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Abstract. Closed (non-steady state) chambers are widely
used for quantifying carbon dioxide (CO2) fluxes between
soils or low-stature canopies and the atmosphere. It is well
recognised that covering a soil or vegetation by a closed
chamber inherently disturbs the natural CO2 fluxes by al-
tering the concentration gradients between the soil, the veg-
etation and the overlying air. Thus, the driving factors of
CO2 fluxes are not constant during the closed chamber ex-
periment, and no linear increase or decrease of CO2 con-
centration over time within the chamber headspace can be
expected. Nevertheless, linear regression has been applied
for calculating CO2 fluxes in many recent, partly influential,
studies. This approach has been justified by keeping the clo-
sure time short and assuming the concentration change over
time to be in the linear range. Here, we test if the application
of linear regression is really appropriate for estimating CO2
fluxes using closed chambers over short closure times and if
the application of nonlinear regression is necessary. We de-
veloped a nonlinear exponential regression model from dif-
fusion and photosynthesis theory. This exponential model
was tested with four different datasets of CO2 flux measure-
ments (total number: 1764) conducted at three peatlands sites
in Finland and a tundra site in Siberia. Thorough analy-
ses of residuals demonstrated that linear regression was fre-
quently not appropriate for the determination of CO2 fluxes
by closed-chamber methods, even if closure times were kept
short. The developed exponential model was well suited for
nonlinear regression of the concentration over timec(t) evo-
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lution in the chamber headspace and estimation of the initial
CO2 fluxes at closure time for the majority of experiments.
However, a rather large percentage of the exponential regres-
sion functions showed curvatures not consistent with the the-
oretical model which is considered to be caused by viola-
tions of the underlying model assumptions. Especially the
effects of turbulence and pressure disturbances by the cham-
ber deployment are suspected to have caused unexplainable
curvatures. CO2 flux estimates by linear regression can be
as low as 40% of the flux estimates of exponential regression
for closure times of only two minutes. The degree of under-
estimation increased with increasing CO2 flux strength and
was dependent on soil and vegetation conditions which can
disturb not only the quantitative but also the qualitative eval-
uation of CO2 flux dynamics. The underestimation effect by
linear regression was observed to be different for CO2 uptake
and release situations which can lead to stronger bias in the
daily, seasonal and annual CO2 balances than in the individ-
ual fluxes. To avoid serious bias of CO2 flux estimates based
on closed chamber experiments, we suggest further tests us-
ing published datasets and recommend the use of nonlinear
regression models for future closed chamber studies.

1 Introduction

Accurate measurements of carbon dioxide (CO2) fluxes be-
tween soils, vegetation and the atmosphere are a prerequisite
for the quantification and understanding of the carbon source
or sink strengths of ecosystems and, ultimately, for the de-
velopment of a global carbon balance. A number of different
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approaches are used to determine CO2 exchange fluxes be-
tween ecosystems and the atmosphere, each with its own ad-
vantages and limitations. These approaches include microm-
eteorological methods such as eddy covariance or gradient
techniques which are employed on towers or aircrafts, dif-
fusion modelling for bodies of water, and measurements us-
ing open (steady state) or closed (non-steady state) chambers
(e.g. Matson and Harriss, 1995; Norman et al., 1997).

The closed chamber method is the most widely used ap-
proach to measure the CO2 efflux from bare soil surfaces
(e.g. Jensen et al., 1996; Xu and Qi, 2001; Pumpanen et al.,
2003, 2004; Reth et al., 2005; Wang et al., 2006). Also, it
is often applied to quantify the net CO2 exchange between
the atmosphere and low-stature canopies typical for tundra
(Vourlites et al., 1993; Christensen et al., 1998; Oechel et
al., 1993, 1998, 2000; Zamolodchikov and Karelin, 2001),
peatlands (Alm et al., 1997, 2007; Tuittila et al., 1999; Bu-
bier et al., 2002; Nyk̈anen et al., 2003; Burrows et al., 2004;
Drösler, 2005; Laine et al., 2006), forest understorey vege-
tation (Goulden and Crill, 1997; Heijmans et al., 2004) and
agricultural crop stands (Dugas et al., 1997; Wagner et al.,
1997; Maljanen et al., 2001; Steduto et al., 2002). Advanta-
geously, the closed-chamber method is relatively low in cost
and power consumption, simple to operate and can there-
fore be used in remote, logistically difficult areas. On the
other hand, it is prone to a variety of potential errors (Liv-
ingston and Hutchinson, 1995; Welles et al., 2001; David-
son et al., 2002) which the investigator has to consider and
to minimise by careful experiment planning and chamber de-
sign. Sources of errors are (1) inaccurate determination of the
headspace volume (Livingston and Hutchinson, 1995), (2)
leakage directly at the chamber components or via the under-
lying soil pore space (Hutchinson and Livingston, 2001; Liv-
ingston et al., 2006), (3) temperature changes of the soil and
the atmosphere beneath the chamber (Wagner and Reicosky,
1992; Dr̈osler, 2005), (4) artificial water vapour accumula-
tion which depletes the CO2 concentration and might influ-
ence the stomata regulation of plants (Welles et al., 2001), (5)
disturbance of pressure gradients across the soil-atmosphere
interface by soil compression or insufficient pressure relief
during chamber setting (Hutchinson and Livingston, 2001;
Livingston et al., 2006), (6) suppression of the natural pres-
sure fluctuations (Hutchinson and Mosier, 1981; Conen and
Smith, 1998; Hutchinson and Livingston, 2001), (7) alter-
ation or even elimination of advection and turbulence and
thus modification of the diffusion resistance of the soil- or
plant-atmosphere boundary layer (Hanson et al., 1993; Le
Dantec et al., 1999, Hutchinson et al., 2000; Denmead and
Reicosky, 2003; Reicosky, 2003), and (8) the concentration
build-up or reduction within the chamber headspace that in-
herently disturbs the underlying concentration gradients that
were in effect prior to chamber deployment (e.g. Matthias et
al., 1978; Hutchinson et al., 2000; Livingston et al., 2006).
This study focuses on the latter problem, which can lead to
serious bias of CO2 fluxes if not accounted for, even if all

other potential errors were kept at minimum.
The closed chamber methodology estimates the CO2

fluxes by analysing the rates of CO2 accumulation or deple-
tion in the chamber headspace over time. However, every
change of the CO2 concentration from the normal ambient
conditions feeds back on the CO2 fluxes by altering the con-
centration gradients between the soil or the plant tissues and
the surrounding air. In other words, the measurement method
itself alters the measurand. Thus, for assessing the prede-
ployment CO2 flux, the rate of initial concentration change at
the moment of deployment (t=t0=0) should be used when the
alteration of the concentration gradients in soils and plant tis-
sues is minimal, rather than the mean rate of the CO2 concen-
tration change over the chamber closure period (Livingston
and Hutchinson, 1995).

The nonlinear nature of the gas concentration evolution
over time in closed chambers has been recognised and dis-
cussed early and at length in the history of chamber-based
gas flux measurements. However, most studies concerning
this issue were conducted for the gas exchange of bare soil
surfaces. Matthias et al. (1978) showed for numerical sim-
ulations of closed chamber experiments with closure times
of 20 min that N2O emissions could be underestimated by as
much as 55% by linear regression. Quadratic regression still
underestimated the real fluxes by up to 25%. An exponential
function developed from simplified diffusion theory was best
suited for the flux estimate with underestimation of the fluxes
of maximal 11%. In the following years, further theoretical
and numerical studies came to the same conclusion that the
use of linear regression can lead to serious underestimation
of gas fluxes between soils and atmosphere (Hutchinson and
Mosier, 1981; Healy et al., 1996; Hutchinson et al., 2000;
Pedersen, 2000; Pedersen et al., 2001; Welles et al., 2001;
Hutchinson and Livingston, 2001). The serious underestima-
tion bias of the linear regression method as predicted by the
theoretical and numerical studies was confirmed by Nakano
et al. (2004) by measurements of CO2 release and CH4 con-
sumption from soils under actual field conditions. Recently,
Livingston et al. (2005, 2006) introduced the so-called non-
steady-state diffusive flux estimator (NDFE) function which
is derived from time dependent diffusion theory and can
be fitted by nonlinear regression to gas concentration over
time data from closed chamber experiments. They demon-
strated for numerical model simulations that only the NDFE
model was able to accurately determine the predeployment
gas fluxes whereas quadratic and also exponential regres-
sion still underestimated them. However, the NDFE model
is restricted to gas sources in bare soils whereas vegeta-
tion and gas sinks are not considered. Only few researchers
have applied nonlinear models to determine CO2 exchange
fluxes on vegetated surfaces (Dugas et al., 1997; Wagner et
al., 1997; Steduto et al., 2002). The mentioned scientists
used the quadratic model proposed by Wagner et al. (1997)
which accounts for nonlinear disturbances by the chamber
deployment but is not based on the underlying physiology
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and diffusion physics. Wagner et al. (1997) demonstrated
for the CO2 exchange of different agricultural crop stands
that 60% to 100% of all chamber experiments were signif-
icantly nonlinear. Even with a short closure time of 60 s,
fluxes derived from quadratic regression were 10% to 40%
greater than those calculated with linear regression.

Despite the growing evidence against the use of a linear
model for the determination of gas fluxes using closed cham-
bers, most of the recent studies on the CO2 balance of vege-
tated surfaces and many studies on the CO2 efflux from bare
soil have applied linear regression for estimating CO2 fluxes
(e.g. Vourlites et al., 1993; Oechel et al., 1993, 1998, 2000;
Jensen et al., 1996; Alm et al., 1997, 2007; Goulden and
Crill, 1997; Christensen et al., 1998; Tuittila et al., 1999;
Maljanen et al., 2001; Xu and Qi, 2001; Bubier et al., 2002;
Nykänen et al., 2003; Pumpanen et al., 2003; Burrows et
al., 2004; Heijmans et al., 2004; Drösler, 2005; Reth et al.,
2005; Laine et al., 2006; Wang et al., 2006). Usually, the au-
thors justify the use of linear regression by keeping the clo-
sure time short and assuming the concentration change over
time to be still in the linear range.

Here, we investigate if the application of linear regres-
sion is really appropriate for estimating CO2 fluxes from
bare or vegetated soils using closed chambers with short clo-
sure times or if it is necessary to apply a nonlinear model.
The performance of the linear model can be evaluated by
comparing its results with the results of nonlinear models
developed from biophysical theory. For bare and approxi-
mately homogenous soils, we consider nonlinear regression
of the NDFE function of Livingston et al. (2005, 2006) as
the most advanced approach. However, the extension of
this physically-based model of non-steady state diffusion
through homogenous soils to the situation of vegetated and
substantially heterogeneous soils does not appear feasible to
us. Therefore, we develop a conceptual, explicitly simplified
biophysical model to include both soils and vegetation pro-
cesses. The main purpose of this model is to evaluate which
type of nonlinear function can be expected to adequately
describe the evolution of CO2 concentrations within closed
chambers deployed on vegetated and bare soils. We adopt
the exponential model of Matthias et al. (1978) for trace gas
efflux from bare soils, which is based on simplified diffusion
theory, and expand it for sites with low-stature vegetation.
For this purpose, the effect of changing CO2 concentrations
on photosynthesis has to be added to the model.

The developed nonlinear exponential model is tested
against the linear model and the quadratic model proposed
by Wagner et al. (1997) with four datasets of CO2 flux mea-
surements (total number = 1764) conducted by four separate
working groups at two vegetated boreal peatlands, one veg-
etated tundra, and one non-vegetated boreal peat excavation
site. Furthermore, the exponential model was tested against
the NDFE model of Livingston et al. (2005, 2006) using the
dataset from the non-vegetated peat excavation site.
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Figure 1. Schematic of the CO2 fluxes in the chamber headspace which make up to the net 

CO2 flux Fnet (details in the text, Eq. (1)). FSoil(t) is the diffusive efflux from the soil, FP(t) is 

photosynthesis, FR(t) is aboveground plant respiration, FLeak(t) is leak flux. dc/dt(t) is the CO2 

concentration change over time t in the chamber headspace. 
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Fig. 1. Schematic of the CO2 fluxes in the chamber headspace
which make up to the net CO2 flux Fnet (details in the text, Eq. (1)).
FSoil(t) is the diffusive efflux from the soil,FP (t) is photosynthe-
sis, FR(t) is aboveground plant respiration,FLeak(t) is leak flux.
dc/dt(t) is the CO2 concentration change over timet in the cham-
ber headspace.

The major questions of the test experiment were:

1. How well do the empirical linear and quadratic func-
tions (flin and fqua) as well as the theory-based ex-
ponential and NDFE functions (fexp, fNDFE) describe
the chamber CO2 concentration evolution data from real
measurements?

2. Are the linear and quadratic model functions (flin
andfqua) sufficient approximations of the exponential
model for the specific experiment set-ups, particularly
for short chamber closure times?

3. Is the NDFE function (fNDFE) better fitted to the cham-
ber CO2 data from the non-vegetated peat excavation
site than the exponential function (fexp)?

4. Do the initial slopesf ′(t) of the different functions
(flin , fqua, fexp, fNDFE), which are directly proportional
to the calculated initial CO2 net fluxesFnet(t0), deviate
significantly from each other?

2 Development of the nonlinear exponential model

Presuming that the chamber experiment itself alters the mea-
surand, namely the CO2 flux, a nonlinear evolution of the
CO2 concentration in the chamber headspace must be ex-
pected. In the following, a conceptual model based on sim-
plified biophysical theory is developed which shall reflect
this nonlinear CO2 concentration evolution as affected by the
main relevant processes which contribute to the net CO2 flux
into or from the chamber headspace. The considered pro-
cesses are (1) diffusion from the soil, (2) photosynthesis of
the plants, (3) respiration of the plants and (4) diffusion from
the headspace to the surrounding atmosphere by leaks at the
chamber or through the soil (Fig. 1).
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The model presented here is based on the assumption
that all other potential errors of the closed chamber ap-
proach which are not connected to the inherent concentra-
tion changes in the closed chamber headspace are negligi-
ble thanks to careful experiment planning. This means that
during chamber deployment, soil and headspace air temper-
ature, photosynthetically active radiation, air pressure and
headspace turbulence are assumed to be constant and approx-
imately equal to ambient conditions.

When covering a vegetated soil surface with a closed
chamber, the CO2 concentration change over time in the
chamber headspace is the net effect of several individual pro-
cesses with partly opposing directions (Fig. 1). CO2 is added
to or removed from the headspace by different processes at
different interface surfaces. The headspace is isolated from
the surrounding atmosphere by the chamber walls. Here,
relevant CO2 flux is only possible through leaks (FLeak)

which should be avoided but often cannot be ruled out com-
pletely. Of course, the headspace is open to the soil surface
where CO2 efflux from the soil (FSoil) to the overlying air
takes place. Inside the headspace, plants photosynthesise
and respire, meaning CO2 removal (FP ) from or CO2 supply
(FR) to the headspace air, respectively. The sum of all CO2
fluxes into or out of the headspace represents the net CO2 flux
(Fnet) which can be estimated by the change of the CO2 con-
centration over timedc/dt(t) during chamber closure. The
sign convention of this study is that fluxes are defined posi-
tive when adding CO2 to the chamber headspace and nega-
tive when removing CO2 from the chamber headspace.

The net CO2 flux Fnet(t), which in effect drives the CO2
concentration change in the chamber headspace over time
dc/dt(t), can be written as:

Fnet(t) =
dc

dt
(t)

pV

RTA
= FSoil (t) + FP (t) + FR (t) + FLeak(t)

(1)

wherep is air pressure,R is the ideal gas constant, andT
is the temperature (in Kelvin).V andA are the volume and
the basal area of the chamber, respectively.FSoil(t) is the
CO2 efflux from the soil which originates from the respira-
tion of soil microbes, soil animals and belowground biomass
of plants, i.e. roots and rhizomes,FP (t) is the CO2 flux as-
sociated with the gross photosynthesis of the plants,FR(t)

is the CO2 flux associated with the dark respiration of the
aboveground biomass, andFLeak(t) is the CO2 flux related
to leakage directly at the chamber components or via the soil
pore space. These individual process-associated fluxes have
to be considered as not constant but more or less variable
over time during the chamber deployment. This is due to
the direct dependency of some of the individual fluxes on the
CO2 concentration in the headspace which is changing over
time.

By reorganising Eq. (1), the concentration change in the
chamber headspace over timedc/dt(t), can be written as:

dc

dt
(t) = [FSoil (t) + FP (t) + FR (t) + FLeak(t)]

RTA

pV
(2)

The CO2 efflux from the soil to the headspace airFSoil(t)

is considered to be mainly driven by molecular diffusion be-
tween the CO2-enriched soil pore space and the headspace
air and can be modelled following Matthias et al. (1978),
Hutchinson and Mosier (1981) and Pedersen (2000) as:

FSoil(t) = D
[cd − c (t)]

d

pV

RT A
(3)

whereD is the soil CO2 diffusivity, cd is the CO2 concen-
tration at some unknown depthd below the surface where
the CO2 concentration is constant and not influenced by the
chamber deployment.c(t) is the CO2 concentration of the
headspace air which is assumed equal to the CO2 concentra-
tion at the soil surface, which has to be ensured by adequate
mixing of the headspace air.

While the nonlinear models ofFSoil over the chamber clo-
sure time by the above-mentioned authors are well-accepted
and frequently applied, the effect of the CO2 concentration
changes in the chamber headspace on the photosynthesis of
enclosed vegetation has not been given much attention. How-
ever, this effect can be expected to be substantial consider-
ing the underlying enzyme kinetics of photosynthesis whose
main substrate is CO2.

As photosynthesis is limited either by the electron trans-
port rate at the chloroplast, which is dependent on irradi-
ation, or the activity of Rubisco, which is mainly depen-
dent on the intercellular CO2 concentration (Farquhar et al.,
1980),FP can be either strongly dependent on or nearly in-
dependent of changes of the headspace CO2 concentration
c(t) depending on the irradiation level. The complex de-
pendence of photosynthetic activity on irradiation and CO2
concentration which is reflected in full detail by the model
of Farquhar et al. (1980) must and can be strongly simpli-
fied for our approach. Under non-irradiation-limited con-
ditions, the photosynthesis of C3 plants and mosses is con-
sidered to correlate approximately linearly with the ambient
CO2 concentration at CO2 concentrations between 300 ppm
and 400 ppm. This has been shown by several previous
studies (Morison and Gifford, 1983; Grulke et al., 1990;
Stitt, 1991; Sage, 1994; Luo et al., 1996; Luo and Mooney,
1996; Williams and Flanagan, 1998; Griffin and Luo, 1999).
Consequently,FP (t) can be modelled for periods with non-
irradiation-limited photosynthesis of a canopy consisting of
C3 plants and/or mosses, which is typical for tundra and peat-
lands, as:

FP (t) = kP c (t)
pV

RTA
(4)

wherekp is the constant of proportionality of the approx-
imately linear relationship between CO2 concentration and
photosynthesis-associated flux.
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On the other hand,FP (t) is not a function ofc(t) but in-
variant with changingc(t) if photosynthesis is limited by the
irradiation – consequently also during dark conditions – or if
the canopy consists mainly of C4 plants. Thus, if the other
environmental controls such as irradiation, temperature or air
moisture can be assumed constant,FP (t) can be defined as:

FP (t) = FP (t0) (5)

wheret0 is t=0.
As the effect of ambient CO2 concentration changes on

dark respiration has been shown to be very low or none
(Grulke et al., 1990; Drake et al., 1999; Amthor, 2000;
Tjoelker et al., 2001; Smart, 2004; Bunce, 2005), CO2 flux
associated with the dark respiration of aboveground biomass
FR(t) is considered invariant with changingc(t) in a consid-
ered CO2 concentration range of 200 ppm to 500 ppm. Thus,
if the other environmental controls such as temperature or air
moisture can be assumed constant,FR(t) can be defined as:

FR(t) = FR(t0) (6)

As leakage often cannot be ruled out completely, CO2 flux
associated with potential leakagesFLeak(t) should be inte-
grated into the model.FLeak(t) is considered to be driven by
diffusive transport and can therefore be modelled similarly to
FSoil(t):

FLeak(t) =

{
DChamber

[ca − c (t)]

dChamber
+ DSoil

[ca − c (t)]

dSoil

}
pV

RTA
= KLeak [ca − c (t)]

pV

RTA
(7)

whereDchamber is the mean diffusivity of leaks directly at
the chamber components,dchamber is the distance between
headspace and the surrounding air,DSoil is the mean diffu-
sivity of leaks by air-filled soil pore space, anddSoil is the
distance between the headspace and the surrounding air via
the air-filled soil pore space.KLeak is a constant which com-
binesDchamber, dchamber, DSoil, anddsoil and indicates leak-
age strength.ca is the CO2 concentration in the air outside
of the chamber which is considered well-mixed and therefore
constant during chamber deployment.

For situations with non-irradiation-limited photosynthesis,
the concentration change in the chamber headspace over time
dc/dt(t) can be derived by inserting the Eqs. (3), (4), (6) and
(7) into Eq. (2):

dc

dt
(t) = D

[cd − c (t)]

d
+ kP c (t) + FR(t0)

RTA

pV
+ KLeak [ca − c (t)]

(8)

which can be reorganised to

dc

dt
(t) =

[
D

d
cd + FR(t0)

RTA

pV
+ KLeakca

]
+

[
−

D

d
+ kP − KLeak

]
c (t) (9)

This differential equation expresses mathematically the pre-
viously emphasised fact that the measurement method it-
self alters the measurand. The measuranddc/dt(t) is altered
by the change of the headspace concentrationc(t) which is
forced by the chamber deployment to determinedc/dt(t).
The differential equation Eq. (9) is solved by computing its
indefinite integral:

c(t) = −

[
D
d
cd + FR(t0)

RTA
pV

+ KLeakca

]
[
−

D
d

+ kP − KLeak
]

+ exp

[(
−

D

d
+ kP − KLeak

)
t

]
B (10)

whereB is the integral constant.
For situations with irradiation-limited photosynthesis, the

concentration change in the chamber headspace over time
dc/dt(t) can be derived by inserting the Eqs. (3), (5), (6) and
(7) into Eq. (2):

dc

dt
(t) = D

[cd − c (t)]

d
+ [FP (t0) + FR(t0)]

RTA

pV

+KLeak [ca − c (t)] (11)

which can be reorganised to :

dc

dt
(t) =

{
D

d
cd + F [P (t0) + FR(t0)]

RTA

pV
+ KLeakca

}
+

(
−

D

d
− KLeak

)
c (t) (12)

This differential equation is solved by computing its indefi-
nite integral:

c(t) = −

{
D
d
cd + [FP (t0) + FR(t0)] RTA

pV
+ KLeakca

}
(
−

D
d

− KLeak
)

+ exp

[(
−

D

d
− KLeak

)
t

]
B (13)

whereB is the integral constant.
For both situations, with non-irradiation-limited photosyn-

thesis and with irradiation-limited photosynthesis, the evo-
lution of c(t) over time as given by Eq. (10) and Eq. (13),
respectively, can be described and fitted by an exponential
functionfexp(t) of the form:

c(t) = fexp(t) + ε (t) = p1 + p2 exp(p3t) + ε (t) (14)

whereε(t) is the residual error at a specific measurement
timet . The parametersp1 andp3 have different meanings for
each situation. For the situation with non-irradiation-limited
photosynthesis,p1 is given by

p1 = −

[
D
d
cd + FR(t0)

RTA
pV

+ KLeakca

]
(
−

D
d

+ kP − KLeak
) (15)
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andp3 is given by

p3 =

(
−

D

d
+ kP − KLeak

)
(16)

For the situation with irradiation-limited photosynthesis,p1
is given by

p1 = −

{
D
d
cd + [FP (t0) + FR(t0)] RTA

pV
+ KLeakca

}
(
−

D
d

− KLeak
) (17)

andp3 is given by

p3 =

(
−

D

d
− KLeak

)
(18)

For both situations,p2 is equal to the integral constantB of
the solution of the respective differential equation:

p2 = B (19)

As shown clearly by Eqs. (15) to (19), the parameters of
the exponential modelp1, p2, andp3 cannot directly be in-
terpreted physiologically or physically since they represent
a mathematical combination of several physiological and
physical parameters of the investigated soil-vegetation sys-
tem and the applied closed chamber technique. However, the
given derivation demonstrates that an exponential or near-
exponential form of the regression model should be appli-
cable for describing the evolution ofc(t) over time in the
chamber headspace. The initial slope of the exponential re-
gression curvef ′

exp(t0)=(p2 p3) can be used to estimate the
CO2 flux rate at the beginning of the chamber deployment
Fnet(t0), which is considered to be the best estimator of the
net CO2 exchange flux under undisturbed conditions:

Fnet(t0) =
dc

dt
(t0)

pV

RTA
= f ′

exp(t0)
pV

RTA
= p2p3

pV

RTA
(20)

Regarding the results of Matthias et al. (1978) and Livingston
et al. (2006), nonlinear regression of the exponential function
to thec(t) data is still likely to underestimate the predeploy-
ment fluxes. However, we consider the application of ex-
ponential regression as the most accurate approach which is
practicable at all when measuring CO2 fluxes from complex
vegetation-soil systems.

3 Least squares regression of model functions

The evolution of the CO2 concentration in the chamber
headspacec(t) over time was analysed by fitting the follow-
ing model functions to the experimental data: (1) the expo-
nential model functionfexp(t) developed in Chapter 2, (2) a
quadratic model functionfqua(t) as proposed previously by
Wagner et al. (1997), (3) the linear model functionflin(t),
which was used in many other studies and (4) the NDFE
function proposed by Livingston et al. (2006) only for the

non-vegetated peat excavation site Linnansuo. The quadratic
model function has the form:

c (t) = fqua(t) + ε (t) = a + b t + c t2
+ ε (t) (21)

wherea, b andc are the fit parameters of the second-order
polynomial. The linear model function has the form:

c (t) = flin (t) + ε (t) = a + b t + ε (t) (22)

The NDFE function has the form:

c (t) = fNDFE (t) + ε (t) = c0 + f0τ

(
A

V

)
[

2
√

π

√
t/τ + exp(t/τ ) erfc

(√
t/τ

)
−1

]
+ ε (t) (23)

wherec0 and f0 represent initial chamber headspace CO2
concentration and initial CO2 flux at t0=0, the time constant
τ is an indicator of how fast the concentration gradient of the
gas in the soil responds to changes in chamber CO2 concen-
tration (Livingston et al., 2005, 2006).

The parameters of the best-fitted functions were estimated
by least-squares regression, i.e. by minimizing the sum of the
squared residuals between the observed data and their fitted
values. Both, the nonlinear and the linear regressions were
conducted with an iterative Gauss-Newton algorithm with
Levenberg-Marquardt modifications for global convergence
(functionnlinfit of the Statistics Toolbox of MATLAB® Ver-
sion 7.1.0.246 (R14)).

The parameters of the exponential and quadratic regres-
sion functions (Eqs. 20, 21) can only be interpreted by the
theoretical model if the curves are convex, i.e. if the abso-
lute value of the slope of thec(t) curve is decreasing with
time. However, the parameter estimations of the exponential
and quadratic regressions were not restricted to such curva-
tures only, thus allowing for the detection of clearly nonlinear
c(t) curves with curvatures not explainable by the theoretical
model. Curves with such “unexplainable” curvatures were
separated after the fitting procedure. The parameters of the
NDFE model were restricted to positive values as was done
also by Livingston et al. (2006).

4 Statistical evaluation and comparison of different
models

The first step to test the theory-based modelsfexp and
fNDFE with respect to their ability to describe thec(t) evo-
lution within the chambers was to check if the curvatures
of the quadraticfqua and exponentialfexp regression func-
tions were consistent with the theoretical considerations (see
Sect. 3). Curves with the absolute values of the slopes in-
creasing with time are neither explainable by the exponen-
tial model developed in this study nor by the NDFE model
of Livingston et al. (2006). They were considered to be
caused by violations of the basic assumptions of the de-
veloped theoretical models, which means that one of the
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factors soil temperature, headspace air temperature, photo-
synthetically active radiation, the pressure gradient across
the soil-atmosphere interface or the headspace turbulence
were apparently neither constant nor approximately equal
to ambient conditions. Then, the different regression func-
tions flin , fqua, fexp, fNDFE were evaluated by thorough
analyses of residuals. These analyses included theDurbin-
Watsontest for autocorrelation and theD’Agostino-Pearson
test for normality of the residuals (Durbin and Watson, 1950;
D’Agostino, 1971). Furthermore, the goodness of fit of the
different regression functions was compared using the ad-
justed nonlinear coefficient of determinationR2

adj (Rawlings
et al., 1998), theAkaike information criterion AICc (with
small sample second order bias correction; Burnham and An-
derson, 2004) and an F-test of the residual variances of two
compared regression functions (Fisher, 1924).

Autocorrelation of the residuals would indicate that the fit-
ted model does not reflect all important processes governing
the c(t) evolution over time. Indeed, autocorrelation of the
residuals is a very sensitive indicator of a too simple model.
With significantly autocorrelated residuals, the least-squares
estimators would no longer be the best estimators of the
function parameters (violation of the thirdGauss-Markovas-
sumption). Also the variance (error) estimators of the param-
eters would be seriously biased (Durbin and Watson, 1950;
Rawlings et al., 1998). That means that autocorrelation must
be removed (by data reduction) before correct estimations of
the errors of the regression parameters and consequently also
of the errors of the flux estimates are possible. For thec(t)

evolution data from the closed chamber experiments, check-
ing for autocorrelation becomes particularly important since
these data represent time series which are often susceptible
to residual autocorrelation. The assumption of normality of
the residuals has to be valid for tests of significance and con-
struction of confidence intervals for the regression function
(Rawlings et al., 1998). For thec(t) data, theD’Agostino-
Pearsontest is a stricter test for normality than the often used
Kolmogorov-Smirnov test, which has to be considered out-
dated (D’Agostino, 1986). A well-fitted model should nei-
ther show autocorrelation nor non-normality of the residuals.
Thus, in our case, if autocorrelation and/or non-normality of
the residuals are found to be more serious forflin or fqua
compared tofexp, this would indicate that the respective
function would be less appropriate for modelling the mea-
surement data thanfexp.

The question whether the initial slopesf ′(t0) of two differ-
ent regression functions deviate significantly from each other
was then evaluated by plotting them against each other asx-y
scatter diagrams. The differences between the absolute val-
ues off ′(t0) of two regression functions were separated by
their sign and tested for their significance by one-tailedStu-
dent’s t-tests following Potthoff (1965, cited in Sachs, 1992).
The error estimates of the initial slopes were determined after
removing autocorrelation by block-averaging the data. The
necessary data number for block averages were automati-

cally adjusted to the degree of observed autocorrelation by
a routine included in the applied MATLAB® regression pro-
gram. The error estimates of the initial slope of the expo-
nential function were derived by fitting a Taylor power series
expansion of 17th order to the data whose curve form and
initial slope is practically identical with the original expo-
nential function. Advantageously, the power series expan-
sion is more resistant against overparameterisation than the
exponential function and directly estimates the initial slope
of thec(t) curve as one of its fit parameters which results in
lower error estimates for the initial slopes.

5 Field measurements

5.1 Investigation sites

The closed chamber experiments were conducted at three
peatland sites in Finland (Salmisuo, Vaisjeäggi, Linnansuo)
and one tundra site in Siberia (Samoylov) by four separate
working groups. Salmisuo is a pristine oligotrophic low-
sedge-pine fen and is located in eastern Finland (62◦46′ N,
30◦58′ E) in the boreal zone. A total of twelve plots were
established in different microsite types: four in flarks, four
in lawns, and four in hummocks. The hummocks are el-
evated above the surrounding area and represent the driest
conditions. They are covered bySphagnum fuscum, Pi-
nus sylvestrisand/orAndromeda polifoliaas well asRubus
chamaemorus. The lawns are intermediate microsites with
respect to water level. Their vegetation consists mostly of
Eriophorum vaginatum. The flarks represent the wettest mi-
crosites and are covered primarily bySphagnum balticum
andScheuchzeria palustris. More information on Salmisuo
mire can be found in Alm et al. (1997) and Saarnio et
al. (1997).

Vaisjëaggi is a pristine palsa mire in northern Finland
(69◦49′ N, 27◦30′ E). The climate is subarctic. To consider
the different functional surfaces within the mire, four study
transects were established. Transects T1 and T2 were lo-
cated on the wet surfaces dominated bySphagnum lindbergii
or Sphagnum lindbergiiandSphagnum riparium. The most
common vascular plants wereEriophorum angustifoliumand
Eriophorum russeolum, Vaccinium microcarpumandCarex
limosa. Transect T3 was set at a wet palsa margin and was
covered bySphagnum riparium, E. angustifoliumand E.
russeolum.Transect T4 was on the top of the palsa and was
occupied byVaccinium vitis-idaea, Betula nana, Empetrum
nigrum, Rubus chamaemorus, Ledum palustre, Dicranum
polysetum, Andromeda polifoliaand lichens likeCladina
rangiferina and Cladonia species. More detailed informa-
tion is given by Nyk̈anen et al. (2003).

Linnansuo is a cutover peatland complex in eastern Fin-
land (62◦30′ N, 30◦30′ E) in the boreal zone. The measure-
ments were done in a drained, actively harvested peat pro-
duction area. No vegetation was present and the bare peat
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Fig. 2. Examples of the CO2 concentrationc(t) evolution over
time t for the different investigation sites.(A) Salmisuo, 11 August
2005,(B) Vaisjëaggi, 17 August 1998,(C) Linnansuo, 12 Novem-
ber 2004,(D) Samoylov, 26 July 2006. The dashed lines indicate
linear regression functionsflin , the solid lines indicate exponential
regression functionsfexp. The absolute values of the initial slopes
of the exponential functionsf ′

exp(t0) are around 0.3 ppm s−1 for
all examples. An overview of the different set-up characteristics is
given in Table 1.

was laid open. No microsites were differentiated. More de-
tailed information will be given by Shurpali et al. (2008).

Samoylov is an island in the southern central Lena River
Delta in Northern Siberia (72◦22′ N, 126◦30′ E). The climate
is true-arctic and continental. Samoylov Island is charac-
terised by wet polygonal tundra. In the depressed polygon
centres, drainage is strongly impeded due to the underly-
ing permafrost, and water-saturated soils or small ponds are
common. In contrast, the elevated polygon rims are charac-
terised by a moderately moist water regime. The vegetation
in the swampy polygon centres and at the edges of ponds
is dominated by hydrophytic sedges (Carex aquatilis, Carex
chordorrhiza, Carex rariflora) and mosses (e.g.Limprichtia
revolvens, Meesia longiseta, Aulacomnium turgidum). At the
polygon rims, various mesophytic dwarf shrubs (e.g.Dryas
octopetala, Salix glauca), forbs (e.g.Astragalus frigidus) and
mosses (e.g.Hylocomium splendens, Timmia austriaca) gain
a higher dominance. More detailed information is given in
Pfeiffer et al. (1999), Kutzbach et al. (2004) and Kutzbach
(2006). A total of 15 plots were established in five different
microsite types: three at a polygon rim and three at each of
four polygon centres which differed by their moisture and
vegetation conditions. More details on the Samoylov site
will be given by a manuscript in preparation by T. Sachs et
al. (2007).

5.2 Experimental methods

The closed chamber experiments were conducted from July
to September 2005 at Salmisuo, from June to August 1998 at
Vaisjëaggi, from June to November 2004 at Linnansuo and

from July to September 2006 on Samoylov Island to deter-
mine the net ecosystem exchange of CO2. An overview of
the set-up characteristics for the four investigation sites is
given in Table 1. For illustration of the differences between
the datasets, examples of thec(t) evolution over time for all
investigation sites are given in Fig. 2. Permanent and ro-
bust boardwalks supported by poles driven in the soils ver-
tically as well as permanently installed collars were estab-
lished at Salmisuo, Vaisjeäggi and Samoylov. At Linnasuo,
neither boardwalks nor permanent collars could be installed
due to ongoing peat excavation activities. All chamber ex-
periments were performed manually. Transparent chambers
were used at the vegetated sites Salmisuo, Vaisjeäggi and
Samoylov while opaque chamber were used at the bare peat
site Linnansuo. Experiments were conducted during day and
night time at Salmisuo and Samoylov whereas they were
conducted only during daytime at Vaisjeäggi and Linnansuo.
The chamber headspace air was automatically cooled and
mixed by a fan at Salmisuo and Vaisjeäggi. For Samoylov
chambers, headspace air was mixed by air cycling through
dispersive tubes by a membrane pump but not cooled. For
Linnansuo chambers, neither an air mixing device nor a cool-
ing system was provided. Initial pressure shocks during the
chamber setting were minimised by additional openings on
top of the chambers.

Closure times were rather short at Salmisuo (120 s),
Vaisjëaggi (120–160 s) and Linnasuo (150 s), and much
longer at Samoylov (480–600 s). Also, the concentration
measurement intervals differed considerably in length: 1 s
at Salmisuo, 5 s at Vaisjeäggi, 10 s at Linnasuo and 45 s at
Samoylov. To avoid initial large noise in thec(t) data which
would disturb the regressions seriously, we discarded data
points at the start of the chamber deployment and delayed
the start point of the experimentt0=0. The discarding in-
terval was 10 s at Salmisuo, 30 s at Linnansuo and 45 s at
Samoylov. No data discarding was done for the Vaisjeäggi
data. The chamber experiments were filtered to exclude data
which appeared strongly disturbed. For Linnasuo data, a
visual inspection ofc(t) curves was done, and curves that
looked strongly disturbed were discarded right away (6.1%
of the experiments). All datasets were filtered after regres-
sion analysis using the standard deviation of the residuals
of the exponential regression function as indicator of ex-
periment noise. Thresholds of residual standard deviation,
which indicated unacceptable noise levels, were 1.6 ppm for
Salmisuo, 1.2 ppm for Vaisjeäggi, 2.2 ppm for Linnansuo and
1.7 ppm for Samoylov. It should be noted that data screen-
ing and flux calculations of the already published data from
Vaisjëaggi and Linnasuo was performed using different ap-
proaches than in this study (Nykänen et al, 2003; Shurpali et
al., 2008).
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Table 1. Overview of set-up characteristics for the different investigation sites Salmisuo, Vaisjeäggi, Linnasuo and Samoylov.

Salmisuo Vaisjëaggi Linnansuo Samoylov

chamber type manual, transparent manual, transparent manual, opaque manual, transparent
time schedule 24-hour runs only daytime only daytime partly day, partly night
chamber basal area 0.36 m2 0.36 m2 0.075 m2 0.25 m2

chamber height 32 cm 25 cm 30 cm. . . 32 cm 5 cm. . . 15 cm
robust boardwalks yes yes no yes
permanent collars yes yes no yes
insertion depth of collar or chamber
walls in soil

15 cm. . . 20 cm 15 cm. . . 30 cm 5 cm 10 cm. . . 15 cm

cooling system yes yes no no
air mixing fan fan no air cycling by pump
pressure relief provision only during chamber

setting
vent tube open over
closure period

relief valve in function
over closure period

only during chamber
setting

CO2 analyser LI-840, LI-COR LI-6200, LI-COR LI-6200, LI-COR Gas monitor 1412,
Innova Airtech
Instruments

closure time 120 s 120 s. . . 160 s 150 s 480 s. . . 600 s
interval length 1 s 5 s 10 s 45 s
data discarding interval at experi-
ment start

10 s no 30 s 45 s

instrument noise RMSE ±0.5 ppm ±0.1 ppm ±0.3 ppm ±0.8 ppm
threshold of residual standard devia-
tion used for coarse error filtering

1.6 ppm 1.2 ppm 2.2 ppm 1.7 ppm

Table 2. Goodness-of-fit statistics of linear (lin) and exponential (exp) regression curves for example datasets as shown in Fig. 3. Goodness
of fit can be compared by the adjusted coefficient of determinationR2

adj, the Akaike information criterion AICc (with small sample second
order bias correction) and an F-test checking if the residual variance of the exponential regressions is smaller than that of the linear regression
(P is significance level).

ID site, date, time R2
adj AICc F-test

lin exp lin exp Var(exp)<Var(lin)

A Salmisuo, 13/09/2005, 13:10 0.994 0.998 −56 −180 P<0.0001
B Salmisuo, 18/8/2005, 10:40 0.994 0.996−137 −177 P<0.05
C Salmisuo, 9/9/2005, 2:50 0.979 0.992 −54 −175 P<0.0001
D Salmisuo, 9/9/2005, 3:30 0.971 0.980−136 −179 P<0.05
E Vaisjëaggi, 27/8/1998, 14:40 0.992 0.999 −83 −123 P<0.0001
F Vaisjëaggi, 22/6/1998, 15:00 0.998 0.9998 −85 −143 P<0.0001

6 Results

6.1 Residual analyses

Examples of the observedc(t) data and fits of the linear
and exponential model are given in Fig. 3. The respective
goodness-of-fit statistics are given in Table 2. Many of the
measuredc(t) curves were clearly nonlinear even if chamber
closure times were only 120 s (e.g. Fig. 3a–f). However, a
rather large fraction of the nonlinear curves showed curva-
tures which were not consistent with the theoretical model

developed in Chapter 2 (e.g. Fig. 3b, d, f). A summary of
the residual analyses for all chamber experiments from the
four investigation sites is given in Table 3. The residual anal-
yses were conducted for all regression functions without pa-
rameter restrictions. Thus, regression curves with curvatures
not consistent with the theoretical model were also included.
In general, the residual analyses showed that the exponen-
tial model was frequently significantly better suited than the
linear model to describe the measuredc(t) evolution in the
chamber headspace. However, a substantial fraction (20%
to 40%) of the fitted curves showed curvatures which did
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Table 3. Summary of residual analyses for the linear (lin), quadratic (qua) and exponential (exp) regression models applied to the datasets
Salmisuo, Vaisjëaggi, Linnansuo and Samoylov. Autocorrelation of the residuals was examined with theDurbin-Watsontest. If d>dU ,
there is statistical evidence that the residuals are not positively autocorrelated (P<0.05). Ifd>dL, neither positive autocorrelation nor non-
autocorrelation could be proved (P<0.05). TheD’Agostino-Pearsontest was applied for checking normality of the residuals. IfPN>0.05,
no deviation from normal distribution could be detected. Goodness of fit of the linear (lin) and nonlinear (nlin) regression curves was
compared by the adjusted coefficient of determinationR2

adj, the Akaike information criterion AICc (with small sample second order bias
correction) and an F-test checking if the residual variance of the nonlinear regressions is smaller than that of the linear regression (P<0.1).
The percentages of the experiments of a respective dataset which match the test conditions are given in the columns (ne: total number of
experiments in the respective dataset). Residual analyses were conducted for regression functions without parameter restrictions. For the
exponential regression, percentages for regressions restricted to parameter combinations explainable by the theoretical model are given in
parentheses.

autocorrelation normality goodness-of-fit comparisons

test Durbin-Watson D’Agost.-Pearson adjustedR2 Akaike Inf. Criterion. F-test

test condition d>dU d>dL PN>0.05 R2
adj(nlin) AICc(nlin) Var(nlin)

>R2
adj(lin) <AICc(lin) <Var(lin)

percentage ofne (%)

Salmisuo lin 44 46 84 – – –
1 s intervals qua 67 73 86 84 77 37
(ne=542) exp 68 72 87 83 (63) 77 (58) 37 (30)
Vaisjëaggi lin 10 12 87 – – –
5 s intervals qua 30 47 93 90 86 60
(ne=389) exp 30 48 92 89 (55) 86 (58) 60 (42)
Linnansuo lin 27 44 90 – – –
10 s intervals qua 48 88 93 79 66 33
(ne=368) exp 49 88 92 78 (49) 64 (41) 36 (23)
Samoylov lin 67 92 98 – – –
45 s intervals qua 75 100 97 70 35 15
(ne=465) exp 75 100 98 68 (43) 37 (26) 19 (15)

not conform to the theoretical model. The quadratic and the
exponential model performed very similarly with respect to
their residual statistics. The extent to which the nonlinear
models were better suited than the linear model was different
for the four datasets depending on the specifics of the respec-
tive experiment set-ups, i.e. measurement intervals, measure-
ment noise, and presumably also by the ecosystem character-
istics of the different sites.

Autocorrelation was less often detected by the Durbin-
Watson test for the exponential and quadratic models than for
the linear model. For the Salmisuo dataset, significant pos-
itive autocorrelation (d>dU ) could be excluded for 68% of
the exponential regressions, 67% of the quadratic regressions
and for only 44% of the linear regressions. For the Vaisjeäggi
and Linnansuo datasets, autocorrelation was generally a big-
ger problem: For the Vaisjeäggi dataset, significant positive
autocorrelation (d>dU ) could be excluded for 30% of the
exponential regressions, 30% of the quadratic regressions
and for only 10% of the linear regressions. For the Lin-
nasuo dataset, significant positive autocorrelation (d>dU )

could be excluded for 49% of the exponential regressions,
48% of the quadratic regressions and for only 27% of the

linear regressions. For the Samoylov dataset, autocorrelation
was less of a problem due to a lower number of data points
and a higher noise level: Significant positive autocorrelation
(d>dU ) could be excluded for 75% of the exponential and
quadratic regressions and for 67% of the linear regressions.

Evaluated with the D’Agostino-Pearson test, normality of
the residuals was found to be a minor problem compared to
autocorrelation. For the Salmisuo dataset, 84% of the linear
regressions, 86% of the quadratic regressions, and 87% of the
exponential regressions showed normally distributed residu-
als. The percentages of regressions with normally distributed
residuals are even greater for the other datasets with longer
measurement intervals (Vaisjeäggi, Linnansuo, Samoylov).
For Salmisuo, removal of autocorrelation by block-averaging
also eliminated most of the non-normality problems in the
residuals (data not shown).

The different goodness-of-fit indicators for regression
model comparisonR2

adj, AICc and the F-test of the resid-
ual variances showed rather differing results between the
different indicators and datasets (Table 3). However, it
could be demonstrated that for the majority of experiments
of all datasets the exponential and quadratic models were
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significantly better fitted than the linear model. For the
Salmisuo dataset,R2

adj was greater for 84% of the quadratic
regressions and 83% of the exponential regressions than for
the respective linear regressions indicating a better fit. How-
ever, only 63% of the exponential regressions showed a
greaterR2

adj than the linear regressions while also showing a
curvature conforming with the theoretical model. The AICc

appeared to penalize somewhat stronger the higher number
of parameters in the nonlinear models than theR2

adj: The
AICc was smaller for only 77% of the quadratic and expo-
nential regressions than for the respective linear regressions
indicating a better fit. The F-test of the residual variances
indicated that the quadratic and exponential regressions had
a significantly (P<0.1) lower residual variance than the re-
spective linear regressions for 37% of the Salmisuo experi-
ments. Thirty percent of the exponential regressions had a
significantly lower residual variance than the linear regres-
sions while also showing a curvature conforming with the
theoretical model.

Compared to Salmisuo, the Vaisjeäggi dataset showed a
greater percentage of experiments which were better fitted
by the nonlinear regressions than the linear regression. The
F-test of the residual variances proved that the quadratic and
exponential regressions had a significantly (P<0.1) lower
residual variance than the respective linear regressions for
60% of the Vaisjëaggi experiments. 42% of the exponential
regressions had a significantly lower residual variance than
the linear regressions while also showing a curvature con-
forming with the theoretical model.

The percentage of the Linnansuo experiments which were
better fitted by the nonlinear than by the linear model was
comparable to that of the Salmisuo dataset. However, rather
many of these regressions showed curvatures not consistent
with the theoretical model.

The Samoylov data set showed a lower percentage of ex-
periments which were better fitted by the nonlinear than by
the linear model compared to the other datasets. The F-test of
the residual variances indicated that the quadratic and expo-
nential regressions had a significantly (P<0.1) lower resid-
ual variance than the respective linear regressions for only
15% and 19% of the Samoylov experiments, respectively.
Only 15% of the exponential regressions had a significantly
lower residual variance than the linear regressions while also
showing a curvature conforming with the theoretical model.

The F-test of the residual variances revealed that the resid-
ual variance of the linear regression was never significantly
(P<0.1) lower than the residual variances of the nonlinear
regressions in all four datasets (data not shown). Further-
more, the residual variance of the exponential regression was
only significantly smaller than the residual variance of the
quadratic regression in less than 1% of the experiments of all
datasets (data not shown).

An F-test of the residual variances of the exponential and
the NDFE function (Livingston et al., 2006) fitted to the Lin-
nansuo data showed that less than 1% of 335c(t) curves

Fig. 3. Examples of the CO2 concentrationc(t) evolution within
the chamber and fitted linear and exponential functions.(A)
Salmisuo, 13 September 2005 13:10 LT,(B) Salmisuo, 18 August
2005 10:40 LT,(C) Salmisuo, 9 September 2005 03:30 LT,(D)
Salmisuo, 9 September 02:50 LT,(E) Vaisjëaggi, 27 August 1998
14:40 LT,(F) Vaisjëaggi, 22 June 1998 15:00 LT. The dashed lines
indicate linear regression functionsflin , the solid lines indicate ex-
ponential regression functionsfexp. (A), (C) and (E) show expo-
nential regression functions with curvature consistent with the de-
veloped theoretical model. (B), (D) and (F) show exponential re-
gression functions with curvature not consistent with the theoretical
model. Statistics for the regression functions are given in Table 2.

were significantly (P<0.1) better fitted by the NDFE func-
tion compared to the exponential regression function whereas
13% of thec(t) curves were significantly (P<0.1) better fit-
ted by the exponential model (data not shown).

6.2 The effect of different regression models on the flux
estimates

A comparison of the initial slopes of the linear and exponen-
tial regression functionsf ′

lin(t0) andf ′
exp(t0) by x-y scatter

diagrams is shown in Fig. 4 for all investigation sites. The
initial slopes of the regression functions are directly propor-
tional to the CO2 flux at the beginning of chamber closure
Fnet(t0) which is considered to be the best estimate of the
undisturbed flux before chamber closure (Eq. 20). Consider-
ing the exponential model as more correct, deviating values
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Fig. 4. Comparison of initial slopes of the linear and exponential
regression curves for the different investigation sites.(A) Salmisuo,
(B) Vaisjëaggi, (C) Linnansuo,(D) Samoylov. On the x-axes, the
initial slopes of the exponential regressionf ′

exp(t0) are plotted. On
the y-axes, the initial slopes of the linear regression curvesf ′

lin(t0)

are plotted. They=x relationship is given as solid line. As the
initial slopes of the regression curves are directly proportional to
the CO2 flux estimates, a deviation betweenf ′

lin(t0) andf ′
exp(t0)

indicates a bias of the CO2 flux estimate by the application of the
linear model presuming that the undisturbed CO2 fluxes are better
reflected by the exponential model.

of f ′

lin(t0) and f ′
exp(t0) would represent a bias of the CO2

flux estimate by the linear regression approach. As illus-
trated in Fig. 4,f ′

lin(t0) andf ′
exp(t0) partly deviated consid-

erably from each other, in particular for great values of the
initial slopes. Mostly, the absolute values off ′

lin(t0) were
smaller than the absolute values off ′

exp(t0), which means an
underestimation bias of the linear regression approach both
for CO2 uptake and CO2 release situations, which is expected
by the theoretical exponential model. However, the inverse
relationship was also frequently observed, which means an
overestimation bias by the linear regression compared to the
exponential regression, which indicated apparent violations
of the basic assumptions of the theoretical model. The effect
of the underestimation of the absolute values of the initial
slopes increased with increasing absolute values of the ini-
tial slopes and thus with increasing absolute values of CO2
fluxes. The underestimation bias by linear regression could
be observed for all four datasets although to different de-
grees. The strongest underestimation effects were found for
the Linnansuo and Samoylov datasets (Fig. 4c, d). For high
absolute values of the initial slopes in these datasets,f ′

lin(t0)

could be as low as 50% or even 20% of the values off ′
exp(t0).

On the other hand, the weakest effects were found for the
Vaisjëaggi dataset (Fig. 4b). Also for highest absolute val-

ues of the initial slopes in this dataset,f ′

lin(t0) was not below
60% of the value off ′

exp(t0). The Salmisuo dataset was in-
termediate in this regard (Fig. 4a). For high absolute values
of the initial slope in these datasets,f ′

lin(t0) was often be-
tween 40% and 80% of the value off ′

exp(t0). Salmisuo is
the only dataset with nearly equally distributed numbers of
experiments for CO2 uptake and CO2 release situations. For
this dataset, it could be observed that the underestimation ef-
fect of the linear regression was on average stronger for CO2
uptake situations than for CO2 release situations.

An overview of the significances of the deviations between
f ′

lin(t0) and f ′
exp(t0) is given in Table 4. The percentages

of experiments with significant (Student’s t-test,P<0.1) de-
viations betweenf ′

lin(t0) and f ′
exp(t0) are listed separately

for situations with underestimation (H1) and overestimation
(H2) by the linear regression. The absolute values off ′

exp(t0)

were significantly greater than the absolute values off ′

lin(t0)

(H1 is true atP<0.1) for 57% of the Salmisuo experiments,
55% of the Vaisjëaggi experiments, 42% of the Linnasuo
experiments and only 29% of the Samoylov experiments.
These portions of experiments showed that a nonlinearity of
an exponential form as predicted by the theoretical model of-
ten produced a significant underestimation effect of the ini-
tial slopes by linear regression. On the other hand, the ab-
solute values off ′

exp(t0) were significantly smaller than the
absolute values off ′

lin(t0) (H2 is true atP<0.1) for 19%
of the Salmisuo experiments, 30% of the Vaisjeäggi exper-
iments, 26% of the Linnasuo experiments and 19% of the
Samoylov experiments. These portions of experiments were
not consistent with the theoretical model because of their
curvature but showed that unexplained nonlinearity can oc-
cur and can cause a significant overestimation effect of the
initial slopes by linear regression. The absolute values of
f ′

exp(t0) andf ′

lin(t0) did not deviate significantly from each
other (H0 could not be rejected atP<0.1) for 24% of the
Salmisuo experiments, 14% of the Vaisjeäggi experiments,
32% of the Linnansuo experiments and 52% of the Samoylov
experiments. Thus, although the nonlinearity effects on the
flux estimates of the Linnansuo and Samoylov datasets were
pronounced, they were significant for a rather small percent-
age of experiments compared to the Salmisuo and Vaisjeäggi
datasets. On the other hand, the Vaisjeäggi dataset had a
high percentage of significant effects on the flux estimates
but these effects were comparatively moderate. Here, the
importance of the closure time, measurement interval length,
and instrument precision (Table 1) on the nonlinearity prob-
lem became obvious.

A comparison of the initial slopes of the quadratic and the
exponential regression functionsf ′

qua(t0) andf ′
exp(t0) by x-y

scatter diagrams is shown in Fig. 5 for all investigation sites.
An overview of the significances of the deviations between
f ′

qua(t0) andf ′
exp(t0) is given in Table 5. The initial slopes

f ′
qua(t0) and f ′

exp(t0) differ significantly (P<0.1) for only
5%–9% of the experiments of the four datasets. However,
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Table 4. Significance of deviations between the slope estimates att=0 as yielded by the exponentialf ′
exp(t0) and linearf ′

lin(t0) regression
models. The hypothesis H1 states that the absolute value of the initial slope of the exponential regression is greater than the absolute value of
the initial slope of the linear regression. The hypothesis H2 states that the absolute value of the initial slope of the exponential regression is
smaller than the absolute value of the initial slope of the linear regression. The null hypothesis H0 states that the absolute value of the initial
slope of the exponential regression is equal to the absolute value of the initial slope of the linear regression. While H1 is conforming with the
developed theoretical model, H2 is not which implies the occurrence of disturbing processes not considered by the model. The hypotheses
were tested by one-tailedStudent’s t-tests (P<0.1) following Potthoff (1965, cited in Sachs, 1992). The percentages of the experiments of a
respective dataset for which the respective hypotheses could be confirmed are given in the columns (ne: total number of experiments in the
respective dataset).

Student’s t-test of hypotheses (P<0.1)

H1:
|f ′

exp(t0)|−|f ′
lin(t0)|>0

H2:
|f ′

exp(t0)|−|f ′
lin(t0)|<0

H0:
|f ′

exp(t0)|−|f ′
lin(t0)|=0

percentage ofne (%)

Salmisuo (ne=542) 57.4 18.5 24.2
Vaisjëaggi (ne=389) 55.3 30.3 14.4
Linnansuo (ne=368) 42.4 25.8 31.8
Samoylov (ne=465) 29.0 19.3 51.6

Fig. 5. Comparison of initial slopes of the exponential and quadratic
regression curves for the different investigation sites.(A) Salmisuo,
(B) Vaisjëaggi, (C) Linnansuo,(D) Samoylov. On the x-axes, the
initial slopes of the exponential regressionf ′

exp(t0) are plotted.
On the y-axes, the initial slopes of the quadratic regression curves
f ′

qua(t0) are plotted. They=x relationship is given as solid line.
As the initial slopes of the regression curves are directly propor-
tional to the CO2 flux estimates, a deviation betweenf ′

qua(t0) and
f ′

exp(t0) indicates a bias of the CO2 flux estimate by the application
of the quadratic model presuming that the undisturbed CO2 fluxes
are better reflected by the exponential model.

the quadratic regression functions tended to show lower ab-
solute values of the initial slopes than the exponential regres-
sion functions, in particular for situations with strong CO2
uptake or release. The underestimation of the absolute value
of the initial slope of the quadratic regression compared to
the exponential regression was strongest for the Linnansuo
and Samoylov datasets and lowest for the Vaisjeäggi dataset.
The Salmisuo dataset was intermediate in this regard.

A comparison of the initial slopes of the exponential
f ′

exp(t0) and the NDFE function proposed by Livingston et
al. (2005, 2006)f ′

NDFE(t0) by x-y scatter and diagrams is
shown in Fig. 6 for the non-vegetated peat excavation site
Linnasuo. Thef ′

NDFE(t0) was generally higher asf ′
exp(t0).

The steeper the fluxes and thus the initial slopes the stronger
was the deviation betweenf ′

exp(t0) and f ′

NDFE(t0). The
f ′

NDFE(t0) was often 1.5 to 3 times higher thanf ′
exp(t0) and

in extreme cases up to 10 fold higher.

7 Discussion

This study presents the first derivation of a theory-based
model function of gas concentration changes over timec(t)

in closed chambers above vegetated land surfaces. Residual
analyses demonstrated that the developed exponential model
could be significantly better fitted to the data than the lin-
ear model even if closure times were kept short, for example
two minutes as for the Salmisuo experiments. On the other
hand, application of linear regression was often not appro-
priate and led to underestimation of the absolute values of
the initial slope of thec(t) curves and thus of the CO2 flux
estimates. The exponential model was not significantly bet-
ter fitted than the quadratic model with respect to the residual
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Table 5. Significance of deviations between the slope estimates att=0 as yielded by the exponentialf ′
exp(t0) and linearf ′

qua(t0) regression
models. The hypothesis H1 states that the difference between the initial slopes of the exponential and quadratic regression is significantly
different from zero. The null hypothesis H0 states that the difference between the initial slopes of the exponential and quadratic regression
are not significantly different from zero. The hypotheses were tested by a two-tailedStudent’s t-test (P<0.1) following Potthoff (1965, cited
in Sachs, 1992). The percentages of the experiments of a respective dataset for which the respective hypotheses could be confirmed are given
in the columns (ne: total number of experiments in the respective dataset).

Student’s t-test of hypotheses (P<0.1)

H1:
f ′

exp(t0)−f ′
qua(t0)6=0

H0:
f ′

exp(t0)−f ′
qua(t0) = 0

percentage ofne (%)

Salmisuo (ne=542) 7.2 92.8
Vaisjëaggi (ne=389) 8.7 91.3
Linnansuo (ne=368) 7.6 92.4
Samoylov (ne = 465) 4.7 95.3

Fig. 6. Comparison of initial slopes of the NDFE (Livingston et al.,
2006) and the exponential regression curves for the non-vegetated
peat excavation site Linnansuo. On the x-axes, the initial slopes
of the NDFE regression functionf ′

NDFE(t0) are plotted. On the y-
axes, the initial slopes of the exponential regression curvesf ′

exp(t0)

are plotted. They=x relationship is given as solid line. The NDFE
curves have drastically higher initial slopes than the exponential
curves particularly for high fluxes. Notice the break in the x-axis.

analyses. However, the absolute values of initial slopes of the
c(t) curves were often systematically lower for the quadratic
compared to the exponential regression function. The ex-
ponential model could be better fitted to thec(t) curves ob-
served on the non-vegetated peat excavation site Linnansuo
than the physically most profound NDFE model function
proposed by Livingston et al. (2005, 2006). This can be ex-
plained by the probable serious violations of the underlying
model assumptions of the NDFE model, in particular by the
likely leakage through the peat pore space since no perma-
nent collars were installed at Linnansuo. The great difference
between the initial slopes of the NDFE and the exponential
model demonstrates the sensibility of CO2 flux estimation to
the choice of the applied model. If applying physically based
nonlinear models, violations of model assumptions have to
be minimised with great care.

Modelling of the CO2 concentration changes over time in
chamber headspaces is more complicated for vegetated sur-
faces than for bare soil surfaces since additional processes

such as photosynthesis and plant respiration have to be con-
sidered. The complex processes in plants and soils had to
be substantially simplified for the development of a model
that is simple enough for nonlinear regression of actual, of-
ten noisy data. Furthermore, some strong assumptions have
to be made as basis for such a model development: Soil and
headspace air temperature, photosynthetically active radia-
tion, air pressure and headspace turbulence were assumed to
be constant and approximately equal to ambient conditions.
Apparently, however, these assumptions were not valid for
all experiments. Whereas the majority of fittedc(t) curves
were consistent with the proposed theoretical model, a sub-
stantial fraction of the experiments were not. These unex-
plainable curvatures are considered to have been caused by
violations of the basic assumptions of the theoretical model.
The obvious violation of model assumptions indicates that
the experiment design was sub-optimal and that the reason
for it must be identified and accounted for. Otherwise, the
calculated fluxes would be biased to an unknown extent. As
at least the closed chambers at Salmisuo and Vaisjeäggi were
temperature-controlled by an effective cooling system, we
consider the change in headspace turbulence by the closed
chamber, which is not yet covered by the theoretical model,
as a likely problematic process which could introduce non-
linearity difficult to model. An additional reason for the un-
explainable curvature could have been small positive pres-
sure perturbations during chamber placement (Hutchinson
and Livingston, 2001). Although the possible disturbing ef-
fects of altering turbulence or pressure conditions by closed
chambers were discussed previously by several studies (Han-
son et al., 1993; Le Dantec et al., 1999; Hutchinson et al.,
2000; Livingston and Hutchinson, 2001; Denmead and Re-
icosky, 2003; Reicosky, 2003; Livingston et al., 2006), ad-
ditional investigations are certainly needed concerning these
issues.
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To evaluate the validity of candidate models, we recom-
mend the use of residual analysis including tests for auto-
correlation and normality. In particular, autocorrelation has
to be excluded for unbiased estimates of the uncertainty of
regression parameters. Goodness of fit can be evaluated by
the adjusted nonlinear coefficient of determinationR2

adj, the
Akaike Information Criterion AIC and by an F-test of the
residual variances.

We note that the linear coefficient of determinationr2

was frequently misused during the history of closed cham-
ber measurements. The linearr2 and the nonlinearR2 are
neither appropriate measures of regression model correctness
(often used for checking linearity) nor appropriate filter cri-
teria for measurement performance (Granberg et al., 2001;
Huber, 2004; Hibbert, 2005). The expressions (1−r2) and
(1−R2) are measures of the unexplained variance normal-
ized to the total variance. The significance ofr2 andR2 is
strongly dependent on the number of data pointsn which is
often disregarded. In extreme cases, ther2 values were cal-
culated for only three data points and were considered as evi-
dence of linearity when greater than typically 0.95. However,
applying the F-test to check if aR2 value of 0.95 for three
data points is significantly different from zero reveals an er-
ror probabilityP of 0.14, which is higher than the typically
used significance levels of 0.05 or 0.1. Furthermore, even an
R2 value significant at the 0.05 level does not prove linear-
ity and cannot exclude serious bias of the flux estimates. A
linear regression can show a rather highr2 value of above
0.99 although significant nonlinearity can be demonstrated
by more appropriate statistical methods like the F-test for the
residual variances (Huber, 2004; Hibbert, 2005). Only for
comparison of two regression functions with the same num-
bers of data pointsn and parametersk, r2 or R2 can give
an indication which function is better suited. Moreover,r2

as well asR2 are not usable as filter criteria for measure-
ment performance because they arbitrarily discriminate the
lower fluxes: r2 andR2 values increase with constant un-
explained variance and increasing total variance which is in-
herently higher for greater fluxes (Fig. 7a). In this context, a
better filter criterion would be the standard deviation of the
residualssyx (Fig. 7b).

The measurement interval length, the number of measure-
ment points and the precision of the CO2 concentration mea-
surements determine whether the nonlinearity can be de-
tected with sufficient statistical significance. It has to be
stressed that strong nonlinearity can be present even when
it cannot be detected because of long measurement intervals,
few data points or low measurement precision.

Considering the results of this study, a list of practical rec-
ommendations for closed chamber measurements follows:

– A nonlinear model should be favoured over a linear
model to reflect the various biophysical processes in ef-
fect and thus to better estimate the predeployment flux.

Fig. 7. The relationships of the nonlinear coefficient of determi-
nationR2 with the initial slopef ′

exp(t0) of the regression function
and the standard deviation of the residualssyx exemplified by the
dataset Salmisuo 2005.(A) TheR2 value is plotted against the ini-
tial slopef ′

exp(t0). The use ofR2 as a filter criterion (e.g.R2=0.9)
would discriminate strongly the regressions with low slope values
f ′

exp(t0). (B) TheR2 value is plotted against the standard deviation
of residualssyx which is a better filter criterion for measurement
performance. The application ofR2 (e.g.R2=0.9) orsyx (e.g. the
95% percentile ofsyx : 0.87 ppm) as filter criteria would identify
completely different experiments as disturbed.

– We recommend to fit an exponential function as given
in Eq. (14) to the observedc(t) curves for experiments
on vegetated soils. For experiments on non-vegetated
soils, the NDFE model function proposed by Livingston
et al. (2005, 2006) should be applied. When applying
the NDFE model, however, violations of the underlying
assumptions of the NDFE model, i.e. no-leakage, must
be strictly avoided.

– When adopting a nonlinear approach, investigators
should employ chambers with smaller headspace vol-
umes and longer deployment times as warranted to em-
phasize the non-linearity of thec(t)response. For veg-
etated soils, however, the advantages of this approach
must be carefully balanced with the risk of unpre-
dictable plant responses due to strongly lowered CO2
concentrations or artificially high water vapour contents
in the chamber headspace.

– Light, temperature and humidity conditions as well
as wind speed and turbulence during chamber closure
should be as similar as possible to the ambient con-
ditions. Changes of light, temperature and humidity
would change plant physiology and thus complicate the
form of the c(t) curve whereas artificial changes of
pressure, wind and turbulence may additionally impact
transport processes and thus even compromise the as-
sumption that the initial slope of thec(t) is the best es-
timator of the predeployment CO2 flux (Hutchinson et
al., 2000; Hutchinson and Livingston, 2001).

– Generally, leaks should be avoided (Hutchinson and
Livingston, 2001; Livingston et al., 2006). If this is not
possible, fitting of an exponential function would allow

www.biogeosciences.net/4/1005/2007/ Biogeosciences, 4, 1005–1025, 2007



1020 L. Kutzbach et al.: CO2 flux determination biased by linear regression

Fig. 8. Example of the effect of the different regression approaches
on the estimated CO2 balance over one diurnal cycle (04/08/2005
08:45 to 05/08/205 06:05 LT) at the flark sites of Salmisuo. The
black squares indicate CO2 flux estimatesFnet by the linear model
approach, the white squares indicate CO2 flux estimatesFnet by the
exponential model approach. The error bars indicate the standard
errors of the flux estimates. Simple integrations of the two CO2 flux
estimate time series according to the trapezoidal rule yield carbon
balances over the 21.33 h of−0.86 g CO2 and−1.30 g CO2 for the
linear and exponential model approaches, respectively. Thus, the
estimate of CO2 uptake using the exponential model is 150% of the
estimate using the linear model!

for better approximation of the initial slopes of thec(t)

curves and thus for more realistic estimation of prede-
ployment fluxes compared to linear regression.

– High noise levels at the start of the chamber deployment
due to eventual pressure or turbulence disturbances or
insufficient purging of residual gases in the analyser
lines have to be avoided since this noise would be very
critical regarding the results of nonlinear regression. If
initial noise is obviously present, the data from the re-
spective time period has to be discarded, and the starting
time of the experimentt0=0 should be delayed accord-
ingly. It has to be stressed that this initial data discard-
ing would lead to inherent underestimation of fluxes be-
cause the slope of thec(t) evolution curve is expected
to be greatest and changing most strongly at the start
of the chamber closure time (Hutchinson et al., 2000;
Livingston et al., 2006, this study). Still, this underesti-
mation would be less when applying a nonlinear model
compared to the use of linear regression. Anyhow, ex-
perimental set-ups should be improved to make an ini-
tial data discarding unnecessary. The interval of initial
data discarding must be as short as possible.

– When using the presented exponential or quadratic re-
gression functions (number of parametersk=3), not less
than seven data points (n≥7) should be collected over
the closure time to achieve an acceptable value for the
degrees of freedom (n−k≥4). More data points are rec-
ommended, particularly if the measurement precision is
not optimal.

– The better the measurement precision and the more data
points are available for the regression, the better the
nonlinearity can be detected and its significance demon-
strated.

– Autocorrelation and non-normality of residuals should
be checked for and can be reduced by block-averaging
to avoid biased estimations of parameters and their er-
rors.

One scientific question for which the possible bias of
closed chamber CO2 flux measurements is important is the
comparison of micrometeorological eddy covariance data
and chamber data where often a considerable mismatch can
be observed. Mostly, this mismatch is attributed to method-
ological problems of the eddy covariance approach (e.g. Law
et al., 1999; Van Gorsel et al., 2007). While the methodologi-
cal problems of the eddy covariance method are undoubtedly
real, it has to be stated that also the flux estimates by closed
chambers can be prone to significant biases and should be in-
terpreted using much caution (see also Reicosky, 2003; Liv-
ingston et al., 2005, 2006).

The underestimation effect by linear and quadratic regres-
sion compared to exponential regression increases with in-
creasing absolute values of the CO2 fluxes. Thus, the under-
estimation of the CO2 fluxes by the linear regression method
not only disturbs the quantitative but also the qualitative eval-
uations since differences between sites with strong and weak
CO2 exchange would be smoothed. Furthermore, the effect
should be dependent on ecosystem characteristics such as
soil texture, peat density, soil moisture status or vegetation
composition (Hutchinson et al., 2000; Nakano et al., 2004).
Here, the uneven underestimation bias between sites can lead
to the conclusion that CO2 fluxes differ greatly between sites
although, in fact, only the response to the chamber distur-
bance on of soil gas diffusion and plant physiology differs.

As the underestimation of the absolute values of the initial
slope of thec(t) curves by linear regression was observed to
be of different magnitude for CO2 uptake and CO2 release
situations, there is a high potential for serious bias of carbon
balances which can, in extreme cases, lead to changing of the
sign, which determines an ecosystem as CO2 source or sink.
This high potential for serious bias of the CO2 balances is
exemplified by Fig. 8 for a diurnal cycle of CO2 exchange
fluxes at the flark sites of Salmisuo. The bias on the daily
balance can be very large because it is equal to the sum of
integrated daytime uptake and integrated night time release.
The sum is much smaller than the two summands due to their
similar magnitude but opposing signs. If the bias of one sum-
mand is stronger than for the other summand, the relative bias
of the balance can be much more pronounced than the rela-
tive bias of the respective summands. This high sensitivity
of the CO2 balance to asymmetric biases of CO2 uptake and
CO2 release is of major importance as closed chamber CO2
flux measurements based on linear regression are used for lo-
cal, regional and global carbon budgets and for the evaluation
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of the carbon source or sink characteristics of ecosystems or
even vegetation zones (e.g. Oechel et al., 1993, 1998, 2000).

In this context, we fully agree with Hutchinson et
al. (2000) and Livingston et al. (2005, 2006) who empha-
sised that the bias of flux estimates by using linear regression
for closed chamber experiments is systematic, not random.
Therefore, “although such errors are relatively small in com-
parison to the temporal and spatial variability characteristic
of trace gas exchange, they bias the summary statistics for
each experiment as well as larger scale trace gas flux esti-
mates based on them” (Hutchinson et al., 2000).

8 Conclusions

Thorough analyses of residuals demonstrate that linear re-
gression is frequently not appropriate for the determination
of CO2 fluxes by closed-chamber methods, even if closure
times are kept short.

The coefficient of determinationR2 should not be used as
proof of linearity. For comparing the performance of mod-
els, goodness-of-fit measures such as the adjustedR2, the
AkaikeInformation Criterion or an F-test of the residual vari-
ances are recommended. Additionally, the residuals should
be checked for autocorrelation and normality to allow for un-
biased estimations of the parameters and their errors.

The assumptions inherent in the proposed exponential
model fit the majority of the observations examined in this
investigation, thus suggesting the potential value of biophys-
ical models in future chamber-based emissions studies.

However, the curvature of the nonlinearc(t) curves is for
a substantial percentage of the experiments not explainable
with the proposed theoretical model. This is considered to be
caused by violations of the basic assumptions of the theoret-
ical model. In particular, the effects of turbulence alteration
and pressure disturbances across the soil-atmosphere inter-
face by setting a closed chamber on the ecosystem should be
investigated in more detail in the future.

In many cases, a quadratic model as proposed by Wagner
et al. (1997) can be equally well fitted to the data as the expo-
nential model. However, the estimates of the absolute values
of the initial slopes of thec(t) curves tended to be system-
atically lower for quadratic than the exponential regression.
This can have a considerable effect on the CO2 flux estimates
for situations with strong CO2 uptake or release.

The NDFE model proposed by Livingston et al. (2005,
2006) could not be better fitted to thec(t) observations at the
bare peat site Linnansuo than the exponential function. This
was probably due to violations of the NDFE model assump-
tions, in particular the required non-existence of leakage.

Inappropriate application of linear regression can lead to
serious underestimation of CO2 fluxes. Initial slopes of lin-
ear regression can be as low as 40 % of the initial slope of
exponential regression for closure times of only 2 min.

The degree of underestimation increased with increasing
CO2 flux strength and is dependent on soil and vegetation
conditions which can disturb not only quantitative but also
qualitative evaluation of CO2 flux dynamics.

The underestimation effect by linear regression was ob-
served to be different for CO2 uptake and CO2 release situ-
ations which can lead to stronger bias in the daily, seasonal
and annual CO2 balances than in the individual fluxes.

The fitting of observed closed-chamber data to biophysical
models in combination with thorough statistical tests of the
different models’ validities offers at least two major advan-
tages over the simple use of linear regression: (1) the ability
to control the quality of observations, detect major problems
of the methodology and thus to improve experimental pro-
tocols, and (2) improved accuracy and lower uncertainty in
resultant flux estimates.

To avoid serious bias of CO2 balance estimates on the lo-
cal, regional or even global scale, we suggest further tests for
biases of published flux estimates and recommend the use of
nonlinear regression models for future closed-chamber stud-
ies.

We developed a MATLAB® routine which can perform
linear and nonlinear regression including residual analy-
ses for data of a wide range of chamber experiment set-
ups. This routine is available online athttp://biogeo.botanik.
uni-greifswald.de/index.php?id=264.
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Appendix A

Symbols and abbreviations

A basal area of the chamber
a, b, c parameters of polynomials of different order
AICc Akaikeinformation criterion with small sample second

order bias correction
B integral constant
ca CO2 concentration in the air outside of the chamber
cd CO2 concentration at depthd
c(t) CO2 concentration of the headspace air at timet

d unknown depth below the surface where the CO2 con-
centration is constant and not influenced by the cham-
ber deployment

d Durbin-Watson test statistic
dL lower critical value of Durbin-Watson test
dU upper critical value of Durbin-Watson test
D soil CO2 diffusivity
dchamber distance between headspace and the surrounding air
Dchamber mean diffusivity of leaks directly at the chamber com-

ponents
dSoil distance between the headspace and the surrounding air

via the air-filled soil pore space
DSoil mean diffusivity of leaks by air-filled soil pore space
dc/dt(t) change of the CO2 concentration over time
ε(t) residual error at timet
εi residuals of the fitted model
εi− exp residuals of the exponential regression
εi−lin residuals of the linear regression
fexp exponential function
flin linear function
fqua quadratic function
f ′

exp initial slope of exponential function
f ′

lin initial slope of linear function
f ′

qua initial slope of quadratic function
FLeak CO2 flux through leaks
Fnet net CO2 flux into the chamber
FP CO2 flux by photosynthesis
FR CO2 flux by respiration
FSoil CO2 efflux from the soil
k number of parameters of the regression function
KLeak constant which combinesDchamber, dchamber, DSoil, and

dsoil and indicates leakage strength
kp constant of proportionality between CO2 concentration

and photosynthesis-associated flux
LT local time
n number of data points of the respective experiment
p air pressure
p1, p2, p3 parameters of exponential model
P significance level of tests
R ideal gas constant
r2 linear coefficient of determination
R2 nonlinear coefficient of determination
R2

adj adjusted nonlinear coefficient of determination
syx standard deviation of the residuals
t time
t0 start time of chamber closure
T temperature
V volume of the chamber
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patterns of soil CO2 efflux and soil air CO2 concentration in a
Scots pine forest: comparison of two chamber techniques, Global
Change Biol., 7, 371–382, 2003.

Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T.,
Niinisto, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M.,
Janssens, I. A., Yuste, J. C., Grunzweig, J. M., Reth, S., Subke, J.
A., Savage, K., Kutsch, W., Ostreng, G., Ziegler, W., Anthoni, P.
M., Lindroth, A., and Hari, P.: Comparison of different chamber
techniques for measuring soil CO2 efflux, Agric. Forest Meteo-
rol., 123, 159–176, 2004.

Rawlings, J. O., Pantula, S. G., and Dickey, D. A.: Applied regres-
sion analysis: a research tool, 2nd edition, Springer, New York,
1998.

Reicosky, D. C.: Tillage-induced soil properties and chamber mix-
ing effects on gas exchange, Proceedings of the 16th Triennial
Conference of International Soil Tillage Research Organizations,
13–18 July 2003, Brisbane, Australia, 2003.

Reth, S., G̈odecke, M., and Falge, E.: CO2 efflux from agricultural
soils in eastern Germany – comparison of a closed chamber sys-
tem with eddy covariance measurements, Theor. Appl. Climatol.,
80, 105–120, 2005.

Saarnio, S., Alm, J., Silvola, J., Lohila, A., Nykänen, H., and Mar-
tikainen, P. J.: Seasonal variation in CH4 emissions and pro-
duction and oxidation potentials at microsites on an oligotrophic
pine fen, Oecologia, 110, 414–422, 1997.

Sachs, L.: Angewandte Statistik, 7th edition, Springer, Berlin, Hei-
delberg, 1992.

Sage, R. F.:, Acclimation of photosynthesis to increasing atmo-
spheric CO2: The gas exchange perspective, Photosynth. Res.,
39, 351–368, 1994.

Shurpali, N. J., Hyv̈onen, N. P., Huttunen, J. T., Nykänen, H.,
Pekkarinen, N., and Martikainen, P. J.: Bare soil and reed canary
grass ecosystem respiration measurements from a peat extraction
site, Tellus-B, in press 2008.

Smart, D. R.: Exposure to elevated carbon dioxide concentration in
the dark lowers the respiration quotient of Vitis cane wood, Tree
Physiol., 24, 115–120, 2004.
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