 1990). 

A new area in  ecological  modelling  is  the use  of  the object-oriented  

approach  in building  simulation models.  The object-oriented  approach  

leads  to constructive thinking by  specifying  objects  having  an internal 
structure and functioning.  It allows definition of  a problem  in terms of  

actors  (objects)  and the communication of  messages  between them (Coulson  

et al.  1987, Cox 1986). Each biological  object,  such as  a tree,  can be 
considered  as  an  'actor'  receiving  messages,  'acting',  and sending  messages  

(Bossel  & Schäfer 1990). Thus,  the basic  idea of  an object  is  appropriate  to 

a  real stand,  where there is  a  collection  of  objects  (trees)  and interactions 
between them (competition).  The available  techniques  make simulation 

programming  easier,  and allow easier  interfacing  with  graphics  and other 
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support  facilities  (Tsatsoulis  1991).  
In fact,  the decision-maker is  one  actor  in the system that describes  the 

early  development  of  a  stand.  The target  for  the decision-maker is  to make 

a  model  of  the stand. The decision-maker -object  is doing  model-based 

reasoning  in his decision-making.  This approach  makes possible  the 

presentation  of  in-depth  knowledge  of  the system.  
The aim  of this  study  is  (i)  to  build  a  simulation model of  a  pine  plantation  

and (ii) to use  the model in an expert  system  to  define the actions  needed 

during  the early  development  of a pine  plantation  to achieve the target  

stand. 

The stand model 

The model  has to respond  to the following demand: a single  tree spatial  
model  having  the development  of  sprouts  and ground  vegetation  included. 

Sprouts  and ground  vegetation  clearly  influence the development  of  the 

planted  pines.  

The height  growth  (Y)  of  pine  plants  is  carried  out  as  a  multiplicative  model 

where Y
0
 = potential  height  growth,  

Y, = competition  from neighbouring  seedlings,  
Y

2
 = competition  from sprouts,  and 

Y
3
 = competition  from ground  vegetation.  

The competition  from neighboring  sprouts  for example  is  described in 
the way that Andersson (1982)  describes it; i.e. as  the basal  area of  

neighboring  sprouts  nearer  than 1 m. The most unknown competition  
factors  is  the influence of  ground  vegetation.  

The modelling  methodology  is  the concept  of object-oriented  analysis  

(OOA),  design  (OOD),  and programming  (OOP) (see  e.g.  Korson &  McGregor  

1990,  Booch 1991).  The object  structures  ofKolström  (1991)  and Kolström 
& Salminen (1991)  are modified to respond  to the needs of  this  typical  

situation. 

Defining  the needed actions  in a young stand 

The need for  actions  rises  from two  different types  of  situations. Firstly,  the 

desired actions  can  be defined purely  on the  basis  of  the actual  situation 

in the stand. Secondly,  the needed actions can  be  defined on the basis of  
the actual situation in the stand and the intended structure of  the stand 

in the near  future (Fig.  1). 

Y=Y Y Y Y 
012 3 
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Figure 1. The  effect  of  the past  development in  a  stand  and the  silvicultural actions  taken 
on the future  development of  a  stand. A  schematic  presentation (Daniel  et al. 1979). 

Just as  the model  of  the stand is  a collection of  different  objects,  

silvicultural  actions and cleaning  models are presented  as  objects.  The 

active  object  controlling  these actions  is  the decision-maker object  that can  

be presented  as the agent  "Forester". The "Forester" agent  mimics the 
behaviour of  a  real forester  in a  real situation (for  more about agents,  see,  

for example, Minsky  1988).  

Present situation of  the  project  

The model  of a  pine  plantation  is  now almost  ready.  The emphasis  is at  the 

moment on developing  the "Forester" agent  and the objects  "Forester"  
needs in his decision-making.  The system  is  done using  the Pro  Kappa  

expert system  shell  in a workstation.  One aspect  of  the task  is to make 
reusable elements in the way  presented  by  Pratt et  al. (1991). 
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Introduction 

Economic efficiency  is the most common objective  dealt with in the 
literature on  the management  of  fluctuating  resources  (Clark  1985, Mangel  

1985, Walters  1986). Stabilization  of uncertain resources  or resource  

economics has received relatively  minor attention. (For  general  references 

on applying  systems  analysis  modelling  in ecological  modelling  and 

resource  management,  see Jeffers 1978, Edelstein-Keshet 1989, Getz  &  

Haight  1989,  Clark  1990,  Braat &  van Lierop  1987).  
A  resource  management  problem  is  a  situation in which the manage  

ment objective  is to minimize fluctuations in resource  stocks  or  animal 

populations.  Such situations arise in different fields of resource  and 
wildlife management.  In  resource  management  a  manager  may  depress  the 

stock  fluctuations to increase the productivity  and the economic security  
of  the enterprises  and the  workers  involved in the sector.  

Let's look at  the issue of  stabilizing  resources.  System  dynamics  are  

modelled by discrete time models and the dynamics  are affected by  
fluctuations. The realization of  these fluctuations is  not known at  the time 

of  decision making. Let's assume that no  statistical  description  of  the 
fluctuations  is available  or  used in decision making.  Let's  assume,  howev  

er, that the bounds of  the uncertainties are known. Given these con  

straints,  let's  study  the conditions under  which it  is  possible  to stabilize  

resource  economics systems into certain "tubes" around the nominal 
solutions obtained in the absence of  the uncertainties. 

Resource model 

Consider an uncertain density-dependent  resource  described by  a differ  

ence  equation  of  the form 

N(k+l)=F[N(k),v(k.N(k),u(k))]+u(k), (1) 
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where k=0, 1,... is  the time, N(k) is the size  of  the resource  stock  at time k,  

F(.)  is the growth  function of  the resource,  and u(k) is  the control  during  

period  [k,k+l],  A positive control  (u(k)  > 0)  corresponds  to stocking  the 

resources,  while a negative  control (u(k)<0)  means harvesting.  The un  
known function v(.), depending  on  time, stock  level  and harvest  rate, 

represents  the uncertainty  or  fluctuation related to the growth  function of  

the resource  (e.g.,  forest,  fish, game, pests,  etc.). 

Let's  assume  that the fluctuation affecting  the growth  rate is  bounded 

and satisfies  

where v  are known. 

The common choices  for  the (undisturbed,  uncontrolled)  growth  func  

tion for  the animal populations  are  as  follows:  

where  r  is  the growth  rate and K  is  the carrying  capacity;  

where a and (3  are  positive  parameters;  and 

where a'  and p*  are  positive  parameters.  

Figure  1  illustrates  the annual growth  of  an  unharvested resource.  The 
annual growth  is now equal  to F(N(k),v(k,N(k),u(k)))-N(k),  where u(k)=o  for 

each  k.  

I v(k,N(k),u(k)) l< v (7) 

F(N(k),0)=N(k)(l+r(l-N(k)/K)) (logistic  growt±i) (2)  

F(N(k),o)=  a N(k)  exp  (-(3  N(k)) (Ricker) (3)  

oc'N(k)  
F(N(k),0)  =  p, +N(k) (Beverton-Holt) (4)  
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Figure  1. The resource  growth  fluctuates around  the  nominal  resource  curve  in  the  set  
between the  maximum  and  minimum  growth curves.  The figure  illustrates the annual 

growth of  an unharvested  resource.  The  circles  illustrate  possible  points in  the  set  

defined by  the  maximum  and  minimum  growth curves.  

Stabilization problem 

Let's consider a resource  management  problem  in which  the resource  

growth fluctuates.  The fluctuating  growth  can be modelled by  assuming  
that the parameters  of  the models change  from time to time. 

-  The management  goal  is to stabilize the resource  level,  or  resource  

growth,  to be near some chosen level.  

-  The desired  level  may  have been derived for  the  optimization  of  revenue  
from  fishery.  

-  However, the stabilizing  goal  need not be  connected to optimal  manage  

ment of  the resources.  A need to stabilize  fluctuations may also  arise 
from  other measures  of  management.  
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The usual assumption  made in the resource  management  literature is  

that resource  dynamics  can be modelled perfectly,  or  at least  that the 
statistical  properties  of  the fluctuations are known (e.g.,  see  Clark  1985,  

Mangel 1985,  Walters  1986).  Based on these  assumptions,  optimal  har  

vesting  strategies  or  other feasible management  policies  are  determined in 

the form  of  memoryless  state feedback policies  of  the form  

Optimization  is  carried  out by applying  parameter  and state  estimation 

procedures  together  with dynamic  programming  algorithms.  While being  

attractive as  a  theoretically  sound method for designing  management  

policies  for  uncertain resources,  the attraction  of the approach  is reduced 

by the massive  computational  effort  required  for carrying  out simulations. 

Typically,  optimal harvesting  strategies  constitute management  of the 
resource  at  some steady-state  value,  and adaptive  management  rules  are  
used to refine this basic rule. 

-  Stabilization  is  computationally  much simpler  than dynamic  program  

ming. 

Let's assume  now that, instead of  optimizing,  the resource  manager 

attempts  to stabilize the resource,  or  the resource  growth,  around some  

constant steady-state  stock  level  Ns.  The choice  of  the target  level  Ns  may 

be motivated by some  optimization  criterion. For  example,  the level may  be 
determined by  maximizing  the sustainable yield  from  fishery.  We shall treat 
the management  problem  as  a  stabilizing  problem.  Hence, the target  level  

Ns  will be considered here as  a  given  value. No other explicit  management  
criteria will apply.  

Next,  we define the nominal resource  system by assuming  that no 

(unknown)  fluctuations are  present  in the  system  (1)  -  (2),  i.e. v(k,N(k),u(k))=o 
for all  k,  N(k), u(k). Thus,  the nominal model of  the resource  growth  

corresponds  to a deterministic  growth  curve  around which the "real" 

resource  growth  is  scattered.  

-  The nominal resource  model is  not a  unique  model and can  be chosen 

by the resource  manager. 

In the absense of  uncertainties,  stabilization of  the resource  would be 

successful.  The resource  would be  driven exactly  to the chosen steady  

state level Ns  and kept  there  forever.  Resource  levels  often  tend to fluctuate,  

however,  in which case resource  managers may attempt  to take  these 

fluctuations into account  in designing  resource  management  schemes.  A  
desirable  management  policy  would be a harvest  rate  such  that,  for any 

disturbance function v(.), the equilibrium  stock level  Ns  is  asymptotically  

stable.  

u(k)=p(k,N(k))  
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-  Asymptotic  stability  requirements  can  be satisfied  in some continuous 

time resource  models (Corless  & Leitmann 1985).  

-  Unfortunately,  this  goal  is  not achieved in discrete  time models. 

-  Yet,  it  is  possible  to decrease otherwise considerable fluctuations,  which  

occur  when the disturbances are  ignored  and only  nominal controls  are 
used. 

The management  goal  of  resource  stabilization  can  be characterized 

formally  by  the concept  of  global  uniform asymptotic  stability  of  a  set.  For  

a  system  to be globally  uniformly  asymptotically  stable about a  set  B it is  

required  that, starting  from any initial  stock level, the resource  can be 

driven arbitrarily  close to the set  B  in finite time and to remain there for  all  
future time. Thus,  the management  goal  is  to keep  the resource  fluctua  

tions in the range  defined by  the set  B,  and to make this  range  B as  small  

as  possible.  
Global uniform asymptotic  stability  of  a resource  system  can  be 

achieved using  the min-max Lyapunov  stability  approach (Corless  & 

Manela 1986, Kaitala & Leitmann 1989, 1990, 1991)  in designing  the 

management  rules.  The method is based on constructing  Lyapunov  
functions  to measure  the  "distance"  of  the resource  system  from the steady  

state level.  The  management  scheme is  then constructed  such  that,  given  

any admissible  realization of  the disturbance v(.), the maximum value of 

the Lyapunov  function decreases during  each time step  as  long  as  the 

attractive set  has not been  reached.  This property  assures  the stability  of 
the system: the fluctuations  of  the stock  level are  decreased such  that, after  

some time, the stock  level is "near" the attractive set  B where it remains 

thereafter. 

The theory  has been reviewed by Corless  &  Manela (1986)  and Kaitala 
& Leitmann (1989,  1990, 1991)  and simulation examples  are  to be found 

in Kaitala &  Leitmann (1989, 1990, 1991). 
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Computerized  modelling  in forest  research 

The paper is targeted  at  that the part  of  the forestry  community  which is  

specialized  and advanced in information systems and software applica  

tions development.  The problem  of  object  identification has been  studied 

as  an essential  part  of  object-oriented  system  analysis  (OOA); specific  

object-oriented  programming  questions  are  principally  omitted.  The  three 
addressed aspects  are:  information systems  analysis  and design,  software 

systems  definition, and modelling.  
Information systems  and software applications  development  in  the 

Finnish forest  research have evolved through  several  distinguishable  

stages  during  the  past  three decades (Kaila  &  Saarenmaa 1990).  Modelling  
and computing  have been recognized  as  being  a  logically  connected 

methodological  pair  since the early 1970'5, when linear programming,  

dynamic modelling  and systems  theory  were  introduced to the community.  

Modelling  was emphasized  also  when the artificial  intelligence  (AI)  meth  

odologies  and expert  systems  development  were  subjects  of  closer  look in 

the mid 1980's. Also, the utilization of the object-oriented  methods 

supports  modelling.  The latest  stage  in the development  process  is  the 

emergence  of  GIS (Geographical  Information System)  applications.  At  

present,  modelling,  in association with  remote sensing  and GIS,  is  consid  
ered as "the  future backbone" of  the Finnish forest  research information 

systems  development  policy.  

Modelling  with objects  

The  concept  of  modelling  reality  as  sets  of  objects  has theoretically  evolved  
from studies of entity-relationship  type (ER) (Codd  1970, Date 1986, 

Sundgren  1981) and artificial  intelligence  (AI)  (Feigenbaum  1977).  The first  

1  The study  forms a  part  of  the author's  licenciate thesis  for  the  Department of  Information 

Processing Science  of  University  of  Oulu  
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is  fundamental in the theory of  database design  and analysis.  In 1981,  

Sundgren  proposed  the concept  of  object-system,  which consisted of  four 
basic  components:  objects,  attributes,  object  relations and time. The 

components  were  defined as  follows:  

-  Object:  An object  is  some physical  or  abstract substance that has some 

importance  to a  stake holder or  a  stake  holder group. Persons,  compa  

nies, cars, traffic  accidents  and trade transactions are  examples  of  

objects.  

-  Attribute: An attribute is a thing  that at  a certain moment of  time 
characterizes a single  object  or a group of  objects  that share the 
characteristic  feature at the moment; e.g.  "to  be a person",  "to be 25 

years old",  "to  be called Nils",  "to be a  Finnish company".  

-  Object  relation: An object  relation is a thing  that characterizes  the 

relationship  between two or more  objects.  For  example:  "a person is  the 
father  of  a  person",  "a person is  employed  by  a  company",  "a company 

produces  a product", 
"

 a country exports  some goods  to an other 

country",  "a country  joins  economical community". 

-  Time: Time is  expressed  as  moments or intervals  of time. 

The concepts  of object  types and object  instances were  also  present  in 
these early  definitions. According  to Sundgren  (1981),  when a  system  is  

specified  using  the above framework,  it  is  reasonable to use (general)  object  

classes  instead of  individual objects.  In this  sense,  the presented  object  

system  model formalizes  the conceptual  analysis  and resembles the 

normalized form of  database design.  An important  contribution of the 

presented  model was that, above the  data model level, everything  can be 
described utilizing  only  one systems  element;  i.e.  object.  In comparison  to 
ER-model (Codd  1970, Date 1986),  which is used for the normalized 

representations  of  static data contents  of  information system,  the time 

component  allows  the design of  dynamic  system  components.  

Subsequently,  this conceptual  basis has been a subject  of  substantial  

evolution. The true origin  of  object-oriented  thinking,  that we  practice  

today,  is in  the development  of  object  languages  and exercises  with  object  

oriented applications.  These were  first  discussed  in association with the 

SIMULA language,  and further developed  within numerous  software 

development  environments (Smalltalk,  C++,  Ada,  Actor,  KEEandProKappa).  

Object  languages  define objects  with dynamic  component  and behaviour 
that creates entirely  different conceptual  setting for  systems  development.  
Relation-based data modelling  (ER  model)  always  needs separate  applica  

tion program, which  leads to unwanted dualism preventing  system  mod  

elling  as  one whole. The principles  of  encapsulation  of  methods and data 
structures  into functional and separately  controlled units (objects),  inher  
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itance of  attributes  and associations in the object  class  hierarchy,  and 

message passing  based communication between the object  instances,  
allows the design  of  software application  systems  capable  of reproducing  

the functions of  the real  world as  they  occur.  

Information system  design  

The traditional information system design  process  is  based on the ER  type, 

and follows a few basic  thinking  patterns,  which apply to the object  
oriented approach  as  well  (Shlaer  &  Mellor 1988,  1989).  A common  way to 

organize  information systems  development  concepts  is  to make a  distinc  

tion between the activities and the goals  of  IS analysis  and design.  The 

definitions of  the IS environment, boundaries,  main components,  policies,  

functions,  and products  are  outcomes of  a definite analysis  phase.  IS 

analysis  includes feasibility  evaluation of  the future system  and  planning  
of  the needed development project.  The resulting  information system 
abstraction must focus and conduct the work in the following  design  

activities. 

Many  theoretical approaches  to OOA use  the Structured Analysis  

methodology  (DeMarco  1978, Korson &  McGregor  1990, Yourdon 1990)  as  
an important  rudiment. In this methodology,  the Information Systems  and 

application  Software (IS/SW) design  is  done using a  specific  set  of  formal 
tools that include data flow diagrams,  data dictionary,  process specifica  

tions, entity-relationship  diagrams, state-transition diagrams,  and re  

source  allocation and scheduling  charts  for project  management.  The 

analysis  proceeds  by  producing  a series  of  systems  models (abstractions)  

including  an environmental model,  a behavioural model and an user  

implementation  model. 

In  Yourdon's (1990)  terminology,  the essential  model contains the 

complete description  of  what the future system should do to satisfy  the 
user.  It  consists of two major  components;  an environmental model  and a  
behavioural model. The environmental model defines the boundary  be  

tween the system  and the rest  of  the world.  The model gives  to a  systems  

analyst  a way to figure  out what  kind  of  changes  are needed to get  a  
functional organization  to work  better, and what is  the form of the ideal 

system. The environmental  model includes a  statement of  the  purpose of 

the system,  context diagram and event list.  

A behavioural model describes the  required  behaviour of  the system,  

necessary for  successful  interaction with  the system  environment. Yourdon 

(1990)  suggests  dividing  the behavioural model building  into two phases;  

firstly,  the building  of  a  preliminary  model,  and then completing  it. This 
division can  be seen as  an  implementation  of  a  determined iteration within 
the design process.  The  behavioural model is  technically  a  first-draft  data  
flow diagram  which is  produced  from the event list  produced  during the 

previous  design  phase.  

Once  the analysis  phase  is completed,  the work  continues into  the phase  
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of  application  implementation.  In Yourdon's  (1990)  terminology,  this  is  the  
phase  of  design  which will produce  a  systems-implementation  model and 
a program-implementation  model. Questions  referring  to this  level  are  

beyond  the scope of  this  paper  and the reader is  encouraged  to pursue the  

original  references (Yourdon,  1990, Yourdon &  Constantine 1989, Page-  
Jones 1988,  Ullman  1988, Mellor & Ward 1986, Orr  1977, Jackson 1975).  

Object  identification 

Functional decomposition  (top  down)  and linear progression  assumed in 
the traditional information analysis  are too simplistic  patterns for  complex  

object-systems  definition (Henderson-Sellers  & Edwards 1990, livari 1991). 

An  object-system  model should rather be  seen as  a result  of conceptual  
analysis,  which  is concluded in an iterative way (livari 1991, Kaila & 
Marshall 1992).  In a formal form, this abstraction  collects the system's  
Universe of  Discourse  (UoD)  (ISO-report  1982)  of  the application  problem  
and lets  the designer  to use  the object  collection as  a  set of  building  blocks  
for any kind of  application  software development.  

Even though  we  have the  basic  elements of  the object  model well  defined, 

and even though modelling  with objects  seems  to give  us  an easy  and 

powerful  tool for  formalizing  reality  in the way that leads to reasonable 
software application  specifications,  there are  some blind areas  at the 
information systems  development  level.  To date, there  is  no theoretically  

sound set  of  norms to control  how the object-oriented  analysis  should be 

performed.  In  addition,  it  is  still  obscure  how object-oriented  programming  

project  should be managed.  Several competing  methodologies  are current  

ly  on the market (Coad  &  Yourdon 1990, Booch 1991).  Especially  CASE  

technologies  (Computer  Assisted  Systems  Engineering)  have produced  
multiform  products  that support  either  general  or  standardized application  

generation  rules,  or  serve  as  build-in innovations in association with  some  

particular  application  generation  environments. Both approaches  have 
their  pros  and cons;  judgment is  left  to the reader. 

With regard to object-oriented  approaches,  livari (1991)  makes a 

distinction  between the following  three activity  classes:  information sys  

tems development,  application  software  development,  and development  of  
reusable software components.  In every  case  the concept  of  object  identi  
fication is  an  essential part  of  the object-system  definition process.  Object  

identification means the definition process  where the characteristics  i.e. 

attributes,  associations,  methods and behaviour  of  an object  class  are 

defined. livari also  suggests  five useful  general  object  types.  All objects  can 
be identified either as  user,  entity,  event,  information  or  interface  objects.  

For  technical support  to object  identification process,  livari has organized  
the following  conceptual  framework (Fig.  1). 



70 

Figure 1. Modification of  the integrative framework for object  identification (livari 1991) 
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Exercise:  Objects  of  a  Virtual  Forest  

In this last section of  the text,  we shall conduct a mental exercise to test 

livari's  (1991) framework of  object  identification (Fig.  1). We shall to give  
some general  level  definitions  to an  imaginary,  but familiar, concept  
denoted here by  the term "Virtual  Forest" (VF) .  (It  should be  pointed  out  that 
the author's  intention is not  to give  an exhaustive declaration of  the 

conceptual  volume and content  of  VF).  VF  is  a  connotation of  the  concept  
of  virtual reality  (VR)  (Huhtamo  1991).  

In  essence,  VF is a set of  super classes  for a  collection of  reusable 
software components.  It may serve  the forest  research community  as  an 

implementation  of  model repository,  and it defines the  general  interface 
standards for model production.  

At first, the proposed  framework suggests  to us  to abstract  the target  

system's  structure on the organizational  level.  In this  respect,  we  make  the 

following  definitions  of  candidate user  objects:  

-  VF is  a commonly  known and shared  platform for model implementa  

tions. 

-  It  is  actively  developed  and maintained by the knowledge  engineers  of  a 
forest  research unit. 

-  Direct users  of  the associated  system  are  model developers  and appli  

cation programmers. 

-  Application  users  may  have indirect  access  to VF. 

The functionality  of  VF allows users  to add models into the object  

system.  Application  development  based on object  libraries  must  be directly  

supported.  

-  Information retrieval,  controlled object  extraction, and object  deletions 

by  authorized users  are  allowed. 

VF forms  a  new logical  resource  for  knowledge  work.  It  serves  as  a  forest 
and landscape  simulator,  cultivated  electronic  communication channel  or 
software library.  It  has multiple  interfaces  for  application  integration  and 

networks.  

After  the  definition of  organizational  use  acts  (omitted  here),  we have 

specified  the top  level  features of  the demanded object-system.  Thus,  we  
have figured  out the user  object  candidates,  and defined the  appropriate  
methods and messages  in general.  

Object  identification on  the conceptual/infological  level  produces  defi  

nitions for  the information contents of  the  object-system  (UoD) .  Because VF 

is  an  application  environment for  different kinds  of  models, and many  of the 
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models represent  some specific  methods of  particular  object  types,  the 

object  selection  of  VF  has to be  flexible  and include the following  objects  of  

entity  and  event types. 

-  The meta-abstraction of  model produces  a principal  object  into the 

system.  

-  The elementary  object  types  of  VF  will be formed from sets  of  typical  
forest  entities including  trees,  vegetation,  growth  sites,  topology,  etc.  

-  The set  of  basic  events  may  include patterns  for planning,  growth,  

silvicultural  treatments, harvesting,  raw  material transportation,  land 

use etc.  

The list  of  acceptable  entities and events is unlimited because any 

change  in  aspect  may produce  an extra  set  of  features. 
One important  feature of  VF is  its  dynamic  development  or  evolution. 

The system  will  grow and encounter changes  in the  course of  time. Every  
included model is alterable and insertions of new models may cause 

changes  in the overall  behaviour of  the object-system.  

-  The concept  of  time is  characteristic  for  VF.  The object  type  may have 

many  different scale-dependent  implementation  forms.  

Because we have  assumed that VF will  be rather  a collection  of  reusable 

software components  than a  defined information system,  the IS specifica  

tions will be very  application  dependent.  We define the following  general  
information object  classes.  

-  I/O transactions,  generic  documents and queries  may also  have more 

general  research related features. 

-  The implemented  system  may produce  aggregated  information through  

integrated  statistical  software,  business  graphics  or  image  processing.  

For  these purposes, certain data matrix object  types  may  be useful.  

The interface object  types  and associated  function types  are also 

application  dependent  and generic by  default. 

-  VF should include a general  pattern  for  graphical  representation  of  
forest  information. Ability  for 2,  3,  and 4 dimensional projections  is 

required.  

-  A general  test bench for model fine-tuning,  model browser and model 

dictionary  of  information contents should  be  added to the template  of  

optional  system  services.  
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The object  identification on the conceptual/infological  level  is completed  

by  concluding  the  behavioural features of  the object-system.  Many  of  VF 
models are  triggered  by  time, but it is  only  one aspect  of  object-systems  

behaviour. Mostly  the objects  are  triggered  by messages caused  by  events 
in other system components.  

The last  phase  in our  "first  iteration of  conceptual  analysis"  produces  
the datalogical/technical  level  abstractions  of  VF. The object-systems  
technical requirements  will be defined,  as  objects  of  abstract  machines,  
data base files  and  software components,  considering  the  above organiza  
tional and logical  boundaries.  

-  VF will  be implemented in a  host  computer.  

-  The model developers  and application  programs will  work  at  workstations.  

Graphical  user  interface and animation options  are  required.  

-  The user,  or  any other  source  of  queries,  may approach  VF through  a 

computer  network.  The LAN and WAN services offered  may differ  from  
each other. 

VF's object  repository  and applications  will  be  implemented in a  specific  

message  passing  environment, indicating  the need for an  object-oriented  

application  development  shell. Modelling  work  may also  be augmented  by  
use  of  advanced hardware/software  techniques;  e.g. massively  parallel  

computing,  hypertext  or multimedia.  These options  denote different  ab  

straction for hardware/software  structure. The functional as  well as  the 

associative  behavioural features are  highly  dependent  of  the device plat  
form. 

Conclusion 

Modelling  has a  close  relationship  with the object-oriented  systems  devel  

opment.  Object-oriented  IS/SW  development  differs  from traditional ER 
based information  system  approach.  Also,  the development  of  information 

systems,  application  software, or  reusable software components  differ  from 
each other. Identification of  candidate object  types  is  essential  in the 

object-oriented  analysis.  All objects  can be identified either as  an user,  

entity,  event,  information or interface object.  livari's  (1991)  framework for 

object  identification,  rationalizes and  supports  analysis  process  of this 

class. 

Literature 

Booch, G. 1991. Object  oriented design with applications.  The Benjamin/Cummings  

Publishing Company. 580 p. 



74 

Codd, E.  F.  1970.  A  Relational  Model  of Data  for  Large Shared  Data  Banks. Communi  

cations  of the  ACM. 13(6):377-387 

Date, C.J. 1986. An  Introduction to Data  Base  Systems.  Vol  1 &  2. Addison-Wessley.  

Reading Mass.  

DeMarco, T. 1978. Structured  Analysis and  Systems  Specification.  Englewood Cliffs. N.J. 

Prentice-Hall. 352  p. 

Feigenbaum, E.A. 1977. The  art of  artificial  intelligence: Themes  and  case  studies of  
knowledge engineering. Proceedings of the sth IJCAI: 1014-1029. 

Henderson-Sellers, B. &  Edwards, J. M.  1990. The Object  Oriented Systems  Life Cycle  
Communications of  the  ACM. 33(9): 142-159 

Huhtamo, E. 1991. Ohjeita virtuaalimatkalle lähtijöille. In: Huhtamo, E. (ed.).  

Virtuaalimatkailijan  käsikirja.  Lähikuva  2-3, 1991. p. 3-11.  
livari, J. 1991. Object-Oriented  Design  Of Information  Systems:  The  design process.  In:  

Van  Assche.  Moulinm Rolland (Ed.). Object  Oriented  Approach in  Information 

Systems.  Proceedings  of  the IFIP TCB/WGB.I Working Conference on the Object  
Oriented Approach in  Information Systems.  Quebec City.  Canada. 28-31 October 
1991. p. 61-87. 

ISO-report, 1982. Concepts and  Terminology for  the Conceptual Schema  and the  

Information Base. 

Jackson, M. 1983. Systems  Development. Prentice-Hall. Englewood Cliffs. New  Jersey.  
Kalla,  E. & Marshall,  L. 1992. Information Systems  Development in  Forestry:  A Model  For 

Applied Software Development. Manuscript submitted to Scandinavian Journal of 
Forest  Research. 33 p. 

& Saarenmaa, H.  1990. Tietokoneavusteinen päätöksenteko metsätaloudessa. Com  

puter-aided decision  making in  forestry.  Folia  Forestalia  757. 34 p. 

Korson,  T &  McGregor,  J.D. 1990. Understanding Object-oriented:  A unifying Paradigm  
Communications of the  ACM. 33(9):40-60. 

Mellor, S. J.,  &  Ward, P. T. 1986. Structured Development for Real-time  Systems,  Vol.  3: 

Implementation modelling techniques, Yourdon  Press, 1985. 
Orr,  K. 1977. Structured Systems  Development. New  York,  Yourdon Press.  

Page-Jones, M. 1988.  The  Practical  Guide to Structured  Systems Design. Englewood 

Cliffs. Prentice-Hall. N.J.  

Shlaer, S. &  Mellor, S.J. 1988. Object-Oriented Systems  Analysis:  Modelling the World 

in Data, Prentice-Hall, Englewood Cliffs, New  Jersey.  144  p. 
&  Mellor, S.J. 1989.  An  object-oriented  approach to domain  analysis.  ACM Sigsoft  
Software Engineering Notes. 14(5):66-77. 

Sundgren, B. 1981.  Databaser  och  Datamodeller.  Studentlitteratur.  Lund. 118p 

Ullman, J.D. 1988. Principles  of database and knowledge-base systems. Vol. 1 
Computer Science Press.  Inc.. Rockwille. Maryland. 631  p. 

Yourdon, E. 1990. Modern Structured Analysis.  Yourdon Press. Prentice  Hall.  672  p. 

& Constantine, L. 1989. Structured Design: Fundamentals and  Applications in 
Software Engineering. Englewood Cliffs.  N.J.: Yourdon Press.  



75 

Object-oriented  topological  simulation  models  of  

trees  and  massively  parallel  computing 

Hannu Saarenmaa 

The Finnish  Forest  Research  Institute 

Unioninkatu  40 A, SF-00170  Helsinki,  Finland  

Hannu.Saarenmaa@metla.fi  

"If  the only  tool you know  is  a hammer, the  rest  of  
the world soon  begins to  look  like a naiL"  

-  Jan Aikins at  International Joint  Conference  on 
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Introduction 

Nowadays,  simulation is  achieved only  through  the use  of computers.  The 

rapid  advancement  of  computer  science  has brought  about a  large amount 
of  new  technology  that is  now available for  building  applications.  However, 
the thinking  of  forest  modellers  has developed  under the influence of  the 
tools known to them through  experience.  In terms of  software,  these  

include statistical  methods,  FORTRAN,  and for some, differential calculus 

and dynamic  models.  In terms of  hardware,  there has been no choice  other 
than serial  machines. 

An ideal simulation model resembles  its  natural  counterpart  by  as  many 
facets  as  is  practical.  Software for forest  modelling  should,  therefore,  have  
the abstraction  capability  to mimic the structure and functioning  of  trees 
and landscapes.  Unfortunately,  none of  the methods mentioned above 

insists  or  supports  any structure for  the models. Eventually,  this  has led 

to difficulties  in the reuse  and sharing  of  models between research  groups.  
The axiom "models should always  be made for  some purpose"  has turned 

into "everybody  makes  his  own models". 

In  nature, all  the trees grow  at  the same time. In forest  planning,  many 

operations  should be evaluated simultaneously.  Thus,  the hardware 

should allow parallel  execution of  the algorithms.  
New solutions from software engineering  have removed some  of  the 

limitations  of  the old tools.  The most important  technology  is object  
oriented programming  which  binds  all  functioning  to some  reusable 

structure. Hardware,  of  course, will  always  impose  some limit  on process  
ing  speed,  but even today  10  000 MFLOPS and 10 000 MIPS on parallel  
simulation are  achievable. 

This  paper describes an  attempt  to  build a  model of  a  tree that would be 
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as  realistic  and shareable  as  possible.  As  it will turn out,  it  fits  in naturally  
with parallel  computers.  I shall also deal with  some  parallel  processing  

technology  that will be at  our  disposal  in the  near future.  

A topological  model of  a tree 

Diagnosing  problems  of  forest  health requires  an understanding  of  the 

physical  connections and functioning  of  the tree's  parts  and their  interac  

tions with the outside environment. For  instance, a spruce killed  by  the 
bark  beetle Polygraphias  remains green in its top  but yellows  under the 

midpole.  This is  because the bark  beetle blocks  the downbound material 

flow in the phloem,  but does not harm  water transport  in the sapwood.  

However, the ultimate cause  of  the  attack  may have been drought that 

delayed  the resinous response of  the  tree towards the initial  attackers.  

An expert  system  that tries to achieve this  level  of  performance  must 

have  a  model of  tree's physical  structure and functioning  upon which it 
bases  its  reasoning.  Describing  all  possible  static  relationships  for each  

prospective  harmful agent  with rules would be impractical  and leave  the 

knowledge  base superficial,  not capable  for  causal  reasoning.  It  would save  

lots  of  effort to base reasoning  on some  existing  simulation model  of  tree 

dynamics.  None of  them,  however, makes explicit  the objects  that the 

diagnostic  rules  must access;  i.e.,  what is  needed is  a  topology  of  intercon  
nected  objects  of  various  parts  of  the tree such  as  leaves,  shoots,  phloem  
and bark.  The  expert  system  can then reason  about the attributes  of  the 

parts,  such  as  water pressure  and  physical  damage status. 
The most practical  way of  building  such  a topology  is  to grow  it from a 

single  initiating seed. This brings  us  close  to L-systems  (Lindenmayer  
1968, Prusinkiewicz  &  Hanan 1989). L-systems  do provide  the foundation 
for  the branching  rules  used here,  but  they  do not preserve the status  of 
the branching  node once  it  has been drawn. The status  is  preserved  by  the 

object-oriented  description  of  the  nodes in the present  model.  Objects  are  

also ideal for  reasoning.  
The present  model (Saarenmaa  1991) is  written  in LISP and KEE.  It has 

three top  level-classes:  TREE,  TREE-PARTS  and SITE.  The various sub  
classes  and instances can  be seen  in the  upper left  window, and the slots  
of  all  the tree parts  in the  middle top  window of  Figure  1. The  model is  

initiated by  making an  instance of  the  class  SEEDS  and sending  a  message,  

GERMINATE, to it. This  creates a  compound  instance of  some tree  species  

class,  say  "TREE-1". This compound  object has  slots  that  hold the  
identities of  all  the TREE-PART instances which are essential for book  

keeping.  We  are  actually  dealing  here  with the PART-OF  relation which KEE 

supports  by  allowing  instances of  instances,  but  this  strange  feature is  not 

supported  by more  recent object-oriented  tools.  
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When the model is  running,  TREE-1 invokes  its  YEARLY-SCHEDULER 
method (visible  in Figure  2's  lower left  window).  This causes  a  mushroom  

ing  of  instances: BUDS  generate  other BUDS  and SHOOTS, SHOOTS  make 

LEAVES, and so  on. Aged instances are detached from 'TREE-1" and 
become members of  LITTER. Shoots merge to form TRUNK. A complex  

topology  is  grown by  each instance maintaining  the  identities of  the other 

instances that it is  connected to by  its  slots,  and the  identity  of the object  
that  generated  it. This topology  can,  to some  degree,  be examined and 

debugged  with the dynamic  slot  graphs  that KEE  provides  (Figure  2).  

Functioning  of  all  the parts  of  the tree is  modelled only  minimally  at  this 

point,  since most of  the research on tree physiology  is  useless  for this 

modelling  approach.  Very few  papers have report  mechanistic miniature  
scale  interactions between clearly  defined objects:  'The effect  of  changes  in 

carbon and  nitrogen  in needles to carbon and nitrogen  in shoots"  is  the kind 
of  paper that would be useful.  Future research  should make explicit  the 

objects  studied,  always  identifying  the triple OBJECT-ATTRIBUTE-VALUE 
before presenting  any rate functions. However, quantitative  information 

can  be substituted for qualitative  data in the present model. The large 

amount of  objects  makes  simulating  with  just  boolean values practical.  

Even  just  above ground,  the  amount of  instances in a tree cumulates 

rapidly  as  the following  table shows:  

Although  no metabolism is  simulated,  an  8  megabyte  Symbolics  3620 
LISP-machine spends  all  its time at this point  swapping  and collecting  

garbage.  Were the model written in Common LISP Object  System  instead 
of KEE, the inevitable could be delayed  by  some time steps.  There have to 
be other ways  of  making  the  model practical.  

If  metabolism is  being  simulated,  storing  the actually  calculated  values 
for  each situation and using  them for  all  repeatable  situations could reduce 
the computational  burden (Ahonen  & Saarenmaa 1991). But this is  

complex.  Another solution is  to generate  compound  objects  between the 

tree instance and all  its  parts,  such as crown,  foliage,  root system, and 
make statistics of  the instances within them. This approach  will probably  
be  used in practical  expert  systems.  But where "virtual  trees" are  grown, 
we have  to move  onto using massively  parallel  hardware.  

Year  Number of instances  

0 1 

1 9 

2 40 

3 200 

4 900 

5 6 000  

6 20 000 
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Parallel  processing  

The early  decision to build serial rather than parallel  computers  was  made 
because memoiy was  cheaper  than processors.  While the processor  is  

busy,  most  of the memoiy is  on idle.  Today,  both processors  and memory 

are  made of  the same material, but silicon wafer is  wasted at $1 million / 

m 2  (Hillis 1987).  

Parallelism in computers  means having  more than one processing  
element working  at  the same time. In present  computers,  the number of  

processors  ranges up to 65 536 (Table  1). Massive parallelism  begins at 
about 200 processors  where individual processors can  no longer  be 

manipulated  directly,  but require  a switching  mechanism in the compu  

ter's  bus architecture;  i.e.,  the bus  becomes  programmable  as  well  as  the 

processors.  Parallelism  is  not to be confused with  vector  processing  which  

only  allows  processing  of  qualifying  arrays  in parallel.  
Parallel computer  architectures  can  be divided into MIMD and SIMD. 

The latter, Single  Instruction Multiple  Data, is  easier to  implement.  In 

SIMD machines,  multiple  data elements, such as  pixels  of  an image  or  

spatial  information,  are  broadcast into each processor's  memory and the 

same  program is executed at  each processor.  If  there are  local  connections 
between neighbouring  processing  elements,  communication is  fast.  The 

most  successful  parallel  supercomputer,  the Connection Machine,  can  
crank  away such  problems at  2500 MIPS  and 1.4 GFLOPS. The switching  

architecture,  n-cube,  in a  Connection Machine ensures  that each process  

ing  element is  no  more  than 12 nodes away from each other. When  65 536 

is  not enough,  the operating  system  generates  up to millions  of  transpar  

ently  virtual processors.  
Parallel supercomputers  are  being  used for applications  in structural  

analysis,  fluid dynamics,  and image  processing.  They  complement  effec  

tively  with Cray's  by  being more effective  and cheaper  for data intensive 

applications.  The disk  arrays  in  Connection Machine and Maspar  that 
consist  of  large  amounts of  inexpensive  standard hard disks  make them 

applicable  also  for fast  data retrieval. 

Programming  a  Connection Machine is  done using either  *LISP,  *C, or  
"■FORTRAN. These languages  (prefix  is "asterisk") have the extensions 

necessaiy  for broadcasting  data and program into the processors.  The 

programmer does not need to know the processors  and memory locations. 

The basic  processing  element is  a  xector  that defines pairs  of  objects  and 

values. The xectors can process  themselves;  e.g., printed,  bound to 

variables,  added,  and so  on (Hillis 1985).  Many  of the parallelizing  features 
of  *FORTRAN  will be implemented  in standard FORTRAN-90, where the 

programmer can  process  an entire array  of  numbers without constructing  
the loops  and subscripts.  

Programming  tools other than languages  are  still  few in number for 

parallel  computers  (Kitano  et  al.  1991).  Most  of  the existing  programs  run  

in the  Connection Machine,  and are  for  engineering  and physics.  A  frame  
based  language  called PARKA  (Evett  et al.  1990)  is  available for  AI  research.  
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No  true object-oriented  tools  exist.  An emulator for  *LISP is available.  It is  

possible  to develop  code on  a  serial  machine and later execute it on the real 

thing.  

Table 1. Some parallel,  vector,  and  serial computers and  their  performance (Digital  1991, 

Moniverkkotekniikka 1991). 

Conclusions 

The use  of  a parallel  computing  platform  for the present  topological  tree 
model is obvious:  assign  a  processor  for  each tree part. Because there are  

only  local  connections (all  mechanistic  systems have only local  connec  

tions),  the processing  would be very  fast.  A  mature tree would require  a  few 

millions of parts  and the use  of  virtual memory. In the absence  of real 

object-oriented  languages,  it would be possible  to use  just *LISP for 

programming.  

A graphical  interface to the present  model will  be built  in future. That 

picture  will at  first  be a mere branching  diagram that can  be rotated and 

debugged,  but it can  also  be rendered for realistic  appearance. The final  

step  is  "virtual  reality",  a realistic tree that can simulate symptoms  of  

damage  and graphically  animate its  life  and death as  in a movie. 
Parallel  processing  can  also  be used for larger-scale  forest  simulations.  

Raster  elements from  satellite imagery,  stands,  and trees  without detail  can 

be simulated in parallel.  The interactions of  treatments of adjacent  stands 

can easily  be accounted for.  Animating  the blowing  over  of  a stand in a 

storm might  be useful prior  to operations  that expose stands  to winds. 
If  parallel  computing  seems  strange  at  first, after  some serious consid  

eration it will look more  natural  than the  way  forest  scientists  do their 

computing  at the present.  

The Centre for  Scientific  Computing at  the State Computing  Centre will  

get  its  first  parallel  supercomputer  soon. While forest  scientists  have made 

no  use  of  the Cray  or  smaller  supercomputers  so  far,  a  parallel  supercomputer  

Name N  of  processors  Peak 32-bit MIPS Peak MFLOPS 

Connection Machine CM-2 4 096...65 536 2 500  14 000 

Intel iPSC/860 32... 128 6 000  5000 

Maspar/DECmpp 12000 16B 16 384 26 000  580  

Convex C3840 4 1 000 500 

Cray  Y-MP /832 8 1 000  2 667  

DEC VAX-9000 440 VP 4 30 500 

Sun Sparcstation 2 1 28 3 
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will obviously  be more  useful.  Since their  prices  begin  at  $2  million  FIM and 

drop  fast,  they  are  not out of  reach even  for  the FFRI.  Now is  the time to go 
abroad to learn how to use  them. 
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