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Abstract 

Decompositions of productivity indices contribute to our understanding of what drives the observed productivity 

changes by providing a detailed picture of their constituents. This paper presents the most comprehensive 

decomposition of total factor productivity (TFP) to date. Starting from the Fisher ideal TFP index, we systematically 

isolate the productivity effects of changes in production technology, technical efficiency, scale efficiency, allocative 

efficiency, and the market strength. The three efficiency components further decompose into input- and output-side 

effects. The proposed decomposition is illustrated with an empirical application to a sample of 459 Finnish farms 

over period 1992-2000.  
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1. Introduction 

Traditionally, productivity has been viewed as a synonym to technical progress, following the influential work of 

Solow (1957). Today, development of more sophisticated methods for measuring total factor productivity (TFP) 

enables us to distinguish technological development from other sources of productivity changes, most notably, 

changes in technical and scale efficiency (see e.g. Färe et al., 1994a). As a consequence, many recent studies 

interpret productivity in broader terms as a welfare measure, which includes the effect of technical change among 

other components (e.g. Basu and Fernald, 1997; Kumar and Russell, 2002). From the welfare perspective, it is 

interesting to investigate the relative importance of the different effects that influence productivity. Decomposing 

the overall productivity index into sub-components can provide more detailed information about the underlying 

sources of productivity changes.  

Decompositions of productivity date back at least to the seminal work of Farrell (1957), who expressed the 

overall economic efficiency as a product of the technical efficiency and allocative (price) efficiency components. 

Farrell restricted to a static framework, which left no room for technical progress. Nishimizu and Page (1982) 

proposed a first dynamic extension of Farrell’s decomposition, which included technical change and technical 

efficiency components. Färe et al. (1994a,c) generalized and developed the decomposition further, introducing the 

scale efficiency component. These decompositions are based on the Malmquist productivity index by Caves et al. 

(1982), which has gained momentum after Färe et al. presented their decomposition, especially in the firm-level 

applications. Indeed, the decomposability of the Malmquist index is generally seen as its main advantage to other 

productivity indices, together with its weaker data requirements. Similar decompositions have been extended to 

variants of the Malmquist index such as the Hicks-Moorsten type productivity index of Bjurek (1994) (see Lovell, 

2003) and to the Malmquist-Luenberger type index (see Färe and Primont, 2003). However, the classic productivity 

indices such as the Fisher ideal TFP index and the Törnqvist TFP index currently lack such decompositions.  

This paper intends to fill this gap at least partly by proposing an intuitive decomposition for the Fisher ideal 

TFP index (henceforth ‘the Fisher index’). Following the approach of Färe et al. (1994a,c), we express the Fisher 

index as a product of five components that represent changes in 1) production technology, 2) technical efficiency, 

and 3) scale efficiency. In addition to these standard components, our decomposition includes 4) allocative 

efficiency, and 5) market strength components. Components 2) – 4) can be further decomposed into separate sub-

components for inputs and outputs, offering a detailed picture of the constituents of productivity change as 

measured by the Fisher index. 
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Our decomposition contributes to the productivity literature in at least four important ways. Firstly, the 

decomposition further enhances our general understanding about how the Fisher index works (i.e., which effects it 

captures, and which ones not). While a number of decompositions of the Fisher ideal price and quantity indices 

have been proposed (see Balk, 2003, for a recent review), we are unaware of other decompositions in the present 

context of productivity indices. Secondly, the decomposition provides a more detailed picture about the driving 

forces behind productivity growth (or decline) in empirical applications (i.e., which effects have improved 

productivity, and which ones have deteriorated it). For example, in the application of Section 9 we will find that the 

decline in the market strength explains the slow productivity growth in the Finnish agriculture in the aftermath of 

Finland’s EU accession in 1995. Thirdly, our decomposition recognizes price effects as important elements of 

productivity change. From the welfare perspective, not only the quantity of output is important – also quality 

matters. By attributing changes in economic value of inputs and outputs to the productivity index, we hope to 

capture at least some quality aspects of productivity. Fourthly, better understanding of the anatomy of the Fisher 

index also enables one to tailor the productivity index for the purposes of the study. If some components capture 

effects that do not fit in a given definition of productivity, the decomposition enables one to correct for (or eliminate) 

these undesirable components from the overall productivity index.  

Since our decomposition is closely related to (and inspired by) the decomposition of the Malmquist index (in 

particular the version by Färe et al., 1994c; see Appendix 1 for details), it is useful to compare the two in more 

detail. We consider the classic Fisher index to be a useful alternative for the nowadays widely used Malmquist 

approach: the Fisher index is simple to calculate from the data; it does not require empirical estimation of 

production technology; it is not influenced by arbitrary assumptions about the technology or its functional form; it 

has a well-established axiomatic foundation (see Diewert, 1992); and it is consistent with the index number 

formulae widely used for price and quantity indices by statistical agencies around the world. By contrast, the 

Malmquist index relies on the technology distance functions, which must be estimated empirically. This estimation 

requires a number of assumptions to be made. To begin with, the direction or orientation of measurement must be 

chosen; the choice of input distance function can lead to very different results than the choice of output distance 

function. Next, the choice of the estimation method and the assumptions involved may influence the results 

considerably.  

Of course, these disadvantages should be balanced against the two major advantages of the Malmquist 

index. The first concerns the data requirements: the Malmquist index only requires data on input and output 
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quantities, whereas the Fisher index requires the complete price data in addition to the quantities. While the data 

requirements do favour the Malmquist index, it is worth to ask if it is easier to estimate the prices or the production 

technology when both are unknown. Moreover, if the assumption of allocative efficiency can be maintained, then 

the quantity data suffices for estimating bounds for the Fisher index, as shown by Kuosmanen et al. (2004) (who 

build on the work of Färe and Grosskopf, 1992; and Balk, 1993). The second benefit has been the decomposability 

of the Malmquist index. A number of alternative decompositions have been proposed (e.g., Färe et al. 1994a,c; 

Ray and Desli 1997). It should be noted, however, that the decompositions of the Malmquist index have also 

attracted critical comments. We refer to Lovell (2003) and Grosskopf (2003) for recent surveys of this debate. By 

starting from the Fisher ideal index, we hope to overcome some of the difficulties experienced with the Malmquist 

decompositions.   

The remainder of this paper is organized as follows. Section 2 introduces the standard notation and 

terminology used in production theory, and presents a formal duality theorem regarding profitability function. 

Sections 3 to 6 introduce the components of productivity change in a step-by-step manner, comparing with the 

analogous components available for the Malmquist index. Section 3 starts with the technical efficiency component 

followed by technical change in section 4. Section 5 discusses the definition of scale efficiency component. Section 

6 introduces the allocative efficiency component of the Fisher index and section 7 presents the market strength 

component.  Having introduced all components, in Section 8 we are finally equipped to fit all the components 

together in our main theorem, which proves that the Fisher ideal TFP index is obtained as a product of these 

intuitive components. Section 9 provides an empirical application on Finnish farm data. The paper finishes with 

some concluding remarks. 

  

2. Preliminaries 

Productivity growth is the change in output not explained by change in input use. To measure productivity changes 

in the general multiple input multiple output setting, we must aggregate the inputs and outputs in one way or 

another. Inputs (outputs) measured in different units do not add up as such, but must first be converted to some 

common scale of measurement, a natural choice being money. Indeed, the classic index theory uses unit prices (or 

cost shares) as weights of quantity index. Using prices as weights has the added advantage that the more precious 

or important commodities are given a greater weight than the inexpensive ones. In this vein, the conventional index 

theory typically uses the prices (or cost/revenue) shares as the weights of quantity indexes. Of course, the prices 
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often change from one period to another, so we inevitably face the question of which set of prices provide the most 

appropriate weights (consider e.g. difference between the classic Paashe and Laspeyres indexes). Fisher (1922) 

solved this question in an ingenious way evaluating productivity at the weights of the base period and at the 

weights of the target period, and taking the geometric average of the two.  

 We limit attention to two-period comparisons, and denote the base period as period 0 and the target period 

as period 1. Adopting the standard notation,  represents the output quantity vector of period +∈ty s ∈ {0,1}t  

and  the associated price vector. Similarly,  denotes the input quantity vector of period t and 

 the associated price vector. The Fisher ideal output and input quantity indices are defined as  

++∈t sp

++∈t r

+∈t rx

w

(1) ≡0,1 0,1( , )yF p y  ⋅ ⋅
⋅ ⋅ ⋅ 

1
0 1 1 1 2

0 0 1 0
p y p y
p y p y

 and ≡0,1 0,1( , )xF w x  ⋅ ⋅
⋅ ⋅ ⋅ 

1
0 1 1 1 2

0 0 1 0
w x w x
w x w x

, 

respectively.  

Total factor productivity is usually defined as the ratio of the output quantity index to the input quantity 

index (e.g. Diewert, 1992; Bjurek, 1996). Using the Fisher ideal indexes to aggregate both inputs and outputs, the 

Fisher ideal TFP index is obtained simply as the ratio of the aggregate output to the aggregate input  

(2) ≡
0,1 0,1

0,1 0,1 0,1 0,1
0,1 0,1

( , )
( , , , )

( , )
y

TFP
x

F
F

F
p y

p w y x
w x

. 

This productivity measure is easily calculated given the necessary price and quantity data. It does not require 

estimation of any sort. Unlike the Malmquist index, the Fisher TFP index for a firm is independent on performance 

of other firms in the sample. 

To get a more detailed picture of the underlying sources of productivity changes, we next proceed to 

decompose the Fisher index (2) into subcomponents along the lines of Färe et al. (1994a,c). Our decomposition 

uses a number of alternative equivalent representations of technology, which will be introduced next. The 

production possibility set of period t is defined as  

(3) { }+
+= ∈( , )  can produce  in period t r sT tx y x y .  

These sets are assumed to be non-empty, closed and satisfy the scarcity and no-free-lunch assumptions (see Färe 

and Primont, 1995).  Alternative set representations of technology are the input set 

{ }+= ∈ ∈( ) ( , )t rL Ty x x y t  
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and the output set { }+= ∈ ∈( ) ( , )t sx y x y tP T . 

Input-output vector (x,y) is considered technically efficient if it lies on the boundary of set T. The degree of 

inefficiency is traditionally measured using Shephard’s (1953, 1970) distance functions. Slightly deviating from the 

original definition,1 we define the input distance function as 

(4) { }θ θ≡ ∈( , ) min ( , )t t
xD Tx y x y , 

and the output distance function as  

(5) { }θ θ≡ ∈( , ) min ( , / )t t
yD Tx y x y . 

Distance functions can also be seen as representations of technology: we can recover Tt from input (output) 

distance function  when inputs (outputs) are weakly disposable (Färe and Primont, 1995).  

The minimum cost of producing a given target output y at given input prices w is given by the cost function 

(6) { }≡ ⋅ ∈( , ) min ( , )t t

x
C Tw y w x x y . 

Analogously, the maximum revenue that can be obtained given inputs x and output prices p is given by the 

revenue function  

(7) { }≡ ⋅ ∈( , ) max ( , )t t

y
R Tx p p y x y . 

By duality theory, these monetary expressions can also be viewed as technology representations. Specifically, cost 

function Ct enables us to recover the convex monotonic hull of the input set Lt, and analogously, we can recover 

the convex monotonic hull of the output set Pt from the revenue function Rt.  

As the only non-standard concept we introduce the profitability function 

(8) ρ
 ⋅

≡ ∈ ⋅ ,
( , ) max ( , )t t

x y
Tp yw p x y

w x
, 

which indicates the maximum return to the dollar achievable with the given non-negative input-output prices. The 

following duality theorem shows that (like profit function) profitability function can be taken as a representation of 

technology: 

 

                                                 
1 In our definition, the values of both the input distance function (4) and the output distance function (5) are conveniently restricted to the half-open interval 
(0,1]. Since in this paper we restrict to measuring efficiency of observed firm behaviour (which must be technically feasible to be observable to begin with), 
and since the production possibility sets Tt are assumed to be closed, the minimum of (4) and (5) will always exists. 
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Theorem 1: If production possibility set Tt satisfies the assumptions of free disposability, convexity, and constant 

returns to scale, then profitability function  is a complete characterisation of the technology. In particular,  tρ

( , ) ( , ) ( , )t r s tT ρ+ +
+ +

 ⋅
= ∈ ≤ ∀ ∈ ⋅ 

p yx y w p w p
w x

r s . 

Proof. See Appendix 2.  

 

Under the assumptions of Theorem 1, the input distance function can be expressed in terms of profitability as  

(9)   
( , )

( , ) max ( , ) 1
r s

t t
xD ρ

+
+∈

⋅ = ≤ ⋅ w p

p yx y w p
w x

.  

This result will be used in the developments of the subsequent sections. 

 As a final remark, it should be noted that production possibility sets, distance functions, cost and revenue 

functions, and profitability functions are usually not known and must be estimated from empirical data. A number of 

techniques for such estimation are available, including Data Envelopment Analysis (DEA) and Stochastic Frontier 

Analysis (SFA) (e.g. Färe et al., 1994b, Kumbhakar and Lovell, 2000). This paper abstracts from the estimation 

issues and focuses solely on the decomposition. Recall that no estimations are needed for calculation of the Fisher 

input, output or TFP indices. Estimation is only needed for the decomposition. 

 

3. Technical efficiency  

Following Farrell (1957), we measure technical efficiency as a distance from the production frontier, using distance 

functions (4) and (5). In theory, operational inefficiency signals under-utilization of inputs, which in turn may depend 

on a number of factors such as managerial competence (Leibenstein, 1966) or incentive structure (Bogetoft, 1994, 

1995). Changes in input-utilization over time may also be attributed to the gradual diffusion of innovations (Färe et 

al., 1994c) or to the business cycle. Though we usually cannot isolate the different effects that influence the input 

utilization, it is still interesting to measure how much its changes contribute to productivity changes.    

Technical efficiency component is an integral part of the Malmquist decomposition. Decompositions 

following Färe et al. have traditionally oriented either towards inputs or towards outputs. The input oriented 

measure of technical efficiency change 1 1 1 0 0 0( , ) / ( , )x xDxD y x y  gauges the movements towards or away from the 

frontier in the direction of inputs, holding the output levels as constant. By contrast, the output oriented measure of 
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technical efficiency change 1 1 1 0 0 0( , ) / ( , )y yxD Dy x y  gauges the movements towards or away from the frontier in 

the direction of outputs, holding the input levels as constant. The well-known result of Färe and Lovell (1978) 

implies that these two approaches are equivalent if and only if the production sets T0 and T1 exhibit constant 

returns to scale. 

 
⋅  

 

1
1 1 1 21

0 0 0 0

1 1

0 0

( , )( , )
( , ) ( , )

y

x y

D
D D

x yx y
x y x y

)

If the technology exhibits variable returns to scale, the choice of orientation does matter. Since we have no 

particular reason to prefer input or output orientation over another, we propose to resolve the problem in the 

traditional fashion (of Irving Fisher) by measuring efficiency change by the geometric mean of the ratios of input 

distance functions and output distance functions. This gives the following overall measure of technical efficiency 

change 

(10) ∆ =TEff  xD

Under constant returns to scale, this measure is equivalent to the usual technical efficiency component of the 

Malmquist index. Attractively, under variable returns to scale this measure is invariant to the choice of orientation. If 

the orientation makes a difference, then we can distinguish between the sub-components of input efficiency 

(
1

1 1 1 0 0 0 2( , ) / ( , )x xD Dx y x y  and the output efficiency ( )
1

1 1 1 0 0 0 2( , ) / ( , )y yD Dx y x y .  In our decomposition, both 

will be accounted for with the equal weight. 

Measures of technical efficiency change are graphically illustrated in Figure 1. Figure 1a presents input 

oriented technical efficiency component in input-output space and Figure 1b in input-input space. In the figures, the 

input oriented technical efficiency change is =
1

1 1, 1 0 0, 0
0( , ) / ( , )x x

OB Ox
D x y D x y

OA Ox
. Similar relationship can be 

found in the output orientation, which is presented in Figures 1c and 1d as 

=
1

1 1, 1 0 0, 0
0( , ) / ( , )y y

Oy OD
D x y D x y

Oy OC
. Taking a geometric mean of these two provides our weighted average for 

technical efficiency. 
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Figure 1a. Input oriented technical efficiency change in input-output space. 
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Figure 1b. Input oriented technical efficiency change in input-input space. 
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Figure 1c. Output oriented technical efficiency change in input-output space.  

 
 
Figure 1d. Output oriented technical efficiency change in output-output space. 
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4. Technical change 

The traditional perspective on technical progress is that of Hicks neutral frontier shift considered by Solow (1957). 

Recent economic literature has recognised the importance of biases in technical progress, which means that 

productivity of different inputs increases at different rates (e.g., Acemoglu, 2002). Both neutral and biased technical 

changes are accounted for by the technical change component of the Malmquist index, which measures the shifts 

in the production frontier by distance functions. By duality theory, input and output distance functions can be seen 

as equivalent representations of technology as production sets Tt.  

 In this paper we resort to another representation of technology, the profitability function . By Theorem 

1,  is an equally valid representation of technology as the distance function when T

ρ t

ρ t t satisfies free disposability, 

convexity, and constant returns to scale. It is common to measure technical change in terms of the constant-

returns-to-scale benchmark technology (e.g., Färe et al., 1994c). Thus, measuring technical change in terms of 

profitability functions  is equally legitimate as it is with distance functions.   ρ t

Consider ratio ρ
ρ

1 0 0

0 0 0
( , )
( , )
w p
w p

, which represents the change of maximum profitability from the base period 

to the target period, at the prices of the base period. As the same price vectors appear both in the nominator and 

the denominator, any change in profitability is inevitably due to the change of technology. Technical progress 

would tend to increase profitability, and hence this ratio. Technical regress would decrease this ratio. We could 

similarly measure technical changes using the prices of the target period. Again, as we do not have any reason to 

prefer the prices of the base or target period, we express the technical change component as a geometric mean of 

these two: 

(11) ∆Tech ρ ρ
ρ ρ

 
= ⋅ 
 

1
1 0 0 1 1 1 2

0 0 0 0 1 1
( , ) ( , )
( , ) ( , )
w p w p
w p w p

. 

We should note that the technical change component of Färe et al. (1994a,c) also measures technical 

change in terms of profitability, as the dual formulation of the distance function relative to a constant returns to 

scale technology can be expressed as profitability measure (see equality (9) above). Our measure for technical 

change can differ from that of Färe et al. to some extent because we measure profitability in terms of observed 

input-output prices, whereas Färe et al. use shadow prices. Like the component of Färe et al., our technical change 

 11 



measure does not capture technical progress that occurs in the part of the frontier exhibiting increasing or 

decreasing returns to scale if the frontier does not shift at the most productive scale size. In particular, our 

component only captures frontier shifts that have an impact on profitability; thus, it could be more precisely 

qualified as “profitability enhancing technical progress”. Other types of frontier shifts are attributed to the allocative 

or scale efficiency components (as in Färe et al. decomposition). For example, suppose a technical innovation 

helps to improve productivity of small firms, but has no effect on the profitability of the leading firms operating at the 

most productive scale size. Such a local frontier shift makes the small-scale production more attractive, and thus 

improves scale efficiency of small firms even if these firms do not expand their scale. Even though this productivity 

improvement was ultimately due to a technical innovation, it does not show up in the technical change component 

because the same productivity could have been achieved with the earlier technology if economies of scale were 

appropriately utilised. Thus, excluding these local frontier shifts from the technical change components seems 

justified.  

This measure is illustrated in Figure 2 where and  represent the maximum return per dollar (most 

profitable) lines in period 0 and 1. The change in maximum profitability is simply given by the following geometric 

expression: 

0ρ 1ρ

β
α

∆ =
tan
tan

Tech . 

 

 

T1 

β 
α 

ρ1 

Y 

ρ0 

T0 

O X 

Figure 2. Technical change component, measured with profitability functions 
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5. Scale efficiency 

Economies (and diseconomies) of scale can obviously contribute to productivity. Indeed, varying utilisation of scale 

economies in different stages of the business cycle is considered as one plausible explanation for pro-cyclical 

productivity (e.g. Basu and Fernald, 1997). Therefore, it is interesting to isolate the effect of scale economies 

component in the productivity change. While technical and allocative inefficiencies relate to managerial and 

organisational aspects within the firm, scale inefficiency typically signals structural inefficiency in the operating 

environment of the firm. Possible reasons for an ineconomically small scale include credit constraints, trade 

barriers, and shortage of essential resources, while imperfect competition and monopoly power may lead firms to 

produce on ineconomically large scale.   

  The decomposition of Färe et al. (1994c) utilises the intuitive scale efficiency measure by Färe et al. 

(1983), which compares the distance functions gauged relative to a variable returns to scale and constant returns 

to scale reference technologies. However, applying this conventional scale measure as such in the present 

framework is problematic, because the Färe et al. (1983) decomposition depends on the order in which its 

components are calculated, as pointed out by McDonald (1996) in the case of technical efficiency, congestion 

efficiency, and scale efficiency components (see also Färe and Grosskopf, 2000). The same problem extends to 

the present case with allocative and scale efficiency, where allocative efficiency may be different if we measure it 

relative to the variable returns to scale technology or the constant returns to scale benchmark that already 

accounts for scale inefficiency. Only when the input sets L and output sets P are homothetic the order of 

decomposition does not influence the result.   

To avoid this arbitrariness, we propose to define scale efficiency in economic rather than technical terms. In 

line with our treatment of technical change, we adopt the dual perspective and characterise the optimal scale size 

in terms of the profitability function . Thus, the most natural measure of scale efficiency is the ratio of the 

maximum profitability at the current scale size (scale constrained profitability function) to the overall (global) 

maximum profitability (unconstrained profitability function). In essence, this definition of scale efficiency assumes 

constraints as the reason for scale inefficiency. 

tρ

The current scale size can be measured either in terms of inputs or outputs. If we fix the output level to yt, 

the maximum profitability (or return on the dollar) in period t is given by the ratio ⋅
( , )

t t

t t tC
p y

w y
. Thus, the input 
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oriented profitability based scale efficiency measure is the ratio of output constrained maximum profitability to the 

unconstrained maximum profitability, that is, 

(12) ρ
 ⋅
 
 

( , )
( , )

t t
t t t

t t tC
p y w p

w y
. 

Similarly, if we fix the inputs to xt, the maximum profitability is 
⋅

( , )t t t

t t
R x p

w x
. Thus, the output oriented profitability 

based scale efficiency measure is  

(13) ρ
 
 ⋅ 

( , ) ( , )
t t t

t t t
t t

R x p w p
w x

 

In the case of the Malmquist index, the scale efficiency measure is especially dependent on the choice of 

orientation. To avoid this problem, we again follow the Fisher approach and take the geometric mean of the input 

oriented and output oriented scale efficiency measures. This results as the following expression for the scale 

efficiency component: 

(14) ∆SEff
ρ ρ ρ ρ

        ⋅ ⋅
        ⋅ ⋅        = ⋅ ⋅
  
    
  

1 1
2 21 1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

( , ) ( , )
( , ) ( , )
( , ) ( , ) ( , ) ( , )

R R
C C

p y x p p y x p
w y w x w y w x
w p w p w p w p




 




. 

Input oriented scale efficiency measure and its change is illustrated in the Figure 3a. Input scale efficiency 

∆ =
OK OB

ISEff
OJ OA

 is calculated as the change of input scale efficiency between periods 0 ( /OJ OA ) and 1 

( /OK OB ). Similarly, Figure 3b depicts the output oriented scale efficiency measure and its change. Output 

scale efficiency ∆ =
OD OM

OSEff
OC OC

 is the change in output scale efficiency between periods 0 and 1, 

respectively. Note that in period 0 the output scale efficiency equals 1. The value is bigger (smaller) than one if the 

unit gets closer (further away) to (from) the most profitable scale of production.  
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Figure 3a. Input oriented scale efficiency change.  
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Figure 3b. Output oriented scale efficiency change. 
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6. Allocative efficiency 

Thus far, allocative efficiency components have not appeared in the decompositions of productivity change, 

although it is a component of Farrell’s (1957) static decomposition of productive efficiency.  Introducing allocative 

efficiency into the productivity index may appear unorthodox if we consider productivity and technical progress to 

be the same. Since the standard neoclassical assumption of rational profit maximizing firms leaves no room for 

allocative inefficiency, changes in allocative efficiency do not rank among the most standard explanations for 

productivity changes. Yet, in the real world, markets are far from perfectly competitive, incomplete information and 

other frictions are present, and adjustments to price changes can occur with considerable delay. Since changes of 

allocative efficiency do occur in the real life, especially in more turbulent times, it is well in line with the welfare 

interpretation of productivity to account for its changes. Ignoring such a potentially important component can only 

contribute to mis-measurement of welfare.  

2

 While technical efficiency captures the radial input reduction and output expansion potential, Farrell’s 

(1957) allocative efficiency measure represents the non-radial productivity improvement potential, which is 

obtainable by restructuring production (i.e., changing the input-output mix). As Kuosmanen and Post (2001, Eq. 

2.8) note, allocative efficiency can be expressed solely in terms of technology distance functions. Indeed, allocative 

efficiency measure can be viewed as a distance measure in the input-output quantity space, reflecting the 

technically feasible distance to the economic iso-cost (iso-revenue) surfaces representing the maximum aggregate, 

quality adjusted input (output) quantity. In this perspective, introducing allocative efficiency component to the TFP 

index, defined as a ratio of two quantity indices, seems fully legitimate.  

Allocative efficiency can be measured in terms of inputs or outputs (costs or revenues). Input allocative 

efficiency is the ratio of the cost function and the cost of the technically efficient input vector that can be obtained 

by proportionately scaling the observed input vector downward to the efficient frontier, that is,  

(10) tIAEff ≡
⋅

( , )
( ( , ) )

t t t

t t t t t
x

C
D

w y
w x y x

. 

Analogously, output allocative efficiency is the ratio of the hypothetical revenue of the technically efficient output 

vector, obtained by equiproportionate augmentation of the observed output vector, and the revenue function, that 

is, 

                                                 
2 A notable exception is the decomposition of profitability by Grifell-Tatjé and Lovell (1999).  
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(11) tOAEff
⋅

=
( / ( , ))

( , )

t t t t t
y

t t t

D
R

p y x y
x p

. 

The overall allocative efficiency of the firm should take into account the changes of mix both in the input and the 

output side. As before, we measure the overall change of allocative efficiency as the geometric mean of the 

changes in allocative efficiencies in inputs and outputs, that is, 

(12)   
 

∆ = ⋅ 
 

1
1 1 2

0 0
IAEff OAEffAEff
IAEff OAEff

. 

This is in line with fact that changes in input and output allocative efficiency contribute to profitability with equal 

weight and in multiplicative form. 

Input and output oriented allocative efficiency changes are illustrated graphically in Figure 4. Input 

oriented allocative efficiency change in Figure 4a is depicted as ∆ = . The measure compares 

the deviation from the minimum cost due to wrong allocation of inputs between subsequent periods when given 

output is produced. Similarly, output oriented allocative efficiency change is illustrated in Figure 4b as 

OF OB
IAEff

OE OA

∆ =
OD OH

OAeff
OC OG

. It compares the deviations from maximum revenue due to wrong allocation of outputs 

given inputs between two periods, respectively. Again, we can take a geometric mean of these two, which provides 

our weighted average for allocative efficiency. 
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Figure 4a. Input allocative efficiency change. 
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Figure 4b. Output allocative efficiency change. 
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7. Market strength  

The market strength measure, to be introduced next, is the most atypical component of all. Therefore, we need to 

provide some motivating examples. Suppose a new technological innovation or learning by doing improves the 

quality of some outputs more than other outputs, such that the same inputs produce the same output quantities as 

before, but the high-quality outputs yield a higher price. Alternatively, quality of some inputs may improve such that 

a smaller amount of the same input is needed for producing the same output (consider e.g. the effect of education 

and training on labour input). Or an external change in the market environment (e.g. tariffs or trade barriers) or the 

government policies (e.g. taxes and subsidies) influences the competitiveness of the firms. As a result of these 

kinds of changes, firms may become more or less profitable, but the traditional technical change measures as well 

as technical, allocative, and scale efficiency components fail to account for this effect.  

The increased capacity of firms to produce aggregate output with the same aggregate input could be 

measured by ratio 
0 1 1

0 0 0
( , )
( , )

ρ
ρ

w p
w p

, representing the increase in profitability of the leading firms in the industry, given 

the base year technology. Alternatively, we could use the target year technology as the benchmark, and consider 

the ratio 
1 1 1

1 0 0
( , )
( , )

ρ
ρ

w p
w p

. Since we have no reason to prefer either base or target year technology, we can take the 

geometric mean of these ratios: 

(17) ρ ρ
ρ ρ

 
⋅ 

 

1
0 1 1 1 1 1 2

0 0 0 1 0 0
( , ) ( , )
( , ) ( , )
w p w p
w p w p

.  

This geometric mean effectively captures the change in maximum profitability at given technology attributable to 

the price changes. However, this measure fails to account for possible profitability effects of changes in nominal 

prices due to inflation. To convert the profitability changes from nominal to real terms, we need an appropriate 

price deflator. The most natural deflator for profitability change is the ratio of Fisher output price index to the input 

price index, 0,1 0,1 0,1 0,1( , ) / ( , )p wFxF y x y , where the input and output vectors of the evaluated unit are used as the 

index weights. This deflator essentially measures the change of output prices relative to the change of input prices. 

If average output prices increase more (less) than the input prices, then the value of the deflator is greater 

(smaller) than one. If output and input prices change by the same factor, then this deflator is equal to one. To 

measure the change in market strength in terms of real prices, we propose the following measure:  
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(18) MS∆
ρ ρ
ρ ρ

 
= ⋅ 
 

1 0,1 0,10 1 1 1 1 1 2

0 0 0 1 0 0 0,1 0,1

( , )( , ) ( , )
( , ) ( , ) ( , )

p

w

F
F

x yw p w p
w p w p x y

.  

  The market strength measure does not change if all prices change by the same percentage. In fact, as 

the nominal profitability changes are adjusted by the price indices, the market strength remains constant even if 

output prices change by a different factor than input prices, if price changes are uniform across input factors and 

output goods. In essence, this component measures changes in the production possibilities of the quality-adjusted 

aggregate output due to changes in relative prices, measured in real terms. As these relative price changes are 

typically beyond the influence of an individual firm but rather depend on the external operating environment, we 

find market strength an appropriate name for this component. While non-uniform changes in quality of inputs and 

outputs may be one important reason for the change of market strength, as such, this component cannot be 

interpreted as a measure of quality change. For example, this component would likely fail to capture output quality 

improvements in the computer industry, where the quality improvement of outputs has coincided with decreasing 

output prices. If possible, the input and output quantity measures and indicators should be directly adjusted for 

their quality.  

In the previous section we interpreted allocative efficiency change as a qualitative, non-radial, price-based 

component of efficiency change. In analogy with that interpretation, we may consider the market strength 

component as a qualitative, price-driven frontier shift. In other words, the market strength component can be 

viewed as the change in the aggregate production possibilities attributable to price changes. In this respect, it is 

instructive to multiply the market strength component by the associated technical change component to obtain      

(19) ∆ ×Tech MS∆
0,1 0,11 1 1

0 0 0 0,1 0,1

( , )( , )
( , ) ( , )

p

w

F
F

ρ
ρ

=
x yw p

w p x y
.  

That is, the product of the technical change and market strength components is the change of maximum 

profitability measured in real terms (i.e., the nominal change of profitability function divided by the Fisher price 

index deflator).   

The market strength component is difficult to illustrate graphically, but an attempt towards this is made in 

Figure 5. Figure 5a represents the input and Figure 5b the output orientation. In the form of cost and return function 

the market strength component can be presented as ∆ = ⋅
0 *0 1 *0 1 1 *1 1 1 *1 1

0 *0 0 *0 0 1 *1 0 1 *1 0
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

o

o
R C R CMS
R C R C

x p y w x p y w
x p y w x p y w

 

where x* and y * refer to optimal inputs and outputs given prices. 
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Figure 5a. Market strength (input orientation). 
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Figure 5b. Market strength (output orientation). 
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8. The main result 

We are now ready to present the main result of the paper. It turns out that by multiplying the five components 

introduced above, we obtain the classic Fisher index. 

 

Theorem 2: The Fisher ideal TFP index can be expressed as the product of the technical efficiency, technical 

change, scale efficiency, allocative efficiency, and the market strength components: 

(20)  TFPF = ∆ ×TEff ∆ ×Tech ∆SEff ×∆AEff MS×∆

 

Proof. See Appendix 3  

 

This result is interesting at least for the following reasons. Firstly, the decomposition further enhances our 

general understanding about how the Fisher index works. For example, we note that changes in allocative 

efficiency contribute to the Fisher index, but not to the Malmquist index (compare also with Färe and Grosskopf, 

1992; Balk, 1993, 1998; and Kuosmanen et al., 2004). Secondly, the decomposition provides a more detailed, 

anatomical picture about the driving forces behind productivity changes. By distinguishing between input and 

output oriented sub-components, and by introducing allocative efficiency and a new market strength component, 

the present decomposition is by far the most detailed one ever presented. Thirdly, our decomposition recognises 

price-based allocative efficiency and market strength components as important elements of productivity change. By 

attributing changes in economic value of inputs and outputs to the productivity index, we hope to capture at least 

some quality aspects of productivity. Fourthly, better understanding of the anatomy of the Fisher index also 

enables one to tailor the productivity index for the purposes of the study. Even though the Fisher TFP index may 

not be the most appropriate index number formula for some applications, we believe our decomposition can 

provide insight for developing a tailored index that captures those effects that are important for the purposes of the 

study. If some components represent effects that do not fit in a given definition of productivity, the decomposition 

enables one to correct for (or eliminate) these undesirable components from the overall productivity index.  

As a direct corollary of Theorem 2, we obtain an alternative decomposition of profitability (compare with 

Grifell-Tatjé and Lovell, 1999). In particular, the change of revenue can be expressed as the product of the Fisher 

output quantity and output price indices, and the change of costs can be expressed as the product of the Fisher 
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input quantity and input price indices (Diewert, 1992). Note that the Fisher price indices were included as the 

deflator in the market strength component. Multiplying both sides of (18) with 0,1 0,1 0,1 0,1( , ) / ( , )p wFxF y x y  we obtain 

that the change in profitability is the product of our technical efficiency, technical change, scale efficiency, and 

allocative efficiency components and the nominal price version of the market strength component. 

 

9. Application to Finnish farms 

9.1 Motivation 

We next apply the proposed decomposition to study productivity development in 459 Finnish bookkeeping farms 

through 1992-2000. The period under investigation is interesting because Finland joined the European Union (EU) 

in the middle of the study period in 1995. The EU accession meant increased international competition and a fall in 

price support, which together resulted as a drastic fall in output prices. Figure 6 illustrates the development of price 

indices for milk, meat and other animal products, and crops. The drop in prices of meat and other animal products 

and crop products was more than 50 percent, but the price of milk decreased only by 15 percent. Input prices have 

not fallen as dramatically as some output prices, although prices in input categories like land, animals, fertilizers, 

purchased feed, and materials have decreased. The fall has been more than 30 percent in purchased feed and 

fertilizers and even more than 40 percent in prices of purchased animals. These dramatic price changes have led 

farms to adjust their input-output mix over time, the effects of which should show up in the technical, allocative, and 

scale efficiency measures. 
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Figure 6. Development of average output prices (1992 = 1).  (Source: Statistics Finland)  
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9.2 Data 

Our balanced panel data includes all types of farms varying from specialized animal production and crop farms to 

more conventional farms engaged both in animal husbandry and crop farming. A typical farm produces several 

outputs including milk, meat and/or several types of plant products using a number of different inputs, but not all 

farms produce all products. For example, less than half of the sample farms produce milk. Thus, it was necessary 

to aggregate specific inputs and outputs into larger categories to avoid dimensionality problems in the empirical 

efficiency analysis.  

Table 1 lists the input and output categories and presents the descriptive statistics of costs and revenues in 

1992, 1996 and 2000. Four observations are worth noting. First, Finnish farms are typically small. Table 1 shows 

that the mean arable land area of sample farms in 1992 was only 37 hectares, the number of animal units being 

31. Since 1992 output per farm has increased; the maxima and the standard deviations have also increased 

considerably. Second, the average crop output of farms did not change much, despite the drastic changes in price 

relations (see Table 1). Third, the capital stock per farm has increased more rapidly than output. Considerable 

public investment aids boosted investment activities. In year 2000, the capital stock of machinery was in real terms 

85 percent and that of buildings 70 percent higher than in 1992. Capital intensity increased since the annual growth 

of labour input was only about 5 percent during the time period under study. Although the total labour input in 

agriculture has decreased because of the decreasing number of farms, simultaneously, the farms increasing in 

size have had to increase their total labour input, but relatively less than other inputs. Fourth, use of other inputs 

per farm has increased during the research period. For example, fertiliser use on sample farms has increased 25 

percent together with the increase in arable land area. However, the use of fertilisers per hectare has decreased. 

Although the intensity of crop production seems to have decreased, relative price changes have contributed to the 

intensification of production with respect to purchased feed, for example, in milk production. 
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Table 1. Inputs and outputs. Descriptive statistics of revenues and costs (in €): 1992, 1996 and 2000. 
 1992 1996 2000 
 Mean Std Dev Mean Std Dev Mean Std Dev 
Outputs:       
Milk  23354 25628 26732 30291 32403 40987 
Other animal products  18331 30707 19984 40541 24710 55487 
Crops  11272 18076 11109 18623 14311 21146 
Inputs:       
Labour  27057 11283 29420 13147 28634 14415 
Animal units 1242 1334 1385 1653 1500 2062 
Land 4820 2842 5496 3223 6401 3711 
Machinery  28917 20017 33749 21620 54025 39749 
Buildings  25843 29903 29451 31168 42117 52952 
Fertiliser  3785 2409 4552 3114 4742 3924 
Energy  5411 3146 5933 3615 4802 3443 
Purchased feed  9879 13487 10118 14195 14455 22899 
Materials  10370 6280 12964 8361 16854 12225 

 

9.3 The Fisher indices 

Calculation of the Fisher quantity indices requires full price and quantity data on all inputs and outputs. 

Unfortunately, both prices and quantities were documented only for labour and land inputs, and for milk output. For 

other input and output categories only cost and revenue data are available; a common feature in farm-level 

production data. Since all farms are relatively small and their market power is low, the farms are assumed to take 

the prevailing market prices for inputs and outputs as given. All farms are assumed to face the same market prices 

for specific inputs and outputs (i.e., the law of one price is assumed to hold).3 Changes in market prices over time 

were measured by price indices documented by Statistics Finland. For aggregated input and output categories 

(such as crops), farm-specific Fisher price indices were constructed from more specific price indices (e.g., indices 

for wheat, barley, oats, and so forth) and the farm-level quantity data. For input and output variables with missing 

quantity data, implicit quantity indices were calculated by dividing the costs or revenues by the respective price 

indices. These implicit quantities capture possible quality differences associated with higher returns or costs due to 

higher prices in quantities.  

Given thus constructed farm-specific quantity and price data, the Fisher ideal output and input quantity 

indices could now be calculated. The total factor productivity index was subsequently obtained as the ratio of the 

two. Figure 7 presents cumulative cost-share weighted averages of Fisher input (Fx) and output (Fy) quantity 

indices and the Fisher index (F).   

                                                 
3 Note that the same assumption has to be made when cost and/or revenue data are used as proxies for respective input and output 
quantities, as is often done in the Malmquist index approach. For more detailed discussion on the one price assumption, see Cross and Färe 
(2003) and Kuosmanen et al. (2005). 
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Figure 7. Cumulative Fisher index (F), Fisher input (Fx) and output (Fy) quantity indices.  

 

The aggregate input has grown steadily over the whole research period. The output growth has followed the input 

growth but there have been two major deviations: in 1992/93 the output growth deviated downwards and in 

1999/2000 upwards from the input growth. These deviations can also be observed in the Fisher index, which at 

first falls but then recovers, although very slowly until 1998. After 1998 the growth rate has increased being 14.6 

percentage units from 1999 to 2000.  

 

9.5 Decomposition of the Fisher TFP index 

To implement the decomposition of Section 8, we utilise the nonparametric Data Envelopment Analysis (DEA) 

approach for estimating the production technology. We resort to the most standard convex, variable returns to 

scale benchmark technology. The values of distance functions as well as cost and revenue functions relative to 

DEA technology are obtained as optimal solution to specific Linear Programming (LP) problems. Detailed 

descriptions of these LP problems are presented e.g. in Färe et al. (1985, 1994b). The only non-standard measure, 

the profitability function, was calculated by simply enumerating through all observed combinations of price and 

quantity vectors to calculate the full profitability distribution at all observed prices. To make this critical profitability 

measure less sensitive to data errors and outliers, we used the 95 percentile of the profitability distribution as our 

empirical estimator for the profitability function.  
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9.5.1 Technical efficiency and technical change components 

Figure 8 describes the development of technical efficiency and technical change components in cumulative 

fashion. The weighted annual averages of the input and output oriented sub-components of technical efficiency 

change are presented separately. Their geometric mean (the solid thick line) is the overall technical efficiency 

measure of our decomposition. Technical efficiency has grown slowly until 1998. Since then the growth of technical 

efficiency has accelerated considerably. Figure 8 shows that output oriented technical efficiency indices indicate 

approximately twice as high growth as input oriented ones. On the other hand, their geometric mean is close to the 

input oriented index. This is probably due to the fact that output orientation yields a larger variation in individual 

efficiencies. 
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Figure 8. Cumulative input oriented (ITEff) and output oriented (OTEff) technical efficiency change, their 
geometric mean (TEff), and the technical change (Tech) components. 

 

The technical change component shows a surprisingly steady growth path. The black broken line of Figure 8 

represents the cumulative weighted average of farms' technical change components. This figure shows a 

considerable technical regress in the beginning of the sample period, which can be attributed to extensive set-

aside programs and adverse weather conditions in 1993 and 1994. After these first adverse years, technological 

progress is rapid until 1998, showing impressive average cumulative growth of 25 percent in a five-year period. 

However, the progress slows down in 1999 and turns to regress in 2000, in spite of the fact that overall productivity 

growth is at its highest in that year. As we noted earlier, there was almost no change in technical efficiency but 

since 1998 technical efficiency improves 15 percentage units. Thus, average farms are getting closer to the frontier 

but partially due to the regress on the most profitable farms. 
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9.5.2 Scale efficiency component 

Figure 9 presents the scale efficiency components analogous to the previous figure. The scale efficiency 

component shows large annual fluctuations, showing an increasing trend before the EU accession in 1995 and 

until 1996, then decline until 1999, and a sudden 20 percentage points jump in 2000. The fluctuations are 

especially large in the output-oriented measure of scale efficiency. This is surprising because farms' production 

scale exhibited relatively steady growth throughout the study period (compare with Figure 7), while the composition 

of input-output mix changed much more dramatically. The great fluctuations in scale efficiency must therefore arise 

from rapid changes in the most profitable scale size itself. It seems that the expansion of scale size was profitable 

in the market conditions prevailing before the EU accession, but the continuing expansion after 1995 was at odds 

with the deteriorated market conditions. Note that the input oriented component showed greater variation prior to 

1995, while the output oriented sub-component fluctuates drastically after 1995.  
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Figure 9. Cumulative input oriented (ISEff) and output oriented (OSEff) scale efficiency change and their 
geometric mean (SEff).  
 

 

9.5.3 Allocative efficiency and market strength components 

The decomposition of the Fisher index also includes allocative efficiency change. Analogous to Figure 8, Figure 9 

presents the weighted annual averages of the input and output oriented sub-components and their geometric 

mean. This figure shows that allocative efficiency has on average improved less than 10 percent during the 

research period. At the end of the research period output oriented allocative efficiency has increased relatively 

more than input oriented allocative efficiency. A change in development can be observed at the time of the EU 

accession, and it is probably related to different incentives and constraints set by the changed agricultural policy. 
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Before that point the input oriented allocative efficiency improved faster than the efficiency in output orientation. 

Instead, after the EU accession output oriented allocative efficiency has shown faster growth than input oriented 

efficiency.  
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Figure 10. Cumulative input oriented (AECi) and output oriented (AECo) technical efficiency change and 
their geometric mean (AEC), and market strength change (MS). 
 

The weighted average of the market strength components is represented by the broken line in Figure 10. There 

was little change in the market strength in the beginning of the study period. In 1995-1996, the first two years after 

the EU accession, the market strength dropped by almost 15 percentage points, reflecting the adverse effect of the 

price changes to farms' potential for producing aggregate output. After this sharp downfall, market strength 

recovered slowly, but never reached the original price conditions.  

It is interesting to note that overall Fisher TFP index showed slow but steady growth throughout the study 

period, supported by both technical efficiency and technical change components. The effect of dramatic prices 

changes was revealed most clearly by the market strength component. The negative effect of the market strength 

component was countered at least to some extent by improved allocative efficiency.  

 

9.4 Comparison of the Fisher and Malmquist TFP indices 

For comparison, we also calculated the Malmquist productivity index of Färe et al. (1994c) using the same DEA 

reference technology and the same input and output quantity data as in the Fisher indices. While the Malmquist 

index does not require any price data, the assumptions of price taking behaviour and the law of one price are still 
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required for recovering quantity data from the observed cost/revenue aggregates. Thus, the data requirements do 

not favour either approach in this application.  

Figure 11 illustrates the average productivity growth measured by the Malmquist index (denoted by M100; 

the thin broken line) and the Fisher index (F100, solid black line). We observe that the weighted average 

Malmquist index shows considerably higher cumulative productivity growth than the Fisher ideal TFP index: the 

Malmquist index indicates an average productivity growth of 68.7 percent during the research period of eight years, 

which is three times higher than the average growth according to the Fisher index. Such a productivity growth 

seems incredibly high in the context of agricultural production.  
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Figure 11. Cumulative Fisher index (F) versus Malmquist indices (M). The number after capital letter 
indicates the percentage of observations taken into account. 

 

To investigate the distribution of productivity growth figures across farms, we clipped the extreme tails of the 

distribution, and plotted in Figure 12 the average values of the Malmquist productivity index for farms falling within 

the (2.5, 97.5) and (5, 95) percentile ranges (denoted by M95 and M90 respectively). After clipping the tails, the 

average Malmquist index follows closely the path of the average Fisher TFP index. This suggests that for the large 

majority of farms the two index formulae offer relatively similar results. For a small percentage of farms in our 

sample, the Malmquist index produces considerably higher index values than the Fisher TFP index. In our 

interpretation, the Fisher TFP index proves a more stable and robust index number formula of the two, providing 

more credible results in this application. Recall that the Fisher TFP index for an individual farm only depends on its 

own performance, while the Malmquist index compares the performance of each farm relative to the farms defining 

the best practice frontier. 
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We next compare the results component-wise to see where the differences between the Malmquist and 

Fisher TFP indices may occur. We focus on the most standard decomposition of the Malmquist index by Färe et al. 

(1994c), specified in detail in Appendix 1.  

Firstly, technical efficiency change components of the Malmquist index are equal to their input- and output-

oriented counterparts in the Fisher index. Applications of the Malmquist index typically assume either input or 

output orientation, while our Fisher decomposition incorporates both orientations applying the geometric mean of 

the two. Secondly, allocative efficiency change and the market strength components appear in our decomposition, 

but are not included in the Malmquist index decompositions. Thus, we can only compare the scale efficiency and 

technical change components empirically.  

Figure 12 presents a comparison between the input oriented scale efficiency components of the Malmquist 

(MISEff) and the Fisher index (ISEff). As Figure 12 shows, the scale components of the Fisher index are typically 

larger than the corresponding Malmquist component. Moreover, the Fisher components exhibit more variation over 

time.  
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Figure 12. Input oriented scale efficiency change component of the Malmquist index (MISEff) and inputs 
oriented scale efficiency component (ISEff) and weighted scale efficiency component (SEff) of the Fisher 
index. 

 

Figure 13 compares the technical change components of the Malmquist (MTech100: the thin broken line) 

and Fisher indices (Tech100: the solid black line). The Malmquist component suggests considerably faster 

technical development than the Fisher component, with the cumulative difference exceeding 20 percentage points 

at the end of the research period. Thus, the difference in the technical change components explains about half of 

the difference in the overall index. As in the case of the overall index (Figure 12), we also considered the technical 
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change component of the mid-95 percentile of the farm distribution clipping away 5 percent of the extreme 

observations. The resulting average is illustrated by the broken line with diamonds (MTech95). Like in the case of 

the overall index, the majority of farms exhibited similar technical progress according to both Fisher and Malmquist 

components. 
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Figure 13. Technical change components of the Malmquist and the Fisher index. 

 

10. Concluding remarks 

We have shown that the Fisher ideal TFP index can be decomposed in the similar fashion to the numerous 

decompositions of the Malmquist index. We believe this decomposition enhances both our understanding about 

the different sources of productivity growth captured by the Fisher index and the position of the Fisher index as a 

useful index number formula for productivity analysis. The decomposition is readily implementable in empirical 

applications using the standard parametric or nonparametric frontier estimation techniques.  

The proposed decomposition includes two new components – allocative efficiency and market strength – 

which have not been accounted for explicitly in the productivity decompositions before. The allocative efficiency 

component is based on the classic Farrell allocative efficiency measure, which indicates the nonradial efficiency 

improvement potential in production of quality-adjusted aggregate output. The market strength component 

captures changes in the market conditions, transmitted through changes in relative prices, which influence the 

firms’ capability to produce the quality-adjusted aggregate output. While both these components represent 

economic rather than technical efficiency, we find it meaningful to account for these qualitative components in the 

productivity index (which is essentially a quantity index), because usually it is difficult to draw a sharp distinction 
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between the technical input-output quantities and the associated economic costs and revenues. For example, the 

capital input is almost always measured by some kind of a cost aggregate.  

The proposed decomposition may also provide useful insights for other decompositions. While the existing 

Malmquist decompositions usually assume either input or output orientation, our decomposition builds on 

geometric means of both input and output oriented sub-components. Of course, the same approach could be 

adapted to the Malmquist decompositions in a straightforward manner. On the other hand, we employed the dual 

representation of the technology, the profitability function, for our measure of technical change. By duality theory, it 

is equally legitimate to measure technical change by means of monetary profitability data as with more traditional 

input/output technology distance functions.  

The usefulness of the new decomposition was illustrated by an empirical application where productivity 

developments in a large sample of Finnish farms were studied over the period 1992-2000. This period is interesting 

because of the drastic price changes due to Finland's EU accession in 1995, which increased international 

competition and led to major revisions in the agricultural policy. Despite major restructuring of production, the 

average productivity growth was found to be surprisingly stable, on the average about 2.5 percent per annum. 

Technical change and technical efficiency followed a similar stable growth path. The impacts of the EU accession 

presented themselves most clearly in the market strength component, which showed a sudden downfall in 1994-

1996. This negative market strength effect was offset most importantly by improved allocative efficiency. The scale 

efficiency component showed relatively large annual fluctuations and proved more difficult to interpret.      

We hope this decomposition might inspire debate about the relative merits of different index number 

formulae used in productivity measurement. We believe there is no single superior index number for all empirical 

studies, but different index formulae may be appropriate depending on the purposes of the analysis and the 

interpretation of productivity. Our decomposition suggests that it is possible to extend the approach of Färe et al. 

(1994a,c) from the domain of Malmquist type indices towards the more classic, price-weighted indices. Further 

research could consider other important indices such as the widely used Törnqvist productivity index.   
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Appendix 1: The Malmquist index and its decomposition 

For brevity, we focus on the input oriented Malmquist index of Färe et al. (1994b). Let ( , )t t t
xD x y  denote the input 

distance function defined relative to the constant returns to scale reference technology (i.e., the conical hull 

 rather than T ). Given this CRS input distance function, the Malmquist index is defined as  ,tTλ λ ≥ 0 t

≡0,1 0,1( , )xM x y  
⋅ 

 

1
0 1 1 1 1 1 2

0 0 0 1 0 0
( , ) ( , )
( , ) ( , )

x x

x x

D D
D D

x y x y
x y x y

. 

The Malmquist index decomposes into components of efficiency change (Eff) and technical change (Tech) as  

=0,1 0,1( , )xM x y ⋅0,1 0,1 0,1 0,1( , ) ( , )Eff Techx y x y ,  

where  

=
1 1 1

0,1 0,1
0 0 0
( , )( , )
( , )

x

x

DEff
D

x yx y
x y

  

and  

≡0,1 0,1( , )Tech x y  
⋅ 
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1
0 1 1 0 0 0 2

1 1 1 1 0 0
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x x

x x

D D
D D

x y x y
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.  

Efficiency change can be further decomposed into ’pure’ technical efficiency change (OEff) and scale efficiency 

change (SEff) as  

= ⋅0,1 0,1 0,1 0,1 0,1 0,1( , ) ( , ) ( , )Eff OEff SEffx y x y x y   

where  

=
1 1 1

0,1 0,1
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and   

 
= ⋅ 
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x x
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x y x y
x y x y

. 

 37 



Appendix 2: Proof of Theorem 1 

This is a variant of the duality result on profit functions (e.g., Färe and Primont, 1995: Proposition 6.1.4). The result 

follows directly from Lemma 1 in Kuosmanen et al. (2004), which shows that if Tt satisfies free disposability, 

convexity, and constant returns to scale, then the input distance function can be expressed as  

(i) 
( , )

( , ) max 1 ( , )
r s

t r
xD

+
+

+
+

∈

′ ⋅ ⋅ ′ ′= ≤ ∀ ′⋅ ⋅ w p

p y p yx y x y
w x w x

s∈ .  

By the definition of function , this further implies that  tρ

(ii) 
( , )

( , ) max ( , ) 1
r s

t t
xD ρ

+
+∈

⋅ = ≤ ⋅ w p

p yx y w p
w x

.  

Furthermore, we know that under weak disposability of inputs  

(iii) { }( , ) ( , ) 1t r s tT D+
+= ∈ ≤xx y x y . 

Substituting (ii) in (iii), we have that 

(iv) 
( , )

( , ) max ( , ) 1 1
r s

t r s tT ρ
+
+

+
+

∈

 ⋅ = ∈ ≤ ≤  ⋅  w p

p yx y w p
w x    

(v) 
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(vi) ( , ) ( , ) ( , )r s t r sρ+ +
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 ⋅
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.  
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Appendix 3: Proof of Theorem 2 

We start from the definition of the Fisher TFP index  

(i)  ≡0,1 0,1 0,1 0,1( , , , )TFPF p w y x

 
⋅ 
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,  

and modify it in order to isolate the specific components. (To simplify the expressions, the arguments of FTFP will be 

suppressed.) As the first step, we divide the revenue terms by the corresponding revenue functions and the cost 

terms by the corresponding cost functions as  

(ii)  =TFPF

    ⋅ ⋅
    
    ⋅

    ⋅ ⋅
         

   ⋅ ⋅
   
   ⋅

   ⋅ ⋅
       

1
20 1 1 1

0 0 0 1 1 1

0 0 1 0

0 0 0 1 1 1

1
20 1 1 1

0 0 0 1 1 1

0 0 1 0

0 0 0 1 1 1

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

R R

R R

C C

C C

p y p y
x p x p

p y p y
x p x p

w x w x
w y w y

w x w x
w y w y








. 

We then substitute the numerators of the second-level ratios to obtain 

(iii)  =TFPF
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Next, we further decompose the left-hand side ratios by introducing revenues and costs of the technically efficient 

reference points as  
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(iv) =TFPF
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Reorganizing the left-hand components of (iv), we  

(v)  =TFPF
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The first component of (v) is the change in technical efficiency ( ), the second component is the change in 

allocative efficiency ( ), so we rewrite (v) as 

∆TEff

∆AEff

(vi)  =TFPF ∆ ×TEff ∆ ×AEff
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Next, we turn attention to the remaining undecomposed element. Firstly, we expand the revenue and cost ratios as 

(vii)  =TFPF ∆ ×TEff ∆ ×AEff
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The third component is the ratio of the inverse of Fisher output price index and the input price index:  

(viii)  =TFPF ∆ ×TEff ∆ ×AEff
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We next re-organize the remaining revenue and cost ratios as 

(ix)  =TFPF ∆ ×TEff ∆ ×AEff
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Further, we introduce the profitability functions as 

(x)  =TFPF ∆ ×TEff ∆ ×AEff

ρ ρ

ρ
ρ

ρ ρ

    ⋅
    
    ⋅

 
      ⋅  

     ⋅
    ⋅    ⋅
 
  
 

1
21 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1

0 0 01
20 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

( , )
( , )
( , ) ( , )

( , )
( , )( , )

( , )
( , ) ( , )

p

w

R
C

F
FR

C

p y x p
w y w x
w p w p

w p
w pp y x p

w y w x
w p w p

. 

The third component is the change in scale efficiency ( ), that is, ∆SEff

(xi) =TFPF ∆ ×TEff ∆ ×AEff ∆SEff ρ
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Finally, we expand the ratio of profitability functions as 

(xii)  =TFPF ∆ ×TEff ∆ ×AEff ∆SEff
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The first component within the brackets is the technology change measure ( ) and the remaining second 

component and the price deflator form the market strength component ( ). Thus, reorganizing produces our 

decomposition of F  

∆Tech

∆MS

TFP

(xiii) .      =TFPF ∆ ×TEff ∆ ×Tech ∆SEff ×∆AEff ×∆MS
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