

Defining optimal plot type and size

- Has been an important topic in forest inventory since 1950's
- No universal optimum can be found, so we can optimize for specific conditions
- Optimization can be based on
- Anticipated (super)population variance
- Simulated sample from a real or simulated population
- The optimal plot type and size is different for each forest characteristics
- a compromise is needed

Case study in Northern Finland

- 18 test areas of size 50 m * 50 m with all trees measured and located
- The spatial pattern and diameter distribution of trees in most areas highly uneven

Plot types compared

- The studied plot types were
- Fixed-sized plots with radius from 3 m to 11 m
- Combination of two co-centric sample plots
- The combinations of radii $11 / 7 \mathrm{~m}, 9 / 6 \mathrm{~m}, 7 / 5 \mathrm{~m}, 6 / 4 \mathrm{~m}$ and $5 / 3 \mathrm{~m}$
- The diameter limit 5, 7.5, 10, 12.5 or 15 cm
- Angle-count plot with relascope factor from $1 \mathrm{~m}^{2}$ to $3 \mathrm{~m}^{2}$
- Maximum radius from 6 m to 11 m
- We simulated one plot within each test area
- 1000 simulations

Sample tree selection strategies compared

- Only a sub-sample of all tally trees was selected as sample trees
- For sample trees the volume was assumed to be known without error
- For tally trees the volume was estimated with a model including prediction error
- Two strategies

1. Fixed: Measure all trees within a 1 meter radius from plot center and all trees with $\mathrm{d}_{1.3}>25 \mathrm{~cm}(\mathrm{~S} 1)$
2. Angle-count: Measure all trees with relascope factor 5 (S2)

Costs

- Costs measured as a function of
- Time to move from plot to plot (10 - 20 min)
- Number of tally trees (measurement time $0.5 \mathrm{~min} /$ tree)
- Number of sample trees (measurement time $4.5 \mathrm{~min} /$ tree)
- Number of borderline trees (checking time $0.5 \mathrm{~min} /$ tree)

RMSE as a function of measurement time

- Fixed-sized plots most efficient for stem number but anglecount plots most efficient for volume
- The fixed sample tree selection strategy (S1) takes much less time than the angle-count strategy (S2)

Stem number

Volume

Sample tree selection strategies in fixed-sized plots

- In angle-count strategy (S2) the number of sample trees is on average larger than with fixed strategy (S1) with the limits set
- Effect on RMSE of volume is quite small
- Angle count strategy (S2) better with smallest radii
- Fixed strategy (S1) better with largest radii

Optimization in plot level

- The optimal plot type and size defined using analytic cost-plus-loss approach
- Loss defined as a weighted sum of RMSEs of volume, basal area and stem number
- Sample tree selection strategy very important in optimization
Fixed-sized
Co-centric
Angle-count

Optimization in cluster level

- The optimal sample size and plot type and size for one cluster defined minimizing
- (weighted) relative mean of standard errors of mean
- with budget constraint of 420 minutes per day
- accounting for both within-test-area and between-test-area variance

- Optimal cluster 19 co-centric plots with radii $7 / 5 \mathrm{~m}$

Sensitivity to time for transfer between plots

- As time to transfer between plots increase,
- optimal number of plots decrease,
- radius (co-centric) increases

Effect of spatial pattern

- For clustered areas the radius of the plot is important, for regular areas not so much
- Tended forests more regular?

Conclusions

- While the results were sensitive to the cost function parameters, co-centric was optimal in almost all cases
- Smaller than the one currently used
- Sample tree selection strategies need further study
- Turned out very important for the costs but not for precision
- Are the sample trees more important for other variables than volume?
- Number of possible strategies very large
- Angle count strategy with RF higher than 5 could have been more efficient still
- Location of the sample trees may also be of importance

Conclusions

- The results are dependant on the forest structure in Northern Finland
- The optimal plot type and size probably different in Southern Finland
- Separate optimization for different regions needed

Thank you!

