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Finland, 3 MTT Agrifood Research Finland, Jokioinen, Finland, 4 Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany

Abstract

We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the
construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the
cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully
numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which
significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity
to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding
fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell
(cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after
photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for
two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those
of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in
the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The
cytosol results were found to be in very good agreement with those by FCS.
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Introduction

Living cells are multifunctional organisms that exhibit remark-

able dynamic phenomena including, e.g., cell motility, and

vesicular, cytoplasmic and nuclear transport. The cytoplasm

consists of a viscous liquid phase (the cytosol) and a non-liquid

phase that will be called here the solid phase. The protein

concentration in the cytoplasm has been estimated to be 100 mg/

ml [1], and its total macromolecular concentration (proteins,

lipids, nucleic acids, and sugars) can be as high as 400 mg/ml [2].

The cytoplasm can thus be described as a ‘molecularly crowded’

environment, where macromolecules can occupy 20–30% of its

volume [3]. Its solid phase is composed of a dense network of

cytoskeletal filaments and membrane structures such as, e.g., the

endoplasmic reticulum (ER), Golgi apparatus, and mitochondria

[4,5]. Macromolecular diffusion in the cytoplasm can be severely

restricted in such an environment [6]. The same applies to the

nucleus [7–9] that is also composed of a liquid phase, the

nucleosol, and a solid phase comprising, e.g., chromatin and

proteinaceous nuclear bodies.

Diffusive motion of macromolecules and their binding-dissoci-

ation reactions with cellular organelles is a crucial component of

cell function, which still need to be clarified. Laser scanning

confocal microscopy (LSCM) has become very popular as it allows

three-dimensional observation in living cells. LSCM can also be

used to perform photo-manipulation experiments such as

quantitative fluorescence recovery after photobleaching (FRAP).

In FRAP, a region of the cell is exposed to high-intensity laser

light, causing the fluorophores within that region to irreversibly

lose their ability to fluoresce. Recovery of fluorescence in that

region yields information about molecular diffusion and binding in

the cell [10,11].

Since the invention of FRAP, several analytical models have been

developed to quantify the recovery of fluorescence and thereby

diffusion and binding dynamics [12–17]. As the internal structure

and conditions of the cell are difficult to include in such modeling,

several assumptions are made of the system. These assumptions

often include infinite, homogeneous fluorophore pools, fast

bleaching compared to the time scales of the involved transport

processes, and specific shapes of the bleach profiles, conditions that

may be difficult to fulfill in FRAP experiments. Models have been

suggested that account for diffusion during the bleach phase

[15,17], allow for arbitrary bleach profiles [16,18,19], or inhomo-

geneous distribution of fluorophores inside the cell [20] or of

binding sites in the nucleus [21]. Recently the structure of ER [22]

has been included when studying protein diffusion in the ER lumen.

In these models, however, the constraints imposed by cellular

structures have only been partly included.

PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e22962

n



Fluorescence correlation spectroscopy (FCS) is a method that

probes the diffusion coefficient locally, while FRAP probes quite

widely the cytoplasm (nucleus). Fluorescence fluctuation micros-

copy (FFM) combines FCS with LSCM, thereby being able to

image the cell environment in which the FCS measurement is

conducted. It is expected that the diffusion coefficients measured

by FFM and conventional FRAP are quite different unless the

internal structure of the cell is included in the latter. There are

indeed large differences between the diffusion coefficients reported

by FRAP and FFM measurements [14,23,24]. It is evident that, to

improve our understanding of dynamic cell functions, better

description of macromolecular motion in the cell, and thereby

interpretation of experimental results, is called for.

We introduce therefore a completely new approach to protein

dynamics in the cell based on describing their diffusive motion in a

realistic three-dimensional representation of the cell generated

from LSCM data. As it is neither useful nor possible to simulate

the dynamics of all proteins of a species in an entire cell at a

molecular level of detail, we rely here on mesoscopic methods to

model protein distributions instead. This approach is applied here

to analysis of FRAP data on the same cell. The model cell takes

into account the internal structure of the cell using the

inhomogeneous fluorophore distribution at equilibrium. We

introduce the new methods by determining the diffusion

coefficient of a freely-diffusing model protein, enhanced yellow

fluorescent protein (EYFP), in two continuous cell lines, fibroblast-

like Norden Laboratory Feline Kidney (NLFK) [25] and cervical

carcinoma HeLa [26]. We also determine this diffusion coefficient

by FFM for the same cell lines so as to be able to compare the

results of the new FRAP analysis with those of FFM analysis.

Recent studies using single particle tracking and fluctuation

methods have shown that proteins may also undergo anomalous

diffusion in the cytoplasm [27,28] as well as in the nucleus [29].

These processes are, however, not considered here as the

assumption that all diffusive processes are of Brownian nature

suffices to interpret the measured (collective) FRAP data (for

theoretical studies of anomalous diffusion see, e.g., [30,31]).

Methods

Cell culture
Norden laboratory feline kidney (NLFK) [25] and HeLa [26]

cells were grown in Dulbecco’s modified Eagle medium (DMEM)

supplemented with 10% fetal bovine serum (Gibco, Paisley, UK)

at 37uC in the presence of 5% CO2. HeLa cells used for FFM

measurements were grown as described in [23]. For live cell

microscopy studies, the cells were seeded in 5 cm glass-bottom

culture dishes (1.5 thickness, MatTek Cultureware, Ashland, MA).

For FFM imaging and measurements, cells were transferred and

transfected on 32 mm cover slips as described in [23]. The

pEYFP-N3 construct was purchased from Clontech Laboratories

Inc. (Mountain View, CA). Transfections were performed with the

TransIT-LT1 reagent (Thermo Fisher Scientific Inc, Waltham,

MA) according to the manufacturer’s protocol. The intracellular

localization of the nucleus was visualized by chromatin binding

fluorescent histone H2B-ECFP. Cells were transfected with a

H2B-ECFP expression vector 24 h after cell seeding.

FRAP experiments
The FRAP experiments were performed on a laser scanning

confocal microscope FV1000 with an IX-81 microscope frame

(Olympus, Tokyo, Japan) using an Olympus UPLSAPO 606
(NA = 1.2) water immersion objective. The sample stage was

heated to 37uC prior the experiments. To image the cell geometry,

a confocal stack was acquired before and after the FRAP

experiment. The voxel size was adjusted to (200 nm)3 or

(150 nm)3. The pinhole size was adjusted to 1 Airy unit. The

514 nm laser line was used for EYFP excitation and the emitted

fluorescence was detected using a 530–600 nm band pass filter.

Imaging was performed with a laser intensity of 0.1–2 For

bleaching a circular (r = 1.85 mm and 2.83 mm) region of interest

(ROI) was defined in the middle of the cytoplasm. As bleaching

times in FRAP are usually rather large compared to the time scales

of the measured diffusion processes, the region of the cell, which is

actually bleached, is usually larger than the defined ROI. The size

of the actually bleached region and its intensity distribution were

measured by bleaching fixed cells (Fig. 1). ImageJ [32] was then

used to construct an average shape and intensity profile of that

region.

The duration of the bleach process was measured by performing

FRAP experiments in which 10 images were collected before the

bleach pulse and 1 after the pulse. The bleach time was extracted

by measuring the time when the frames immediately before and

after the bleach pulse were taken. The average imaging time of

one frame was subtracted, and the duration of the bleach process

was plotted as a function of iterations (bleaching time), yielding a

linear slope. In the LSCM used (Olympus FV 1000), the shortest

possible bleach procedure (1 iteration) lasted 36 ms with an

additional relay of 18 ms before the next image scan, amounting

to 54 ms for the entire process. To achieve enough bleaching for

the data analysis, 10 iterations were performed (Fig. 2), and the

laser intensity was set to 100% by using an acousto-optical tunable

filter.

Image processing
The raw images of the confocal microscope were converted to

8-bit grey scale images. Only linear adjustments of the image

brightness and contrast were performed, avoiding saturation. The

gray-scale images were colored with an appropriate look-up table

and converted to RGB images.

Conventional FRAP analysis
The fluorescence recovery was analyzed in the circular regions

described above using the ImageJ [32] and Excel (Microsoft,

Redmond, USA) software. Before the measurements, the FRAP

data were convoluted with a 363 Gaussian kernel. The data were

exported to Excel where their normalization was performed. For

normalization two different methods were used. The first

normalization (IPM ) used was that of Phair & Misteli [10]:

IPM (t)~

ROI(t)

SROI(tv0)T
Cell(t)

SCell(tv0)T

?IPM (t)~
ROI(t)

Cell(t)
|

SCell(tv0)T
SROI(tv0)T

, ð1Þ

where ROI(t) is the local fluorescence intensity in the bleached

region at time t, SROI(tv0)T is the time average of the local

fluorescence intensity of the whole bleached region before the

bleach pulse, and Cell(t) and SCell(tv0)T are the respective

quantities for the entire cell. The second normalization (IA) used

was that by Axelrod et al. [12]:

IA(t)~
ROI(t){ROI(t~0)

ROI(t~?){ROI(t~0)
: ð2Þ

Here ROI(t~0) is the local fluorescence intensity of the bleached

region immediately after the bleach phase and ROI(t~?) is the
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fluorescence intensity after recovery. The time of full recovery can

be difficult to determine and requires long imaging times. If the

fluorescence is not completely recovered at the end of the

experiment, this normalization will lead to too rapid recovery.

Therefore we modified the Axelrod normalization (ImA) such that

it could also be used for partial recovery:

ImA(t)~
ROI(t){ROI(t~0)

ROI(t~end)

p
{ROI(t~0)

, ð3Þ

with ROI(t~end) the fluorescence intensity at the end of the

experiment and p the recovery ratio at that time. By definition, the

Phair & Misteli normalization always converges to one at full

recovery. At partial recovery the value of the Phair & Misteli

normalized data can thus be used as the value p needed in the

modified Axelrod normalization.

The fluorescence intensity data were fitted by the free diffusion

model of Soumpasis [13,14]:

I(t)~exp {
tD

2t

� �
I0

tD

2t

� �
zI1

tD

2t

� �h i
, ð4Þ

where tD~r2=Df , I(t) is the normalized fluorescence, I0 and I1 are

modified Bessel functions, r is the radius of the bleached region, and

Df the diffusion coefficient of the fluorescent species [33].

FFM measurements
The Fluorescence Fluctuation Microscope (FFM) measurements

were conducted with a self made setup in Heidelberg [34]. FFM is

a combination of Fluorescence Correlation Spectroscopy (FCS)

and Laser Scanning Confocal Microscopy (LSCM). It has an FCS

module with a galvanometer scanning unit, attached to the side

port of an inverted Olympus IX-70 microscope (Olympus,

Hamburg, Germany) equipped with an UplanApo/IR 606water

immersion objective, with a numerical aperture (NA) of 1.2

[34,35].

EYFP was excited with the 488 nm line of an argon-krypton

laser from CVI Melles Griot (Bensheim, Germany). The emitted

fluorescence from EYFP was recorded between 515 and 545 nm

with an avalanche photodiode (APD) (SPCM-AQR-13, PerkinEl-

mer, Wellesley, USA), after passing through appropriate dichroic

mirrors and filters for spectral separation and selection. FCS

measurements were carried out at laser intensities of 5 to

9 kW cm{2, and the laser power was adjusted using a

polychromatic acousto-optical modulator AOTF Nc (AA Opto

Electronic, France). The signals from APD were fed into an ALV-

5000/E correlator card (ALV Laser GmbH, Langen, Germany)

which recorded the intensity fluctuations and calculated their

associated autocorrelation function almost in real time.

The system was carefully calibrated as described in [23] to allow

for precise and reproducible measurements.

Construction of the digital model cell and FRAP recovery
simulations

For each FRAP experiment we obtained two sets of data: a 3D

stack of images depicting the intensity profile of EYFP and H2B-

ECFP (histone H2B linked to enhanced cyan fluorescent protein)in

the cell before the bleach, and a stack of 2D images depicting a

certain cross-section of the cell during the FRAP measurement, 10

Figure 1. FRAP experiment in an NLFK cell stably expressing EYFP. (a) The average (n = 10) bleach profile measured on fixed cells expressing
EYFP. Scale bar 2 mm. (b) Fluorescence distribution before the bleach pulse and the position of the circular bleach area (diameter 20 pixels, FWHM
3.7 mm). Subsequent images show the fluorescence distribution immediately (t = 0 ms), and 250 ms and 1 s after the bleach pulse. Scale bar 10 mm.
(c) The measured recovery curve (Axelrod normalization) and a fit by the free-diffusion model of Soumpasis.
doi:10.1371/journal.pone.0022962.g001
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frames before the bleach and the rest of the frames from the

fluorescence recovery phase. After de-noising the 3D stacks, we

used the threshold function of the ImageJ program to segment in

the cell the cytoplasm and nucleus using the EYFP and H2B-

ECFP stacks, respectively. The nuclear envelope was then

generated as a two pixel wide layer between the cytoplasm and

nucleus using a self-made code.

The spatial resolution of LSCM, about 200 nm, did not allow

segmentation of the more detailed structure. As this ‘fine

structure’ obstructs protein motion and thus affects protein

diffusion, we considered the cytoplasm (nucleoplasm) as an

‘effective porous medium’ that is immobile during a FRAP

measurement.

From diffusion in porous media [36] (see Discussion for a simple

example), we know that one must distinguish diffusion in the liquid

phase (cytosol/nucleosol with Dcsol=Dnsol ) from that in the

medium with constrained motion (cytoplasm/nucleoplasm with

Dcp=Dnp such that, approximately, Dcp~EDcsol and Dnp~EDnsol ,

where E is the porosity of the medium. As E~E(r), Dcp (Dnp) is a

spatially varying ‘effective’ diffusion coefficient. A separate

diffusion coefficient (Dne) was assigned to the nuclear envelope

described as a permeable membrane. The porosity of the medium

was made visible by the heterogeneous equilibrium distribution of

fluorophores (proteins), low fluorescence intensity meaning high

concentration of ‘solids contents’, and was thus deduced from the

equilibrium fluorescence intensity C0(r) (the 3D EYFP stack) such

that E(r):C0(r)=maxfC0(r)g. A 2D cross-section of a typical

digital model cell is depicted in Fig. 3.

Due to the low imaging speed of the LSCM used, only a 2D

cross section of the cell was imaged during the FRAP experiments.

In order to be able to simulate the FRAP recovery in the entire

cell, the initial bleach profile had to be extrapolated vertically into

the rest of the digital cell. To this end we first determined the

relative fluorescence reduction p(x,y) by dividing pixel-by-pixel

the first post-bleach image with an average (for noise reduction) of

all 10 pre-bleach images of the experimental FRAP data. To

enforce the theoretical range of p(x,y) between zero and one,

greater valued pixels owing to the noisiness of the experimental

data where set to one (flat field correction). The 3D bleach profile

was then obtained by multiplying each cross section of C0(r) with

p(x,y).

The cross section of the cell, which was imaged during the

FRAP experiment, was determined by cross-correlating each

frame of C0(r) with an average of the 10 pre-bleach images of the

FRAP stack. The cross-correlation coefficient showed a clear

maximum that identified the right cross section.

The lattice-Boltzmann method
The spatial and temporal evolution of diffusion processes is

described by the diffusion equation,

Figure 2. Duration of the bleaching phase in FRAP experiments for two confocal microscope setups. (a) Schematic representation of the
confocal imaging combined with bleaching phase. (b) Bleach phase duration as a function of the number of bleaching iterations for the two confocal
microscope setups used in the study, red is the results for a Zeiss LSM510 and blue for an Olympus FV1000 confocal microscope.
doi:10.1371/journal.pone.0022962.g002
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Lr(r,t)

Lt
~+: D(r)+r(r,t)ð Þ, ð5Þ

where r(r,t) is the concentration of diffusing particles and D(r)
their possibly locally varying diffusion coefficient. Note that Eq. 5

only accounts for Brownian diffusion processes, in the case of

anomalous diffusion, a fractional version of this equation may be

used [30]. In Eq. 5 the term

D(r)+r(r,t):J ð6Þ

is the local diffusive flux of particles. In the present realization we

introduce the impermeable solid component in the cytoplasm and

nucleoplasm such that an additional flux term, JE, is added to the

flux. This term takes care of removal of particles from the non-

accessible regions. The construction of this flux is discussed below.

The total flux of diffusing particles is now given by J~JDzJE,

and Eq. 5 can be expressed in the form

Lr

Lt
z+:JE~+: D+rð Þ, ð7Þ

which is an advection-diffusion equation, where the (local)

advective component is given by the additional flux.

In the case of complicated boundary conditions it is, for a

numerical realization of Eq. 5, more convenient to start at a

somewhat more microscopic level. We thus consider instead the

Boltzmann equation [37]. Suitably chosen discrete versions of the

Boltzmann equation, in which space, time and velocity are all

discrete [37], allow very effective numerical implementations. In

the single relaxation time (t) approximation a discrete Boltzmann

equation for the distribution function fi(r,t) of particles at point

(r,t) moving with velocity vi in the (lattice) direction i, called the

lattice-Boltzmann (LB) equation, is given by

fi(rzvidt,tzdt){fi(r,t)~
dt

t
f

eq
i (r,t){fi(r,t)
� �

: ð8Þ

Here the left-hand side describes the streaming of particles during

a time step dt, and the right-hand side models the relaxation of

their distribution function towards its local equilibrium, f
eq
i , on a

time scale set by the relaxation time. We have now a three

dimensional space and choose a simple cubic lattice with nearest

neighbor links only (particles can only move to these nearest

neighbors during one time step, which is enough in the case of the

diffusion equation [38]). We also allow the particles not to move,

and have therefore seven possible velocities (the so-called D3Q7

model [37]) for the particles: i~0, . . . ,6. In this case of an

advection-diffusion equation the equilibrium distribution function

is given by

f
eq

i ~wi r(r,t)z
vi
:JE(r,t)

c2
s

� �
, ð9Þ

in which cs is a free numerical parameter (in units of velocity) that

determines the proportion of the rest particles, dx is the lattice

spacing and wi’s are the D3Q7 weight factors for different discrete

velocities: w0~1{3c2
s

(dt)2

(dx)2
for the rest particles and

wi~
1

2
c2

s

(dt)2

(dx)2
for the other discrete velocities. The second term

in Eq. 9 accounts for removing of particles away from the non-

accessible regions. The concentration of particles is given by

r(r,t)~
P

i fi(r,t), and it satisfies (in the continuum limit) Eq. 7

when [38] the diffusion coefficient is given by

D~c2
s

t

dt
{

1

2

� �
dt: ð10Þ

This diffusion coefficient can be tuned either by changing the

relaxation time t, parameter cs, or time step dt. For numerical

convenience we fix parameters cs (such that c2
s ~

2

7

(dx)2

(dt)2
) and the

relaxation time t, and change the diffusion coefficient by tuning

the time step.

When applied to modeling a FRAP experiment, the particle

density r(r,t) is interpreted as the fluorophore concentration

(fluorescence intensity) C(r,t). The additional flux will cancel the

diffusive flux into the non-accessible regions filled by membranes,

which arises from the concentration gradients in the fluorophore

Figure 3. 2D cross-section of a digital model cell. The different regions of the cell are displayed in different colors (cytoplasm in cyan, nucleus in
yellow, and nuclear envelope in red). The color intensity at each pixel refers to the effective porosity (volume fraction available for protein motion) at
that point in the cell. Scale bar 10 mm.
doi:10.1371/journal.pone.0022962.g003
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distribution, such that the observed non-homogeneous fluoro-

phore distribution before the bleach will also stay at equilibrium in

the simulated model cell. The equilibrium distribution is obtained

by setting, at all points r in the cell,

J0~J0
DzJ0

E~0: ð11Þ

Hence the additional flux at equilibrium must be of the form

J0
E~D+C0, ð12Þ

where C0~C(r,tv0), i.e., it is the (equilibrium) fluorophore

distribution before the bleach. During a (FRAP) simulation, the

magnitude of this flux at any point in the cell will depend on the

actual concentration at that point, which varies in time. Thus, at a

given time t, it can be expressed in the form

JE(r,t)~
C(r,t)

C0(r)
J0
E (r)~

C(r,t)

C0(r)
D+C0(r): ð13Þ

A numerical code was constructed along the lines indicated

above, which was capable of simulating the spatial and temporal

evolution of the fluorescence intensity in the digital realization of

the cell actually measured in the FRAP experiments. When the

distribution of fluorescence intensity as measured right after the

Figure 4. Visualization of the cross-correlation fitting of
corresponding frames. For a given experimental image k, the
cross-correlation coefficients ckl (red) each have a global maximum
lmax(k) (blue crosses). By tuning the parameters tnp and tenv, lmax

becomes a linear function of k (black crosses and curve), whose slope
determines the simulation time step dt. The deterioration of the
maximum in ckl as a function of the experiment frame number stems
from the broadening of the bleach profile, which inevitably decreases
the relative difference between adjacent frames. Ultimately, this relative
difference limits the amount of analyzable experimental frames, which
may limit the applicability of the method to slow enough diffusion
processes.
doi:10.1371/journal.pone.0022962.g004

Figure 5. Simulated Virtual Cell data for FRAP experiments with a particle diffusion coefficient of D = 25 mm2/s. Simulations are for two
different bleach locations, different bleach phase durations, and different bleach-laser profiles. (a) A bleached region in the middle of an isotropic
environment immediately after a 1 ms bleach pulse with either a cylindrical (diameter 3.7 mm) or Gaussian bleach-laser profile (FWHM 3.7 mm). (b) A
cross section of the cell with the bleached region far away from the cell boundaries and the nucleus. The blow-up images show the bleached region
after 1 ms and 75 ms bleach pulses for the cylindrical bleach profile, and after a 75 ms bleach pulse for the Gaussian profile. (c) A bleached region
near the cell boundary and immediately after a 75 ms bleach pulse for the Gaussian bleach profile. (d) The recovery curves for an isotropic
environment and 1 ms bleach time with a cylindrical (purple) or Gaussian (dark green) bleach profile, for a real cell geometry with a cylindrical bleach
profile and 1 ms (blue) or 75 ms (black) bleach time, with a Gaussian bleach profile and 75 ms (dark gray) bleach time, and for a bleached region near
the cell boundary with a Gaussian bleach profile and 75 ms bleach time (light gray). Scale bars 10 mm.
doi:10.1371/journal.pone.0022962.g005

Protein Diffusion in Mammalian Cell Cytoplasm
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Figure 6. Virtual Cell simulation results for different FRAP experiments (blue) and their fits by the free diffusion model of
Soumpasis (green). In the upper panels the bleach duration is very short, 1 ms, while the simulation geometry and bleach profile are varied. In the
lower panels the bleach duration is much longer, 75 ms, and bleaching is done in a 2D outline derived from a real cell, either in the middle of the cell
or near the plasma membrane.
doi:10.1371/journal.pone.0022962.g006

Table 1. Validation of methods: results.

Geometry Homogeneous Homogeneous Cell

Bleach profile uniform Gaussian uniform

Bleach duration t~1 ms t~1 ms t~1 ms

Used

normalization Phair lattice- Phair lattice- Phair lattice-

method for & Axelrod Boltz- & Axelrod Boltz- & Axelrod Boltz-

data analysis Misteli mann Misteli mann Misteli mann

D~10 44.5 10.0 9.9 20.9 4.6 9.8 33.7 10.6 10.2

D~25 96.8 24.5 24.2 49.4 11.8 24.2 73.6 21.6 25.6

D~40 124.0 38.7 38.6 75.0 18.9 38.7 107.7 31.5 40.9

D~55 162.3 50.5 53.4 99.3 26.1 51.9 139.2 41.3 56.5

Geometry Cell Cell Cell Membrane

Bleach profile uniform Gaussian Gaussian

Bleach duration t~75 ms t~75 ms t~75 ms

Used

normalization Phair lattice- Phair lattice- Phair lattice-

method for & Axelrod Boltz- & Axelrod Boltz- & Axelrod Boltz-

data analysis Misteli mann Misteli mann Misteli mann

D~10 14.4 5.4 10.4 9.5 3.6 10.4 3.3 1.3 10.5

D~25 23.4 5.9 26.0 16.1 4.2 26.1 5.4 1.6 25.7

D~40 25.9 5.2 41.6 19.2 3.9 42.2 6.2 1.8 41.1

D~55 24.6 4.7 57.9 18.1 1.9 58.2 8.2 2.1 56.3

Comparison between the free-diffusion method of Soumpasis and the lattice-Boltzmann method using fluorescence recovery data produced under varying
experimental conditions with the Virtual Cell software. Results are shown for the different conditions simulated, the different normalization methods used in the free-
diffusion method, and for the lattice-Boltzmann method.
doi:10.1371/journal.pone.0022962.t001
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bleach was taken as the initial condition in the simulation, such

simulations could very accurately reproduce the experimentally

observed fluorescence recovery.

FRAP data analysis
At every time step during FRAP recovery, the fluorophore

distribution was simulated in the whole model cell, and it was

recorded in the same cross section as in the measurement. We

compared the experimental and simulated frames by cross

correlation such that the cross-correlation coefficient was given by

ck,l~
1

Nsksl

X
x,y

vk(x,y){�vvkð Þ vl(x,y){�vvlð Þ: ð14Þ

Here the subscripts k and l refer to the two series of frames to be

compared, vk(x,y) is the pixel intensity of frame k, N is the

number of pixels, and �vvk and sk are the average intensity and

standard deviation of image k, respectively.

The experimental and simulated frames could be compared

directly using this algorithm. In practice however, the cross-

correlation results were improved greatly if the cell background

was removed from all the images (similar to the construction of

p(x,y) above), and a mask was used to restrict the analysis to the

cell interior. By these manipulations we minimized the perturbing

effects of cell motion and deformation.

In the simulations we used three relaxation times to describe the

different liquid phases of the cell, the cytosol (tcsol ), the nucleosol

(tnsol ), and the effective substance of the nuclear envelope (tne). Of

these three, we fixed tcsol for numerical convenience, and the

other two were then free parameters. The simulation time step was

also a free fitting parameter that eventually determined, together

with the values for the three relaxation times, the diffusion

coefficients. For a given experimental frame k, the ck,l of Eq. 14

showed a global maximum as a function of the simulation frame

number l, denoted by lmax(k). The real and digital cells were

assumed to correspond to each other when lmax(k) was a linear

function of k. By varying the values of tnsol and tne, the linearity of

lmax(k) was maximized, and the slope of lmax(k) directly related

the simulation time step dt to the time step Dt used in the

experiment (See Fig. 4). These values were then used to determine

the values for Dcsol , Dcp(r), Dnsol , and Dnp(r). Finally, we also

compared the measured and simulated fluorescence recovery

curves for an additional check of consistency.

Validation of methods
In order to test the performance of conventional and the new

data analysis methods introduced here, we used the Virtual Cell

software [39] to produce data on quasi-2D FRAP experiments

with known diffusion coefficients of 10, 25, 40, and 55 mm2/s. The

bleaching process was modeled as a laser light induced reaction

whose creation rate can be described as

rate(x,y,t)~VmaxL(x,y)CEYFP(t), ð15Þ

where L(x,y) is the distribution of laser intensity in the simulation

geometry, CEYFP(t) is the concentration of the molecules which

are bleached, and Vmax is the maximum reaction rate. The profile

of the laser pulse was either cylindrical with a sharp boundary at a

radius of 1.85 mm, or a Gaussian with an HWHM of 1.85 mm

(Fig. 5 a). The length of the bleach pulse in the fast and slow bleach

simulations was adjusted to 1 ms and 75 ms, respectively. The

time lag between the bleach and first recovery data point was 0 ms

in the fast and 25 ms in the slow bleach simulations. The

simulation time step was set to 0.1 ms or 1 ms, and the

fluorescence intensity was recorded at 20 ms intervals. The

recovery data were normalized as in the FRAP experiments.

We first produced data with different bleach profiles on a

geometry (25 mm625 mm, with a thickness of 1 mm and a pixel

size of 100 nm) that very nearly conformed to the assumptions

made in the Soumpasis method. Next we generated similar data

on fluorescence recovery with different bleaching times in two

different locations within a 2D digital cell outline determined from

Figure 7. Results of FRAP analysis by the new method. (a)
Correlation between experiment and simulation. Data points corre-
spond to the function lmax(k) and the lines of the same color show the
linear fit through the data. (b) Measured (data points) and simulated
curves (continuous curves) of fluorescence recovery at the bleached
ROI. The data were normalized by the maximum pixel value of the
provided image data. Curves of the same color in (a) and (b) are taken
from the same measurement. (c) Map of the local cytoplasm and
nucleoplasm diffusion coefficients in a cross section of an NLFK cell.
Scale bar 10 mm.
doi:10.1371/journal.pone.0022962.g007
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an LSCM image of an NLFK cell, with a thickness of 1 mm and a

pixel size of 200 nm (Fig. 5 b and c).

As expected, in the ideal case the Soumpasis method recovered

the correct value for the diffusion coefficient, especially at the low

end of the values used. High diffusion coefficients produced some

variation as the size of the periodic box had then a detectable

effect on the results. The biggest difference was found for a

Gaussian bleach profile placed near the boundary of the cell

outline, and a bleach time of 75 ms. In this case the Soumpasis-

method diffusion coefficient was 1.56 mm2/s, while the correct

value was 25 mm2/s, a difference by a factor of about 20 (see Fig. 6

for example recovery curves in different experimental conditions).

We then analyzed the same Virtual Cell data by the new LB

method introduced here. We found very good agreement in all

cases between the correct diffusion coefficient and the one

obtained with the LB method, with a maximal deviation of 6%.

We also investigated the effect of data normalization on the

FRAP results. In the Soumpasis method data are normalized as in

Axelrod et al. [12]. However, the normalization introduced by

Phair & Misteli [10], designed so as to include fluorescence loss in

the imaging phase, is also very often used. In general, PM

normalization increases the diffusion coefficient obtained. This

increase seems, however, to be an artefact which arises from the

fact that the recovery curve in the Soumpasis method begins at

zero and asymptotically approaches one, but when the PM

normalization is used, the initial intensity in the recovery phase

can be anything between 0 and 1. This problem was demonstrated

with the Virtual Cell data for which the Soumpasis method with

Axelrod normalization gave the correct result. If we used instead

the PM normalization, diffusion coefficients about four times too

big were found. A full account of all the analyses done of the

various Virtual Cell data is given in Table 1.

Results

FRAP analysis
We performed FRAP experiments on EYFP-expressing NLFK

and HeLa cells. When the measured recovery data were analyzed

by the Soumpasis method, we found a cytoplasm diffusion

coefficient of D~0:75+0:3 mm2/s (n = 8) for the NLFK cells

and D~1:83+0:28 mm2/s (n = 13) for the HeLa cells.

In the new methods introduced, excellent correlations were found

between experimental and simulated frames, and the corresponding

fluorescence recoveries were also highly consistent (Fig. 7 a). The

resulted cytosol diffusion coefficient, Dcsol , was 55:3+6:8 mm2/s for

the NLFK (n = 12) cells and 62:2+9:0 mm2/s for the HeLa (n = 13)

Figure 8. FFM results for NLFK cells. (a) An image of a cell taken before the fluorescence fluctuation measurements. The marked dots denote the
points measured. Scale bar 5 m. (b) Autocorrelation curves of the measurements. The colors of the lines correspond to those of the measured point.
(c) Distribution of the measured diffusion coefficients of the fast component (44 cells and 138 points).
doi:10.1371/journal.pone.0022962.g008
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cells. The difference in the liquid phase properties (‘viscosity’) of

these cells is statistically significant (pv0:05), which indicates that

they have different macromolecular concentrations. The average

cytoplasm diffusion coefficients, SDcpT, were 15:5+2:7 mm2/s for

the NLFK and 20:6+5:0 mm2/s for the HeLa cells, being thus

quite similar. In both cell lines the cytoplasm diffusion coefficient,

Dcp(r), varied significantly (Fig. 7 c).

The emphasis was here on the cytoplasm, but the method

automatically produced diffusion coefficients for the nucleus. The

nucleosol diffusion coefficients, Dnsol , were found to be 28:5+
16:3 mm2/s for the NLFK and 28:2+22:0 mm2/s for the HeLa

cells, while the average nucleoplasm diffusion coefficients, SDnpT, were

18:9+10:8 mm2/s (NLFK) and 17:2+13:4 mm2/s (HeLa). In these

values the uncertainty is obviously rather large as the measurements

were not optimized here for their accurate determination. They can,

however, be already used for qualitative conclusions.

FFM analysis
As a local measurement technique for gaining further insight

into the protein diffusion dynamics, we used FFM (Fig. 8). We

measured the cytoplasm diffusion coefficient at 1 to 6 points inside

44 NLFK cells (138 measurement points in total) and at 1 to

9 points inside 50 HeLa cells (198 points in total), from the same

cell lines as in the FRAP experiments. The data were fitted by a

two diffusing components model [23], whose fast component was

estimated to correspond to the cytosol diffusion coefficient

determined by the new method introduced here (see the discussion

below). In this way we obtained for the cytoplasm an average

diffusion coefficient of SDFFMT~60:5+20:2 mm2/s for the

NLFK and SDFFMT~61:8+19:7 mm2/s for the HeLa cells.

Note that these values are indeed very similar to the ones found by

the new FRAP analysis method for the cytosol, Dcsol~55:3+
6:8 mm2/s for the NLFK and Dcsol~62:2+9:0 mm2/s for the

HeLa cells.

Discussion

We introduced a new method for modeling protein motion, i.e.,

evolution of fluorescence intensity in the case of fluorescent

proteins, in the entire cell. This method was based on first

constructing a three-dimensional digital representation of the cell,

which included the cytoplasm, nucleoplasm and nuclear envelope.

We furthermore included the effect of internal structures that

obstruct protein motion by describing the two cellular compart-

ments as porous media. The equilibrium fluorescence distribution

was used to identify the degree by which protein motion is locally

obstructed.

The diffusive motion of proteins could then be numerically

simulated in a realistic cellular environment. Here we used the

lattice-Boltzmann (LB) method for the numerical realization of the

diffusion equation. Other methods could also have been used, but

the LB method allows an easy implementation of the boundary

conditions and an easy generalization to binding-dissociation

processes that we intend to include later.

The new modeling instrument was applied to model FRAP

experiments that are known to produce typically much lower

diffusion coefficients for proteins, when conventional modeling is

used to interpret the measured data, than FCS experiments. The

fluorescence intensity distribution measured right after the bleach

process was used as the starting point for the simulated (post-

bleach) evolution of that distribution in the entire cell. Thus, in the

new method, problems related within conventional modeling to,

e.g., intensity normalization, finite volume of fluorophore

distribution, and internal membrane structures, were all removed.

As it was expected that the internal membrane structures in the

cytoplasm (and nucleoplasm) play an important role in protein

transport in the cell, special emphasis was put on properly

describing their effect. As described above, such structures could

be included as non-accessible regions for protein motion by

describing both the cytoplasm and the nucleolasm as porous

media. This is not, however, enough. The heterogeneous

fluorescence intensity in the cytoplasm/nucleoplasm was inter-

preted such that it was homogeneous in their liquid phases in

which the diffusive motion of proteins only takes place. Distinction

was therefore made between diffusive motion in the liquid phases

and in the whole cytoplasm/nucleoplasm. The former diffusion

coefficients are intrinsic properties of the liquid phases indepen-

dent of where bleaching is performed. In contrast with this, the

cytoplasm/nucleoplasm diffusion coefficient depends on the local

membrane structures in and near the region of interest, and varies

appreciably.

In order to better understand the distinction between the two

types of diffusion coefficient, consider an artificial porous medium

a cross section of which is shown in Fig. 9. It can be interpreted as

a small region of the cytosol as seen in a confocal microscope

image of a cell. The liquid phase is marked blue and the

impermeable solid phase is dark brown (its morphology does not

represent that of membrane structures in the cytoplasm). We

consider diffusion of tracer molecules across the shown structure

(homogeneous in the third direction) such that their diffusion

coefficient in the liquid phase is set to be 50 mm2/s. Diffusion from

left to right across the shown medium results in an effective

diffusion coefficient of 29 mm2/s. This is just a bit smaller that

porosity (68%) times the diffusion coefficient in the liquid phase

(50 mm2/s) because of tortuosity effects (migration paths are in

practice longer than the thickness of the region). Inclusion of

tortuosity effects is, however, difficult in cellular transport, and

they are expected to be rather small on the average.

Figure 9. A cross section of an artificial porous medium that is
homogeneous in the third dimension. Its porosity is 68%. The
liquid phase is marked blue and the impermeable solid phase is brown.
doi:10.1371/journal.pone.0022962.g009
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Diffusion of a small non-binding (non-specific binding was

assumed to be negligible) fluorescent protein was then analyzed by

FRAP, using the new as well as conventional methods, and by

FFM, and two different cells were used in these analyzes for

generality.

Using FRAP combined with the new analysis method, the

cytosol diffusion coefficients were found to be different in the

NLFK and HeLa cells, indicating a different macromolecular

concentration (‘viscosity’) in the cytoplasm. In both cases the

average cytoplasm diffusion coefficient was about a third of that of

cytosol, indicating a similar relative amount of membrane structures

in the cytoplasm. FFM analysis of the cytoplasm resulted in

diffusion coefficients that were very similar to those found by

FRAP for the cytosol. This method probes rather closely the

properties of the liquid phase, but if there are ‘solid phase’

structures near the region analyzed, they however affect [7,8] the

result of the measurement. This phenomenon is evidenced by the

sizable local variations in the FFM results (in the cytoplasm and in

the nucleus [23]). They prevented the detection here of the

difference between NLFK and HeLa results. Membrane structures

affect the cytoplasm diffusion coefficients in FRAP experiments, and

they display strong variation. Evidently it is important to make a

distinction in the interpretation of FRAP experiments between

diffusion in the cytosol (nucleosol) and in the cytoplasm

(nucleoplasm). Using a conventional modeling of the same FRAP

experiments, much too low diffusion coefficients were found. The

assumptions made in the conventional modeling were not realized

in the experimental situation, and no difference was made either

between cytosol and cytoplasm diffusion.

Without fine tuning the nucleus and nuclear envelope results we

found by the new FRAP method that the Dnsol=Dcsol ratio was

about a half in both cells. The nucleosol is thus a more molecularly

crowded environment than the cytosol, in agreement with recent

results [1]. Both Dnp=Dnsol ratios were about two thirds. It appears

that the solid phase affects protein diffusion less in the nucleoplasm

than in the cytoplasm [8,23].

For clarity we considered here pure diffusion, but the methods

introduced can be extended so as to include interactions of

proteins with cellular organelles.

Author Contributions

Conceived and designed the experiments: TOI ND SFW JL MV.

Performed the experiments: TOI ND SFW. Analyzed the data: TK

TOI. Contributed reagents/materials/analysis tools: TK TOI SFW.

Wrote the paper: TK TOI JH ND SFW JL MV JT. Development of

software methods: TK JH. Cultivation of cell lines: TOI ND JFW. Coding:

TK.

References

1. Zeskind BJ, Jordan CD, Timp W, Trapani L, Waller G, et al. (2007) Nucleic

acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nat

Methods 4: 567–569.

2. Guigas G, Kalla C, Weiss M (2007) Probing the nanoscale viscoelasticity of

intracellular fluids in living cells. Biophys J 93: 316–323.

3. Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of

the intracellular environment. Current Opinion in Structural Biology 11:

114–119.

4. Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001)

Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-

T15, visualized by high resolution electron tomography. Proc Natl Acad Sci U S A

98: 2399–2406.

5. Puhka M, Vihinen H, Joensuu M, Jokitalo E (2007) Endoplasmic reticulum

remains continuous and undergoes sheet-to-tubule transformation during cell

division in mammalian cells. J Cell Biol 179: 895–909.

6. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm:

volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:

189–221.

7. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of

fluorescent probes inside living cell nuclei investigated by spatially-resolved

fluorescence correlation spectroscopy. J Mol Biol 298: 677–689.

8. Hinde E, Cardarelli F, Digman MA, Gratton E (2010) In vivo pair correlation

analysis of egfp intranuclear diffusion reveals dna-dependent molecular flow.

Proc Natl Acad Sci U S A 107: 16560–16565.

9. Schuldt A (2010) The dynamic nucleus. Nat Rev Mol Cell Biol 11: 678–679.

10. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell

nucleus. Nature 404: 604–609.

11. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching

and photoactivation: following protein dynamics in living cells. Nat Cell Biol

Suppl: S7–14.

12. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility

measurement by analysis of fluorescence photobleaching recovery kinetics.

Biophys J 16: 1055–1069.

13. Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching

recovery experiments. Biophys J 41: 95–97.

14. Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Analysis of binding

reactions by fluorescence recovery after photobleaching. Biophys J 86:

3473–3495.

15. Braga J, Desterro JM, Carmo-Fonseca M (2004) Intracellular macromolecular

mobility measured by fluorescence recovery after photobleaching with confocal

laser scanning microscopes. Mol Biol Cell 15: 4749–4760.

16. Mueller F, Wach P, McNally JG (2008) Evidence for a common mode of

transcription factor interaction with chromatin as revealed by improved

quantititive fluorescence recovery after photobleacing. Biophys J 94: 3323–3339.

17. Kang M, Day CA, Drake K, Kenworthy AK, DiBenedetto E (2009) A

generalization of theory for two-dimensional fluorescence recovery after

photobleaching applicable to confocal laser scanning microscopes. Biophys J

97: 1501–1511.

18. Kubitscheck U, Wedekind P, Peters R (1994) Lateral diffusion measurement at

high spatial resolution by scanning microphotolysis in a confocal microscope.

Biophys J 67: 948–956.

19. Meyvis TK, De Smedt SC, Van Oostveldt P, Demeester J (1999) Fluorescence

recovery after photobleaching: a versatile tool for mobility and interaction

measurements in pharmaceutical research. Pharm Res 16: 1153–1162.

20. Siggia ED, Lippincott-Schwartz J, Bekiranov S (2000) Diffusion in inhomoge-

neous media: theory and simulations applied to whole cell photobleach recovery.

Biophys J 79: 1761–1770.
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