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High SSR diversity but little differentiation between accessions of
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A large collection of genebank accessions of the hexaploid outcrossing forage grass species timothy (Phleum pratense L.) was for
the first time analysed for SSR diversity on individual, population and regional level. Timothy is the most important forage grass
species in the Nordic countries. Eighty-eight timothy accessions from Nordic countries and eight accessions around Europe were
analysed with recently developed simple sequence repeat (SSR) markers. Timothy proved to be very polymorphic: the 13 selected
SSRs amplified a total of 499 polymorphic alleles, the number of alleles per SSR locus varying from 15 to 74. Taking all SSR alleles
together, the observed number in each accession ranged from 95 to 203. Levels of diversity were found to be significantly different
between countries, vegetation zones and different cultivar types. However, the differentiation between accessions was low: most
of the variation (94%) in the studied timothy material was due to variation within accessions and only 5% was between accessions
and 1% between countries. Lack of geographical differentiation may reflect the outcrossing and hexaploid nature of timothy. Our
results showed that neutral SSR markers are suitable for demonstrating levels of diversity but not alone adequate to resolve popula-
tion structure in timothy. Nordic timothy material seems to be diverse enough for breeding purposes and no decline in the level of
diversity was observed in varieties compared to wild timothy populations. Challenges in analysing SSR marker data in a hexaploid
outcrosser were discussed.
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Timothy (Phleum pratense L.) is a cool-season perennial
grass species distributed naturally throughout Europe
and parts of North Africa and Asia. Wild populations of
P. pratense represent a polyploid series from diploids to
octoploids. The cultivated form of timothy is hexaploid.
The uniformity of the molecular profile in agricultural
P. pratense suggests that the formation of this hexaploid
is probably post-glacial (STEwarT etal. 2011). The genomic
composition of hexaploid timothy has not been fully
resolved yet, but there is some evidence that the genome
contains four doses of bertolonii genome and two doses of
rhaeticum. Both of these genomes derive from the same
progenitor and are not very differentiated which explains
that both hexasomic and tetradisomic inheritance has been
reported in timothy (STEwarT et al. 2011). Timothy is
cultivated for hay, silage and pasture across the Northern
Hemisphere. In Nordic countries timothy is the most
important forage grass species due to adaptation to the
cool and relatively humid northern climate. The main goal
in timothy breeding for this region is to combine high
yield, good winter survival, and high feeding quality.
Timothy breeding relies on broad genetic variation and
utilisation of heterosis, which can be achieved by combin-
ing genetically distant individuals with good combining
ability in a synthetic variety. Therefore, plant breeders
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have to be sure that they have sufficient genetic variation
available for their breeding programmes.

Genetic diversity within a plant species reflects both
the life history traits and distribution of the species.
Perennial, outcrossing species are known to have higher
genetic diversity and less differentiation among popula-
tions than annual self pollinators (Hamrick and Gobpt
1996). Timothy is a perennial wind pollinating species
where hexaploidy is expected to further rise the level of
diversity. The abundant centre model (BrownN 1984) pre-
sumes reduced neutral genetic diversity within peripheral
compared to more central populations (EcKerT et al.
2008). Although the distribution of hexaploid timothy
covers most of Europe (CoNerT 1998), at the northern
margin, namely northern boreal and alpine vegetation
zones, harsh winter conditions may limit survival of
timothy. This may be reflected in the levels of diversity.
Previous studies have also shown that genetic diversity of
plant populations may either increase or decrease with
increasing altitude (Yan et al. 2009).

NordGen, the Nordic Genetic Resource Center, has a
collection of 716 accessions of timothy, originating mostly
from Nordic countries. Sixty-four of these are cultivars,
others represent natural populations or old landraces.
Nordic countries represent a wide geographical region
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with varying growth conditions from southern nemoral
zone in Denmark to northern alpine vegetation zone in
northern Norway. In addition to latitude, growth condi-
tions are also affected by longitude since conditions in
western Norway are maritime and in eastern Finland
more continental. Three hundred and seventy-three
timothy accessions in the NordGen collection have been
previously characterised for morphological and agro-
nomic traits in Finland, Norway, Iceland and Sweden
during 1995-1996 (<www.nordgen.org/index.php/skand/
content/view/full/344>). Characterisations were mostly
made on coarse, relative scale and variation within each
accession was not taken into account. This data gives
an overall picture of the phenotypic variation present in
the collection. However, it doesn’t fully describe the levels
of genetic diversity, the genetic structure of variation
between and among populations nor the genetic distances
between individuals or populations.

There are many molecular marker systems available
for diversity analyses, from which we chose simple
sequence repeats (SSRs) for studying diversity in timothy.
Primers for 355 SSR loci in timothy have been developed
(Car et al. 2003), and some of the loci have been located
on a diploid timothy map (Car et al. 2009). SSRs are
mostly codominantly inherited, very polymorphic, and
with the use of different fluorescent labels, can be multi-
plexed in PCR. The information content per locus is big-
ger in SSRs compared to dominant markers because
homo- and heterozygotes are detected. However, in
polyploid species interpretation of exact marker geno-
types is not straightforward and SSR alleles are usually
analysed as presence/absence markers.

This study is part of a wider Nordic collaborative
research project, where the variation of NordGen
timothy collection was evaluated both on phenotypic and
genotypic level. Here we report the results of the assess-
ment of genetic diversity using SSR markers. Our aim was
to study whether geographical location (vegetation zone,
latitude, longitude, altitude) affects the level of genetic
diversity. In addition, we studied if genetic markers could
find a population structure in the Nordic timothy material
and thus help finding heterotic groups among the collec-
tion of timothy to be used in variety breeding.

MATERIAL AND METHODS
Plant material

Eighty-eight timothy accessions from Nordic countries
(Table 1, Fig. 1) were selected from NordGen collection
based on geographical distribution and previous pheno-
typing data to represent as wide geographical and trait
variation as possible, and 15-20 randomly selected
individuals per accession were analysed. Most of the

accessions, namely 59, were classified as wild accessions,
17 as landraces and 11 as varieties or breeders material.
Accessions were divided to six groups according to coun-
try of origin: Norway (26), Finland (25), Sweden (25),
Denmark (10), Iceland (2), and exotic (8) including all
origins outside Nordic countries. Exotic accessions were
obtained from different genebank collections. Accessions
with known geographical coordinates were divided to six
vegetation zones (MoeN 1999): 1=nemoral (11), 2=
boreonemoral (15), 3 = southern boreal (14), 4 = middle
boreal (22), 5 = northern boreal (11), and 6 = alpine (2).

DNAs were extracted using the method of TINKER et al.
(1993) with the following modifications: lyophilised
leaves were crushed with a FastPrep FP120 Cell Disrupter
(BIO 101, Thermo Savant, Waltham, MA, USA), in 1 ml
CTAB (hexadecyltrimethyl-ammonium bromide) buffer
supplied with 70 U of ribonuclease A (Omega Bio-tek,
Norcross, GA, USA) and 0.05 mg of proteinase K
(Finnzymes, Espoo, Finland). Extractions were first done
with phenol/chloroform/isoamyl alcohol (25:24:1) and
then with chloroform. DNA concentrations were mea-
sured using the GeneQuant II RNA/DNA Calculator
(Pharmacia Biotech Ltd., Cambridge, UK).

SSR analyses

SSRs developed for timothy (Car et al. 2003) were
used for assessing diversity in the selected accessions. At
the beginning of the study, 35 timothy SSRs were
selected using the following criteria: strong amplification
(Car et al. 2003), preferably SSRs with trinucleotide
repeats (SSRs containing trinucleotide or higher order
repeats have less stuttering: Horton 2001), and some
SSRs which have been localised on one position on
the diploid timothy map (Car et al. 2009). The SSRs
were optimised and tested for their polymorphism, multi-
plexing possibilities, and easiness of interpretation. One
primer of each primer pair was labelled with a fluorescent
dye, FAM (5-carboxyfluorescein), HEX (hexachloro-
6-carboxyfluorescein) or TET (6-carboxytetrachloro-
fluorescein) to enable separation and visualisation
of amplification products with a MegaBACE 500
Sequencer (GE Healthcare, Buckinghamshire, UK) using
MegaBACE ET400-R Size Standard. Thirteen best
SSRs (Table 2) were selected for final analyses and
were amplified using two different PCR programs in a
PTC-220 DNA Engine Dyad Peltier Thermal Cycler
(M1J Research, Waltham, MA, USA) or a Bio-Rad DNA
Engine Tetrad 2 Thermal Cycler (Bio-Rad, Hercules, CA,
USA). The first five SSRs in Table 2 were amplified
with five cycles of 15 s at 94°C, 15 s at 65°C, and 30 s at
72°C, followed by 30 similar cycles except that the anneal-
ing temperature was 60°C. The program started with
an initial denaturation step of 5 min at 94°C and was
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Table 1. (Continued).

Observed  No. of

private
markers

no. of

markers

No. of

Veg.

Cultivar

Accession

Number
code
91

PWD*

AS

4
A
137.4 314

zone’  ind.

Latitude Longitude  Altitude?

type!

Name Country

Genebank

IHAR
GRIN

no.
IHAR151908
PI1210426
PI325461

34.8

0
2
8
3
2

150

19
18
19
19
19

P

Germany
Greece

38.3
3

138.9 31.5

146

92

9.8

157.8 31.7

170
158

Russia

GRIN

93

37.6

1443 31.6

Turkey
Czech

GRIN
RICP

P1204480

94
95

44.0

170.5 342

186

14G2400116

Republic
Hungary

157 6 143.5 30.5 39.1

20

W

RCAT040682 RCAT

96

wild population, weedy.

= pending, unknown cultivar type, W =

breeding, research material, genetic stock, P

’B:

>

>

advanced cultivar, L = traditional cultivar, landrace

IcV =

’meters above sea level.

3vegetation zones, according to Moen 1999.

dcorrected number of all markers in each accession.

*mean number of all alleles observed in each individual.

*mean number of pairwise differences (PWD) (Euclidean distances) between individuals in each accession.

Vegetation zones
alpine

. northern boreal
middle boreal
southernboreal "
boreonemoral :

. nemoral

Fig. 1. Geographic location of 71 timothy accessions. Number
codes are presented in Table 1.

followed by a final extension step of 7 min at 65°C. The
following eight SSRs in Table 2 were amplified with
the PCR program described in Car et al. (2003). The
PCR amplification reactions in 10 pl contained 0.25 U of
FIREPol DNA polymerase I (Solis BioDyne OU, Tartu,
Estonia), the buffer B with 2.5 mM MgCl, supplied by
the enzyme manufacturer, 100 uM each dNTP, 10 ng of
DNA, and 125-500 nM each primer. Suitable SSR combi-
nations were found with the FastPCR software (KALENDAR
et al. 2009), and the 13 SSRs were multiplexed in five
PCR (those amplified together are grouped in Table 2).

Data analyses

Allele phenotypes of the plants were visually scored
using a binary code (1/0) for the presence or absence of
allele peaks without knowing the doses of the alleles.
When calculating genetic distances each SSR allele was
thus treated as a separate marker locus. However, for the
POPDIST program (Tomiuk et al. 2009), the allele
phenotype was recorded locuswise i.e. the allelic content
of an individual at each of the 13 SSR loci was described.

Genetic diversity of an accession was described in
three different ways: 1) corrected number of all alleles
(= markers) in each accession (A,), where the observed
number of alleles was corrected to a sample size n=15
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with thousand times of resampling without replacement,
2) mean number of all alleles observed in each individ-
ual (A;) and 3) mean number of pairwise differences
(PWD) (Euclidean distances) between individuals in
each accession, which was counted with the program
ARLEQUIN ver. 2.000 (ScuneDER et al. 2000). Differ-
ences in the level of diversity between different groups
like countries, vegetation zones (MoeN 1999), or cultivar
type were analysed by ANOVA Proc GLM (SAS
Enterprise Guide 4.3). Correlations were counted
between diversity and latitude, longitude and altitude
(Proc CORR, SAS Enterprise Guide 4.3) for those
accessions where information of collection site map
coordinates or elevation was available.

Genetic divergence between accessions or groups was
analysed by Analysis of molecular variance (AMOVA)
(ExcorrIer et al. 1992) using the program GenAlex 6.4
(PeakaLL and SMouse 2006). Significance of the results
was tested by permuting the DNA marker data 999 times.
A neighbor-joining (NJ, Sarrou and Ner 1987) dendro-
gram was constructed using the program MEGA ver. 4
(Tamura et al. 2007). The genetic distances between
accessions for the dendrogram were calculated with
the program POPDIST (Tomiuk et al. 2009), where the
estimation of genetic distances is based on grouping of
allele phenotypes (distance measure of Tomiuk et al.
1998), in which case the degree of ploidy is of no impor-
tance. As far as we know, POPDIST is the only program
for diversity studies that can handle codominant markers
in polyploids. Principal coordinates analysis (PCA) based
on Nei’s genetic distances between accessions was per-
formed using the software GenAlex 6.4 (PeakaLL and
Smouske 2006).

Map coordinates were availabe for 71 accessions.
Correlation between genetic distance (described with

different distance indices: Euclidean distance from
Arlequin, Nei’s distance (N1 1972) from GenAlex, and
Tomiuk and Loeschke distance from Popdist) with geo-
graphic distance (km) was tested using a Mantel-test
(MANTEL 1967) in the software GenAlex. Mantel test was
also used to compare different genetic distance indices.

RESULTS
Diversity in SSR loci

Thirteen SSRs (Table 2) were selected to assess genetic
diversity in timothy accessions. Of these, five included a
dinucleotide motif and eight a trinucleotide motif, of
which two were compound ones. In some cases the allelic
series (allele sizes fit the assumption of increments of two
or three nucleotides) was perfect (C02C08, BO3F07,
CO1E11, DO1HO8) but usually some alleles were missing.
Generally, the allele sizes followed neatly the increment of
two or three bases. However, a few extra alleles that did
not fit the allele series existed in all SSRs except CO1EI11.
In some SSRs (C02HO1, DO1G10, BO3A09, AO3E06),
there seemed to be another allele series differing from the
common one with one base pair (Fig. 2). The existence of
this other series most probably was the outcome of an
indel mutation in the SSR amplicon. As a consequence,
the size of all the alleles arisen thereafter had shifted
with one base pair.

The 13 selected SSRs amplified a total of 499 polymor-
phic alleles, the number of alleles per SSR locus varying
from 15 (CO1E11 and AO9HO08) to 74 (DO1G10) (Table 2).
The average repeat length of alleles in SSR loci correlated
positively (r=0.69) with the total number of alleles in
the loci. Most of the alleles were quite rare, ca. 40%
occurred in not more than 1% of all the individuals, or
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Fig. 2. An example of the two allelic series in SSR locus B03A09.
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10% of the accessions. This usually caused a high
occurence of the most common allele in a SSR locus
(Table 2).

The mean number of alleles in an individual varied
from 1.12 to 3.91 depending on the SSR locus. Very few
individuals (1.2%) carried six alleles in any SSR locus.
The most heterozygous SSRs were CO1B11 and AO9HOS:
66% and 54% of the individuals in the study, respectively,
contained four alleles or more in these loci. On the
other hand, the alleles in the SSR loci BO3F07 and
CO1E11 often occurred alone (in 48% and 67% of the
individuals, respectively). This is perhaps spurious, due to
the existence of null alleles, which is also reflected by the
large number of apparent missing information in these
loci (15.1% and 18.8%, respectively, Table 2).

The five SSRs with a dinucleotide repeat amplified
an average of 35.4 alleles compared to 40.3 alleles ampli-
fied by the eight SSRs with a trinucleotide repeat
(Table 2). The average observed number of alleles/acces-
sion was 11.7 and 13.4, and of private alleles 3.8 and
4.9 in SSRs with di- and trinucleotide repeats, respectively
(results not shown). However, none of these differences
were statistically significant (t-test, p>0.05).

Genetic diversity within accessions

Taking all the 499 SSR alleles (= individual markers)
together, the observed number in each accession ranged
from 95 (NGB10785) to 203 (NGB14403) (Table 1).
Most of the markers were polymorphic i.e. very few
existed in all individuals of an accession. The number of
private alleles i.e. alleles that did not exist in any other
accession was generally low but accessions PI325461
(from Russia) and RCAT040682 (from Hungary) included
eight and six private alleles, respectively. A, ranged
from 28.4 (NGB14417) to 36.2 (NGB733 and NGB757)
(Table 1). Genetic diversity within accessions measured as
PWD varied from 28.9 (NGB10785) to 46.8 (NGB9285)
(Table 1).

Levels of diversity were found to be significantly
different between countries, vegetation zones and differ-
ent cultivar types (ANOVA, Table 3, 4). Finnish accessions

were more diverse than Danish accessions when A, was
compared (Tukey’s test, p<<0.05). For PWD, Denmark
showed less diversity than Finland, Norway or Sweden
(Tukey’s test, p<<0.05). Danish accessions were also less
diverse than Finnish, Swedish, Norwegian or exotic based
on A,. Accessions originating from southern boreal or
middle boreal vegetation zone were more diverse than
those from nemoral or alpine vegetation zone when A, or
PWD were compared (Tukey’s test, p<<0.05). Vegetation
zones explained 33% of the variation in diversity levels
between timothy accessions (Table 3). Significant differ-
ences between vegetation zones were also observed for
A, but they were very small and explained only a minor
fraction of variation between individuals (Table 3). Acces-
sions with the cultivar type L, meaning landrace or tradi-
tional, locally cultivated accession, had a higher A, when
compared to cultivars or wild accessions. Landraces
also were more diverse than cultivars based on PWD or
A, (Tukey’s test, p<0.05).

No correlation was observed between latitude or alti-
tude and the diversity indices. However, a weak correla-
tion was observed between longitude and A, (r=0.29,
p=0.013).

Genetic divergence between accessions and groups

AMOVA was performed in order to divide the total
genetic variation into three components: variation within
accessions, among accessions and among groups. Accord-
ing to AMOVA analysis, most of the variation (94%)
in the studied timothy material was due to variation
within accessions and only 5% was between accessions
and 1% between countries (Table 5). No genetic diver-
gence was observed between vegetation zones or cultivar
types (AMOVA, p>0.05).

No clear clustering of accessions based on countries or
any other grouping was seen in either PCA (Fig. 3) or
NJ dendrogram (Supplementary material Appendix Al
Fig. Al). In PCA, the first two axes explained 42.4% of
the variation among the 96 accessions. Most of the acces-
sions clustered together apart from a couple of exceptions.
Genetic distance matrices counted with different ways

Table 3. ANOVA table showing F-values, significance levels P and R’ for comparisons of different groups for their levels
of SSR diversity. Here A, represents the number of alleles on individual level.

Total number

Number of pairwise Number of alleles per

of alleles (A,) differences (PWD) individual (A))
Diversity index df F p R? F p R? F p R?
Grouping
Accession 95 3.52 <0.001 0.16
Country of origin 5 4.15 0.002 0.19 4.40 0.001 0.20 14.15 <0.001 0.04
Vegetation zone 5 6.86 <0.001 0.33 6.78 <0.001 0.33 13.29 <0.001 0.04
Cultivar type 2 8.58 <0.001 0.17 4.46 0.014 0.10 6.05 0.002 0.01
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Table 5. Analysis of molecular variance in 96 timothy accessions based on SSR markers.

Source df SS MS Variance components % total
Among countries 5 711.41 142.28 0.25 1%
Among accessions/countries 90 6391.33 71.01 1.91 5%
Within accessions 1715 59970.62 34.97 34.97 94%
Total 1810 67073.36 37.13 100%
Stat Value P(rand = data)

Orr 0.007 0.001

Ppr 0.052 0.001

Qpr 0.058 0.001

Probability, P(rand = data), for PhiRT, PhiPR and PhiPT is based on 999 permutations across the full data set.

PhiRT = AC/(WA + AA + AC) = AC/TOT
PhiPR = AA/(WA + AA)
PhiPT = (AA + AC)/(WA + AA + AC) = (AA + AC)/TOT

Key: AC = est. var. among countries, AA = est. var. among accessions, WA = est. var. within accessions.

correlated well (Mantel-test) with each other: Euclidean
distance (from Arlequin) with Tomiuk and Loeschke dis-
tance (POPDIST), r=0.83 (p<<0.001), Nei’s distance
(GenAlex) with Tomiuk and Loeschke distance, r=0.87
(p<<0.001), and Euclidean distance with Nei’s distance
r=0.98 (p<0.001). No significant correlation was found
between genetic distance and geographic distance among
accessions.

DISCUSSION

Genetic diversity within and among 96 timothy accessions
mostly from Nordic countries was assessed with 13
selected SSR loci. This is the first study reporting SSR
diversity in a large collection of timothy accessions.
Timothy proved to be very diverse both on individual and
accession level.

When levels of diversity were compared between
wild accessions from different vegetation zones, southern
and middle boreal vegetation zones proved to be the most

Principal coordinates

variable ones. This is partly in accordance with the abun-
dant centre model (BrowN 1984), which presumes reduced
neutral genetic diversity within peripheral compared to
more central populations (Eckerr et al. 2008). In Nordic
countries timothy grows at its northern margin. At north-
ern boreal and alpine vegetation zones, harsh winter con-
ditions may limit survival of timothy and this may be
reflected in the lower level of diversity found in these
peripheral populations. However, in the more southern
zones, nemoral and boreonemoral, timothy is not at
the periphery of its distribution area, and it is not easily
explained why a reduction in diversity was seen there.
The vegetation zones with the highest diversity are also
the best regions for cultivation of timothy and gene flow
from cultivars may strongly affect the diversity of wild
populations. In the nemoral and boreonemoral zones,
other species, like Lolium perenne, are more commonly
cultivated than timothy, which may limit gene flow
from varieties to wild populations. Diversity could also be
the highest in regions where timothy is best adapted to.
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Fig. 3. Principal coordinates analysis based on Nei’s genetic distances between accessions.
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These could also be suitable zones for reproduction of
timothy accessions from NordGen collection. Previous
studies have shown that genetic diversity of plant popula-
tions may either increase or decrease with increasing
altitude (YaN et al. 2009). However, in our study we did
not see any correlation between the diversity indices and
the altitude.

We found very little genetic divergence between
accessions since most of the SSR variation (94%) was
within accessions. No clear clustering of accessions was
observed. Lack of geographical differentiation is partly
related to the outcrossing and hexaploid nature of timothy.
Timothy is a wind pollinated species and its pollen is
known to travel long distances (RaynNor et al. 1972).
Adequate gene flow between populations or from culti-
vated varieties to populations could hinder divergence of
populations. It has been reported that long-lived, outcross-
ing, late successional taxa retain most of their genetic
variability within populations (NyBom 2004). In ryegrass
(L. perenne), which is a diploid outcrossing perennial,
most of the total gene diversity in isozyme loci was within
populations (BALFourIER 1998), and in diploid outcross-
ing meadow fescue (Festuca pratensis) varieties from
Nordic countries, 79.3% of variation in AFLP markers
was within populations (FJELLHEIM and RoanLi 2005). In
autotetraploid alfalfa (Medicago sativa), even 99.8% of
genetic variation in SSR markers was within populations
(BacavaTHIANNAN et al. 2010). In timothy, significant
differentiation between populations was reported on
phenotypic level, although close to 90% of variation was
still detected within populations for all traits scored
(CastLer 2001). CasLEr (2001) also found differentiation
between varieties and wild populations of timothy for sev-
eral morphological traits. However, population structure
observed at phenotypic level is not always reflected at
molecular level when neutral markers are used (KarRHU
et al. 1996). We could not detect any differentiation
between cultivar types using neutral SSR markers. This
could result from frequent gene flow between varieties
and wild populations. Guo et al. (2003) distinguished
geographical genotype groups in timothy based on
neutral DNA markers; however their populations were
genotyped from bulked DNA samples thus ignoring the
within population variation. One possible source for low
divergence between accessions could be contaminations
between populations during multiplication of population
samples. We have used here ex situ collection as a source
for populations and presume that the sample collected
to genebank represents the original population well. The
accessions used were collected to NordGen between 1972
and 2002. However, although 34 of the 88 NordGen
accessions used were multiplied once after sampling,
multiplication was done in several locations and sites
(20 year X location combinations). Thus it is not possible

that the lack of differentiation observed was due to pollen
contamination during multiplication steps. In a hexaploid
plant, each locus may harbor up to six alleles which
raises heterozygosity in populations. Differences between
populations may rather be allele frequency differences
than allele content differences; since we could not count
allele frequencies here these differences could not be
counted.

The SSR markers used in the study were developed by
Car et al. (2003), and to our knowledge, our study is
the first one where they have been used since. Markers
have to fulfill certain criteria to be useful in diversity
analysis. First, they have to be highly polymorphic. In
our study, the 13 selected timothy SSRs expressed
immense diversity with a total of 499 alleles. Secondly,
markers should be evenly distributed in the genome.
Seven SSRs in our study were located on six out of seven
linkage groups of the diploid timothy map (Car et al.
2009). Thirdly, markers should be easy to interpret. In an
outcrossing polyploid species individuals contain many
marker bands and complex band profiles are generated,
which was also seen in our study. In addition, interpreta-
tion of SSRs was challenging due to stuttering. We selected
only the most easily interpreted SSRs for final analyses.
Still one problem with polyploidy was that exact geno-
types of plants could not be defined. In some polyploid
species the allelic configurations of individuals in a
given SSR locus have been determined (EssELiNK et al.
2004; NyBom et al. 2004), when unambiguously scorable
markers with no or very few stutter bands were analysed.
However, we found the evaluation of allele dosages
very unreliable in the hexaploid timothy. In addition, pref-
erential amplification of alleles in heterozygotes (WaLsSH
et al. 1992; WEISSENSTEINER and LANCHBURY 1996;
WartTiEr et al. 1998), and the existence of null alleles
might complicate the situation. Null alleles are formed
when SSR primers cannot attach due to DNA sequence
differences. In our study, this was probably the reason to
the appearance of no individuals with more than four
alleles in two SSR loci, which might mean that one of
the three timothy genomes was different from the two
others in these sequence regions so that amplification of
alleles did not happen. This supports the hypothesis of
hexaploid timothy consisting of four doses of bertolonii
and two doses of rhaeticum genome (STEWART et al. 2011).
Because of the above-mentioned difficulties, each SSR
allele in the current study was scored as a separate
dominant marker. Therefore, we were not able to count
the actual allele frequencies, which limited the discrimi-
native power of a codominant marker system, and lead to
loss of information, not in quality but in quantity. How-
ever, in the POPDIST program, it was possible to enter the
allele composition of an individual (though not the exact
genotype) and to gain more information. Yet, the genetic
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distances counted with this program correlated well with
those obtained from other programs where the alleles
were scored as dominant markers, and diversity analyses
(PCA, AMOVA) performed using genetic distance matrix
from POPDIST could not separate different populations
or countries any better (results not shown).

SSR evolution is a complex process, which is not
well understood, and mechanisms and mutation models
have been presented to explain the occurrence of SSRs
and their allele distribution (ELLEGREN 2004; OLIVEIRA
et al. 2006). The mutation rates and patterns vary between
repeat types, species, and also between loci (ELLEGREN
2004). Our study contained only 13 SSRs and therefore
it is not possible to draw very extensive conclusions.
However, we found higher diversity in long SSRs, which
has been noticed in many organisms (ELLEGREN 2000;
PeTIT et al. 2005). The shape of the allele distributions
(e.g. SSR locus B03A09, Fig. 2) does not support any
of the mutation models presented (ELLEGREN 2004). The
most common allele in all SSR loci was located at the
forepart of allele distribution, and if this allele is supposed
to be the progenitor allele of that SSR locus then more
mutations lead to longer alleles than to shorter ones.
Directionality in favour of gains over losses in SSR
mutation process has been found in humans and birds but
there are also contradictory results (ELLEGREN 2004). The
majority of mutations in SSR loci have been reported to
represent length mutations i.e. additions or deletions of
entire repeat units (ELLEGREN 2000). In our study single
nucleotide indels were frequent as well, and they led to
another allele series in 30% of the SSRs.

To conclude, the Nordic timothy material seems to be
diverse enough for breeding purposes and no decline in
the level of diversity was observed in varieties compared
to wild timothy populations. However, no heterotic groups
could be defined which could be used to enhance breeding
of synthetic varieties, since most of the SSR variation
observed was between individuals within accessions.
Phenotypic evaluation of the timothy accessions is
needed before further conclusions for variety breeding
can be drawn. The plant material used in our experiment
has also been phenotyped in replicated field trials and
a closer comparison of molecular and phenotypic diver-
sity is in progress. When compared to cereals, timothy
varieties are closer to local and natural populations
e.g. some of the varieties presently in cultivation are
straight selections from local populations. Since varieties
have not diverged too much from the local and natural
populations, it may be relatively easy to use genebank
material directly for variety development.
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Appendix Al

Fig. A1. A NJ dendrogram of the 96 timothy accessions constructed using the program MEGA version 4. The

genetic distances between accessions for the dendrogram were calculated with POPDIST.
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