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Abstract

Background: Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate
genomic breeding values have been studied. In general, two approaches have been used. One approach estimates
the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second
approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship
matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A
common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two
for the homozygous genotype for the other allele. Another common allele coding changes these regression
coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within
each marker. We call this centered allele coding. This study considered effects of different allele coding methods
on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and
Bayesian methods were used in inference.

Results: Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based
models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the
equivalent models, the same results hold, even though different allele coding methods lead to different genomic
relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of
the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using
elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding
methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms,
with the centered coding being the best.

Conclusions: Different allele coding methods lead to the same inference in the marker-based and equivalent
models when a fixed general mean is included in the model. However, reliabilities of genomic breeding values are
affected by the allele coding method used. The centered coding has some numerical advantages when Markov
chain Monte Carlo methods are used.

Background
There has been growing interest in the use of marker-
based models [1] in recent years. In studies using these
models, descriptions of the effect of allele coding system
on inference and computations are often vague or missing.
By allele coding, we refer to the coefficients in the marker
matrix of marker-based models. Coefficients, commonly
used for allele coding of a marker is 0 when the individual
is homozygous for the first allele, 1 when the individual is
heterozygous, and 2 when the individual is homozygous
for the second allele. Depending on which of the alleles
has been chosen as the first allele, the coefficients are

different. Thus, this allele coding method does not give
unique regression coefficients.
There are other allele coding methods such as the one

that use coefficients -1, 0, and 1 instead of 0, 1, and 2,
respectively. Different allele coding methods affect coeffi-
cients in the statistical models but they do not seem to
change the amount of information for statistical inference.
Hence, one would expect that the use of different allele
coding methods would lead to the same inference. How-
ever, allele coding can be of vital importance in computa-
tions. First, convergence of iterative methods such as
Markov chain Monte Carlo (McMC) methods often used
in Bayesian inference can be assumed to be affected by the
allele coding method used because different allele coding
methods change the correlation structure between marker* Correspondence: ismo.stranden@mtt.fi
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effects. Second, equivalent models have become popular in
animal breeding [2,3]. An important concept in these
methods is the genomic relationship matrix. Differences in
allele coding will yield different genomic relationship
matrices [4]. Thus, some elements of the inverse of
the coefficient matrix can be different and, consequently,
reliabilities may be different.
We investigated effects of different allele coding meth-

ods using theoretical derivations and a practical example
when restricted maximum likelihood (REML) or Baye-
sian inference is used. Effects on parameter estimates,
reliabilities, and McMC computations were studied. We
considered marker models and their equivalent breeding
value models.

Methods
Genomic marker model
Let us consider a univariate linear mixed effects model
for genomic marker effect estimation, e.g. [1],

y = 1μ + Zg + e, (1)

where y is n × 1 vector of observations, μ is the gen-
eral mean, Z is a n × m matrix containing a column for
each marker locus, g is a m × 1 vector of random SNP
marker effects, and e is a random residual vector. There
can be other fixed or random effects in the model but
their inclusion does not change the following
derivations.

Allele coding methods
There are several alternatives for coding the coefficients
in the Z matrix. Four allele coding systems are consid-
ered. A simple transformation can be made from one
allele coding system to another. Our basic allele coding
system counts the number of copies of one of the
alleles. Depending on which of the alleles is counted,
the matrix can be different. In the allele coding system
012, the number of copies of the less frequent allele is
counted. Thus, the coefficient is 0 if the individual is
homozygous for the more frequent allele, 1 if it is het-
erozygous, or 2 if it is homozygous for the less frequent
allele. In this case, the Z matrix for the basic allele cod-
ing system 012 is denoted by Z0.
A general form for the allele coding transformation

from the basic allele coding system is Z0 − 1nv′
m where

vm is a m × 1 vector. This allows many types of allele
coding methods. Note that the transformation keeps dis-
tances between allele codes within a marker the same.
So, the coding 0,1,2 can be changed to - 1,0,1 or 0.5,
1.5, 2.5 by this transformation, but not to -10,0,10.
We define the centered allele coding system as Zc =

Z0 - Pc, where each column of the matrix Pc contains
the average allele count for the corresponding marker

column. Thus, summing values in each column will give
a vector of zeros, i.e., 1′

n(Z0 − Pc) is a vector of zeros.
For the centered allele coding system, we have
vm = 1

nZ
′
01n, i.e., Zc = Z0 − 1

n1n1
′
nZ0. Note that vm/2

gives the allele frequencies of the markers in the data.
The allele coding transformation allows shifts in the

allele codes. The 101 allele coding system is such that -
1 is assigned to the genotype homozygous for the more
frequent allele, 0 to the heterozygous individual, and 1
to the individual homozygous for the less frequent allele.
For the 101 allele coding system, we have vm = 1m. The
101 allele coding system is equal to the centered allele
coding system when all allele frequencies are equal to
0.5.
In the following, the derivations will use the general

allele coding transformation. The matrix Z0 is unique.
However, in general the decision on which of the alleles
to count is arbitrary. Let the 210 allele coding system be
such that the more frequent allele is counted. Then the
Z matrix for the 210 allele coding system can be calcu-
lated from the 012 coding matrix by 21n1′

m − Z0 where
1n is n × 1 vector of ones. The 210 allele coding system
is the opposite to the 012 allele coding system but
results in this paper apply to the 210 allele coding sys-
tem as well, with some modifications mentioned
separately.
Different allele coding methods imply different models

(1) and different models may lead to different parameter
estimates. However, the inference considered in this
paper is not affected by allele coding, as we demonstrate
below.

Inference in marker-based model
Variance component estimation by restricted maximum
likelihood (REML), prediction of random effects, and
Bayesian inference are all based on the likelihood after
marginalization of the fixed effects, i.e., the fixed effects
have been integrated out. Bayesian inference requires
even more marginalization. In order to show that infer-
ence is not affected by allele coding, it is sufficient to
show that the likelihood after integrating out the general
mean is the same irrespective of allele coding. The fol-
lowing derivation makes no assumptions on the prior
densities of marker effects. Thus, the results apply to
many models, including BLUP, BayesA and BayesB in
[1].
The marginal likelihood for the mixed effects model is

p(y|g, θ) =
∞
∫

−∞
p(y|μ, g, θ) dμ,

where p(y | μ, g, θ ) is the conditional density of y,
often a Gaussian density, and θ contains all parameters
in the distribution of e, often only the residual variance
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parameter σ 2
e . Using the transformation result (7) in

Appendix A and a change of integration variable
μ0 = μ − v′

mg, we can write

p(y|g, θ) =
∞
∫

−∞
p0(y|μ − v′

mg, g, θ) dμ

=
∞
∫

−∞
p0(y|μ0, g, θ) dμ0

= p0(y|g, θ),
where p0 denotes the 012 allele coding system. Hence,

the marginal likelihood does not depend on allele cod-
ing, a property used in the following derivations.
The REML-likelihood is defined when g and e are

multivariate Gaussian distributed, and equals

L(θ , η) = ∫ p(y|g, θ)p(g|η)dg,
where h contains all parameters in the distribution of g,

commonly only the genetic marker variance parameter
σ 2
g . This likelihood is independent of allele coding, and,

hence, REML parameter estimation is independent of
allele coding. Note that maximum likelihood estimation
is based on L(μ, θ, h) = ∫ p(y | μ, g, θ)p(g |h)dg and is
affected by allele coding because, in this case, the general
mean is not integrated out.
BLUP estimation of marker effects g assumes that the

variance parameters (θ, h) are known. The conditional
distribution p(g | y, θ, h) = p(y | g, θ)p(g | h)/L(θ, h) is
independent of allele coding. Hence, BLUP ĝ and asso-
ciated uncertainties do not depend on the allele coding.
In Bayesian inference, the joint posterior after inte-

grating out μ is

p(g, θ , η|y) = ∫ p(μ, g, θ , η|y) dμ
= p(y|g, θ)p(g|η)p(θ , η)/p(y),

where p(θ, h ) is the joint prior for the parameters,
and the denominator p(y) is the integral of the numera-
tor. All terms in the numerator are independent of allele
coding, and by marginalization p(y) satisfies the same.
Hence, p(g, θ, h | y) does not depend on allele coding.
The general intercept μ is, however, not independent

of allele coding. For simplicity of the argument, we
assume that parameters (θ, h) are known, and omit
showing these values. According to the transformation
result (8) in Appendix A and a change of integration
variable μ0 = μ − v′

mg, the conditional expectation of
the general mean is

μ̂ = ∫ μ ∫ p(μ, g|y)dgdμ
= ∫ ∫μp0(μ − v′

mg, g|y)dμdg
= ∫ ∫ (μ0 + v′

mg)p0(μ0, g|y)dμ0dg

= ∫ μ0p0(μ0|y)dμ0 + ∫ v′
mgp0(g|y)dg

= μ̂0 + v′
mĝ,

(2)

where p0 denotes density for the 012 allele coding,
and μ̂0 is the conditional expectation of the general
mean when using the 012 allele coding. Thus, the gen-
eral mean estimate is different by allele coding when
v′
mĝ is not zero. When g and e are multivariate Gaus-

sian distributed, the conditional expectations ĝ and μ̂

equal the BLUP and BLUE estimates, respectively.
Finally, the inference is indifferent to the allele being

counted. This is demonstrated by studying the centered
coding system and assuming that allele in the first mar-
ker is counted in the opposite way, i.e., the first column
in Z is minus the first column in Zc, or z1 = -zc1. We
see that Zg = Zcg̃ where the entries in g̃ are equal to the
entries in g, except for the first entry which equals
minus the first entry in g. Since g and g̃ have the same
distribution, these two models are equivalent.

Genomic breeding values
Estimating breeding values
In breeding value evaluation, the main interest is in esti-
mation of genomic breeding values for the genotyped
animals. In other words, estimation of â = Zĝ where ĝ
are solutions to the marker effects by a marker-based
model like model (1). Because the marker effect solu-
tions are the same for different allele coding systems,
the estimated genomic breeding values are different due
to differences in the coefficient matrix Z.
Allele coding does not, however, change relative dif-

ferences between the estimated genomic breeding
values, because Zĝ − Z0ĝ = −1n(v′

mĝ) shows that they
are just shifted by a constant. Let us define complete
genomic breeding values as âd = 1nμ̂ + Zĝ. Substituting
Z = Z0 − 1nv′

m and using equation (2) we obtain

âd = 1nμ̂ + (Z0 − 1nv′
m)ĝ

= 1n(μ̂ − v′
mĝ) + Z0ĝ

= 1nμ̂0 + Z0ĝ.

Consequently, the estimated complete breeding values
âd are the same irrespective of allele coding.
Equivalent model and allele coding
Assume that the marker effects have a Gaussian distri-
bution g ∼ N(0, Imσ 2

g ) where Im is an m × m identity
matrix. The breeding values a = Zg can be calculated
directly without estimating ĝ by the model [2,3]

y = 1nμ + a + e,

where the breeding values have prior density of
a ∼ N(0,ZZ’σ 2

g ). Often the covariance matrix of the
breeding values is scaled by a value such as

vp = 2
m∑
i=1

pi(1 − pi) where pi is the allele frequency of

marker i. Then, the breeding values have a prior density
of a ∼ N(0,Gσ 2

a ) where the genomic relationship matrix
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is G = ZZ’ 1vp and genetic variance is σ 2
a = σ 2

g vp. Assuming

that the residual distribution is e ~ N (0, R), then the
mixed model equations for the equivalent model are[

1′
nR

−11n 1′
nR−1

R−11n R−1 +G−1/σ 2
a

][
μ̂

â

]

=

[
1′
nR

−1y

R−1y

]
.

(3)

The breeding value solutions â from these mixed
model equations (3) are the same as the genomic breed-
ing values calculated by â = Zĝ where ĝ are marker
effects estimated by the marker-based model (1).
Therefore, the conclusion for the marker-based models

about relative differences between genomic breeding
values being unaffected by allele coding is also true for the
equivalent model, although different allele coding methods
lead to different genomic relationship matrices. Similarly,
variance component estimation by REML and Bayesian
methods are unaffected by the allele coding due to equiva-
lence of models with the marker-based models.
The mixed model equations in (3) are not well-defined

when the genomic relationship matrix G is singular.
However, mixed model equations not requiring an
invertible G matrix do exist; see page 48 in [5]. The
genomic relationship matrix G can be singular for sev-
eral reasons. For example, there can be identical twins
or clones that have the same genotypes. In addition, for
the centered allele coding system the genomic relation-
ship matrix is Gc = ZcZ′

c. The last row of
Zc = (I − 1

n1n1
′
n)Z0 is equal to the sum of all the other

rows. Hence, Zc is not of full rank, and Gc is singular.
Prediction error variances and reliabilities
Gaussian models are often used in practical genomic
evaluation of animals. In these models, reliabilities of
estimated breeding values â are calculated using ele-
ments of the inverse of the mixed model equations such
as (3). Reliability of âi is

r2i = 1 − PEVi

σ 2
a Gii

, (4)

where PEVi is the prediction error variance, i.e., Var(ai |
y), of animal i, and Gii is the diagonal element of animal i
in the genomic relationship matrix G; e.g. [6], p. 51 in [7].
The prediction error variance for animal i is the diagonal
element of the inverse of the coefficient matrix of mixed
model equations (3) for animal i. Alternatively,

PEV = Var(a|y)
= Var(Zg|y)
= ZVar(g|y)Z’
= ZCgZ’,

(5)

where Cg is the genomic marker effect submatrix in the
inverse of the coefficient matrix of the mixed model
equation for marker-based model (1) (see Appendix B).
The submatrix Cg = Var(g | y) is the same irrespective of
the allele coding method used as shown in the chapter
on inference on marker-based models. Because the coef-
ficient matrix Z is different depending on allele coding,
PEV is also different depending on allele coding. Conse-
quently, the reliability of â depends on allele coding.
More generally, for any of the models considered in

this paper, a = Zg where p(g | y) is independent of allele
coding and Z depends on allele coding. Therefore, the
distribution p(a | y) and, in particular, the variance-cov-
ariance matrix Var(a | y) and reliabilities of â depend
on allele coding.
The complete breeding value distribution p(ad | y)

does not depend on allele coding, unlike PEV associated
with â. The proof is based on the demonstration that
when applying any function f, the expectations are inde-
pendent of the allele coding system,

E[f (ad)|y]
= ∫ ∫ f (1nμ + Zg)p(μ, g|y) dμdg
= ∫ ∫ f (1n(μ − v′

mg) + Z0g)

×p0(μ − v′
mg, g|y) dμdg

= ∫ ∫ f (1nμ0 + Z0g)p0(μ0, g|y) dμ0dg

= E0[f (ad)|y],
where E0 is the expectation when using the basic allele

coding method. Therefore, the variance-covariance
matrix Var(ad | y) and all higher order moments of the
distribution are independent of allele coding. However,
the result does not provide actual formulas for the
moments.
A closed form formula of the variance-covariance

matrix is derived for a Gaussian model. Assume
g ∼ N(0, Imσ 2

g ) and e ~ N (0, R). For this model, in
Appendix B we obtain that

Var(ad|y) = r1n1′
n

+(In − r1n1′
nR

−1)ZCgZ’(In − rR−11n1′
n),

where r = 1/(1′
nR

−11n) and
Cg = [Z’(R−1 − rR−11n1′

nR
−1)Z + Im/σ 2

g ]
−1. As demon-

strated earlier in this section, this variance-covariance
matrix is independent of allele coding. When R = Inσ 2

e ,
the variance-covariance matrix simplifies to

Var(ad|y)
= 1n1′

nσ
2
e /n + Zc(Z′

cZc/σ 2
e + Im/σ 2

g )
−1Z′

c,
(6)

where Zc is based on the centered allele coding
method. The diagonal elements in (6) are different from
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the PEVis in (4) because they contain uncertainty about
the unknown mean μ as well.
For the complete breeding values ad, we have shown

above that prediction error variances are independent of
allele coding and we have provided a formula for the
Gaussian model. Reliabilities of âd, however, can not be
defined in a meaningful way. Substituting the diagonal
elements from (6) for the PEVis in (4) is not appropriate
since the denominator in (4) is Var(ai) not Var(ad)ii.
The denominator in the reliability formula should con-
tain the marginal (unconditional) variance Var(ad)ii = ∫
Var(μ + ai | μ)dμ, but this variance is infinite.

McMC computations
Theoretical convergence rate
The convergence and mixing of an McMC algorithm
depend on the parametrization of the model and on the
algorithm used. Theoretical results about the geometric
rate of convergence to the stationary distribution for
Gibbs sampling algorithms are shown in [8], and as men-
tioned in [9] this rate also describes the mixing of the
algorithm. Below we show specific results about the con-
vergence rate r for Gibbs sampling algorithms for simu-
lating from [μ, g | y] in the marker-based model (1),
where g is Gaussian g ∼ N(0, Imσ 2

g ) and e is Gaussian

e ∼ N(0, Inσ 2
e ). These results provide some ideas about

more general models and algorithms where theoretical
results cannot be obtained.
Section 2.2 in [8] contains results about various

Gibbs-sampling schemes for simulating from a multi-
variate distribution. Here we apply these results (see
Appendix C for details) to two types of Gibbs updating
schemes. The first scheme iterates between updating μ
and a block of all components in g, and will be called
the block updating scheme hereinafter. The second
scheme updates μ, g1, ..., gm sequentially one at a time,
and will be called the single site updating scheme.
For the block scheme, the convergence rate is

ρ1 =
n
σ 2
e
z̄′C−1

g z̄,

where z̄ = Z’1n/n is a m × 1 vector, and
Cg = Z’Z/σ 2

e + Im/σ 2
g .

For the single site scheme, the convergence rate is

ρ2 = ρlv(L−1
g (D−1z̄z̄′n/σ 2

e − Ug),

where Lg is the matrix containing the lower triangle
and the diagonal of D-1 Cg, D is the diagonal of Cg, and
Ug is the matrix containing the upper triangle of D-1 Cg.
This single site Gibbs sampling algorithm is the stochas-
tic counterpart of the Gauss-Seidel algorithm for solving
the mixed model equations, and the convergence results
are similar, see [10].

When the centered allele coding method
Zc = (In − 1n1′

n/n) Z0 is used, z̄ is a vector of zeros
and, hence, r1 = 0. The centered allele coding method
breaks dependency between the general mean and
genetic marker effects, as seen from the variance-cov-
ariance matrix (derived in Appendix B for a more gen-
eral situation)

Var(μ, g|y)

=

[
σ 2
e

/
n 0

0 (Z′
cZc

/
σ 2
e + Im

/
σ 2
g )

−1

]
.

Consequently, absorption of the general mean is done
without needing to compute absorption explicitly. Note
that, in general, this holds only when the residual var-
iance-covariance matrix is Iσ 2

e . For the block McMC
scheme, the convergence and mixing of the algorithms
are of the same order as for non-McMC algorithms that
simulate directly from the distribution of interest. For
the single site McMC scheme, the centered allele coding
method still breaks the dependence between the general
mean and marker effects, but as r2 > 0 illustrates, the
individual marker effects g1 , ..., gm are not independent
and the McMC samples are autocorrelated.

Data and methods
Data
Data for the XIIth QTLMAS workshop [11] were used to
illustrate the theory. The simulated data had four gen-
erations. In each generation, 15 sires and 150 dams
were selected randomly to produce the next generation.
Each sire was mated to 10 dams and each mating pro-
duced 10 progeny. Thus, the base generation had 165
individuals, and the subsequent three generations, 1500
individuals each. In total, the analyzed data had 4665
animals with phenotypes. The simulated trait had a her-
itability of 0.30. The data had 6000 equally spaced SNP
markers on six chromosomes. We deleted markers that
had a minor allele frequency less than 1% among the
phenotyped individuals and this reduced the number of
markers to 5896.
The 012 allele coding method was used to make the

base data set. So, the least frequent allele was counted.
In addition, 210, 101, and centered allele coding data
sets were analyzed.
Variance component analysis
The marker-based model (1) with common genetic var-
iance was used to analyze the data: e ∼ N(0, Iσ 2

e ) and
g ∼ N(0, Iσ 2

g ). McMC computations by a single site
updating Gibbs sampler were used to calculate posterior
mean estimates of the location (μ, g) and dispersion
(σ 2

g , σ
2
e ) parameters. The length of the McMC chain was

100000 iterations, of which the burn-in period of 10000
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was omitted. Every tenth sample was saved, giving 9000
saved samples. Effective sample sizes were calculated for
all parameters using the initial monotone sequence
approach [12]. The approach estimates the number of
independent samples from the post burn-in samples.
Theoretical convergence rates were calculated for all the

allele coding methods in the single site and block updating
schemes. Here, the convergence rate also describes the
mixing of the McMC chain and was measured by the cor-
relation between successive McMC samples. Because of
the Markov property, the k-lag correlation is rk, where r is
the convergence rate and k is the lag or distance between
samples. In order to compare the theoretical convergence
rate to the observed effective sample size, theoretical mix-
ing was calculated relative to the 012 allele coding system
as follows. Let r012 be the convergence rate from the 012
allele coding system, and r the convergence rates from
another allele coding system. Mixing of the other allele
coding system is equal to mixing of the 012 allele coding
system when every kth sample is taken from the McMC
samples and r012 = rk. Thus, the relative mixing is k = log
(r012)/ log(r).
Parameter estimation by REML for both the marker-

based model and the equivalent model and for all four
allele coding methods was done using software DMU
[13]. Both AI-REML and EM-REML were investigated.
For the equivalent model and the centered allele coding
method, the singular genomic relationship matrix was
modified by multiplying the diagonals by 1.001 in order
to be able invert the matrix. The effect of allele coding
on convergence was investigated, and it was checked
that the parameter estimates were the same.
Reliabilities of genomic breeding values
Reliabilities were calculated by different allele coding
methods using (4) and elements of the inverse of the
mixed model equations. The variance components were
those estimated by the centered allele coding method
using the single site McMC approach. Prediction error
variances were calculated by both the marker-based
model equations (5) and equivalent model equations (3).
Mean, minimum, maximum and standard deviations of
reliabilities were calculated for all allele coding methods.
Also, correlations between reliabilities from all allele
coding methods were calculated.

Results and Discussion
Posterior mean estimates of marker effects and variance
components were almost equal between different allele
coding methods (Table 1). Correlations of estimates of
the marker effects between allele coding methods were
higher than 99.98%. Only the general mean (μ) had a
different estimate, as expected. The estimated variance
components agreed well with those used to simulate the
data. Additive genetic variance was σ̂ 2

a = σ̂ 2
g vp = 1.556,

where vp = 2
m∑
i=1

pi(1 − pi) = 2323.00, and pi are the

observed allele frequencies in the reference data. Thus,
the heritability estimate was ĥ2 = σ̂ 2

a /(σ̂
2
a + σ̂ 2

e ) = 0.34,
compared to the simulated value of 0.30.
Effective sample sizes differed depending on allele

coding method. The centered allele coding method had
the best mixing, and the 210 allele coding method had
the worst (Table 2). In particular, the increase in effec-
tive sample size was largest for the general mean. For
the centered allele coding method, the general mean
was independent from the marker effect g, which led to
excellent mixing of this parameter. In general, the mar-
ker effects showed excellent mixing. With all allele cod-
ing methods, effective sample sizes were at least 5500
for all marker effects, and on average were equal to
about 8800.
Theoretical convergence rates (Table 3) displayed the

same results as the effective sample sizes discussed
above. Note that our Gibbs sampler used single site
updates for all parameters. For the single site updating
algorithm, the 210 allele coding system was predicted to
need 5.64 times more iterations than the 012 allele cod-
ing system. The number of effective samples for the
general mean parameter (μ) was 5.11 times bigger for
the 012 than for the 210 allele coding system. These fig-
ures were 0.48 and 0.48 for the 101 allele coding system,
and 0.070 and 0.0051 for the centered allele coding sys-
tem. Theoretical convergence rates for the block Gibbs
sampler showed the same pattern as for the single site
update (Table 3).
Surprisingly, the block Gibbs sampler was predicted to

be worse than the single site Gibbs sampler for all allele
coding systems except for the centered allele coding sys-
tem. However, it is well known in the literature that
block-updating schemes may sometimes be worse than

Table 1 Posterior means of selected parameters by allele
coding

Allele coding

Parameter 012 210 101 centered

μ 1.698 0.801 1.083 1.359

σ 2
g 6.700 × 10-4 6.703 × 10-4 6.691 × 10 -4 6.698 × 10-4

σ 2
e 2.996 2.996 2.996 2.996

Table 2 Effective sample sizes in McMC computations by
allele coding

Allele coding

Parameter 012 210 101 centered

μ 46 9 96 8961

σ 2
g 723 330 1001 1701

σ 2
e 7814 6861 7661 7720

Strandén and Christensen Genetics Selection Evolution 2011, 43:25
http://www.gsejournal.org/content/43/1/25

Page 6 of 11



single site updating schemes, for examples see [8]. The
excellent convergence rate of the block Gibbs sampler
with centered allele coding was expected because, in
this case, the Gibbs sampler is equal to Monte Carlo
sampling.
Table 4 shows convergence of REML in parameter esti-

mation. For the marker-based model, the convergence
was independent of the allele coding system, whereas for
the equivalent model, the convergence was fastest for the
centered coding system and slowest for the 210 coding
system, although the differences were small. The para-
meter estimates obtained (Table 5) were the same, with
the exception of σ 2

e for the centered coding system. The
difference is due to the need to make the genomic rela-
tionship matrix Gc to be full rank by multiplication of the
diagonals by 1.001. In summary, REML parameter esti-
mation is only slightly affected by allele coding.
Reliabilities were affected depending on the allele coding

method used. Differences were large (Table 6). Average
reliabilities ranged from 0.37 with the 210 allele coding
method to 0.80 with the centered allele coding method.
The centered allele coding method gave higher reliabilities
than achieved by any of the other allele coding methods.
Reliabilities calculated by different allele coding methods
were also different as judged by the correlation to each
other (Table 7). Reliabilities calculated by the marker-
based model and the equivalent model approaches were
equal within the numerical rounding error.
The observed large differences in reliabilities using dif-

ferent allele coding methods can be explained by differ-
ences in estimation uncertainty. Different allele coding

systems have different Z matrices. Consider first the 012
and 210 allele coding methods. The 012 allele coding sys-
tem has a 0 coefficient when the individual is homozygous
for the more frequent allele while the 210 allele coding
system has a coefficient of 2 instead. In the marker-based
model, uncertainty or the inverse of the coefficient matrix
is the same irrespective of allele coding method. Reliability
is calculated by multiplying the marker uncertainty by the
Z matrix (5). Consequently, uncertainty is less in the 012
allele coding system than in the 210 allele coding system
because the more frequent homozygous allele multiplies
the marker solution and uncertainty by zero. Thus, homo-
zygous genotypes for the more frequent allele do not
increase uncertainty when estimating genomic breeding
values. Thus, the 012 allele coding system will yield higher
reliabilities than the 210 allele coding system, as was
observed. This argument can be generalized as follows. In
the genomic model considered, uncertainty of a genotype
in estimating genomic breeding value is valued relative to
a chosen base genotype. The further away an observed
genotype is from the base genotype, the larger the coeffi-
cient in absolute value in the Z matrix and the higher the
uncertainty in genomic breeding value. In the 012 allele
coding system, the base genotype is homozygous for the
more frequent allele, while in the 210 allele coding, it is
homozygous for the less frequent allele. In the 101 allele
coding system the base genotype is the heterozygote. The
higher the number of heterozygous individuals is in the
data the smaller will the uncertainty be, i.e., the higher the
reliability will be for the 101 allele coding system. For the
centered allele coding system the base genotype is the
average genotype in the data. Thus, for this allele coding
system the base population is roughly the population we
work with [14], and it has the smallest average distance of
observed genotypes from the base genotype. In practice,
this can be expected to lead to the highest reliabilities.
Different allele coding systems have different model

design matrices Z, and, hence, imply different models.
Thus, reliabilities from different allele coding systems are
in fact from different statistical models. Comparison of
reliabilities from different models is meaningless. How-
ever, the different allele coding systems lead to the same
parameter estimates. If the correct allele coding method,
i.e., statistical model, is known, it should be used. Because
the true model is unknown and comparison of reliabilities
by allele coding method is meaningless, some principles
must be used to decide on which allele coding method
should be used. These principles will not guarantee the
use of a correct model or correct reliabilities. One such
principle should be consistency of reliabilities between
evaluations. The centered allele coding method changes
model from one evaluation to the next because more mar-
ker data accumulate. Hence, according to the consistency
principle, it cannot be recommended to computate

Table 3 Predicted absolute and relative convergence
rates in McMC computations by allele coding

Allele coding

012 210 101 centered

single site r2 0.9974795 0.9995523 0.9947515 0.9647670

relative 1.00 5.64 0.48 0.070

block r1 0.9995429 0.9998860 0.9989434 0.00

relative 1.00 4.01 0.43 -

Table 4 Number of iterations in REML by allele coding
and model

Model Allele coding AI-REML EM-REML

Marker 012 9 45

Marker 210 9 45

Marker 101 9 45

Marker centered 9 45

G 012 7 34

G 210 9 44

G 101 7 31

G centered 7 28
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reliabilities. Likewise, the base genotype in the 012 and 210
allele coding methods depend also on the observed allele
frequencies, i.e., marker data.
The centered allele coding method is similar to that

introduced in [4] where the allele frequencies were from
an unselected base population. It was used in order to
“give more credit to rare alleles than to common alleles
when calculating genomic relationships”. As shown,
inference is the same irrespective of the allele coding
method when a fixed general mean is in the model.
However, reliabilities are affected as shown. The use of
base population allele frequencies in the centered allele
coding method would remove the above mentioned pro-
blem of inconsistency between evaluations, but estimat-
ing these allele frequencies is elusive. Recently, [15]
presented a method for adjusting the Gc relationship
matrix to become a relationship matrix relative to the
base population, thereby avoiding the estimation of base
population allele frequencies.
The results in this paper are based on the assumption

that phenotypes and genotypes are available for all animals
in the analysis. This assumption may often not be satisfied.
Models based on an extension of the genomic relationship
matrix to include also non-genotyped animals have been
presented by [16-18]. The results in the present paper
about parameter estimates and estimated breeding values
not depending on allele coding do not carry over to the
models with an extended genomic relationship matrix.

Conclusions
We showed that, in theory, different allele coding meth-
ods led to the same inference in marker-based models
when the model has a fixed general mean effect. Practi-
cal analyses led to the same conclusions. Also in theory,
the centered allele coding method was expected to give

better mixing properties when Markov chain Monte
Carlo methods were used. This was also observed in
practice. When an equivalent breeding value model was
used, different allele coding methods proved to lead to
the same inference as in the marker-based model. How-
ever, reliabilities of breeding values depend on the cho-
sen allele coding system because different allele coding
methods change the amount of uncertainty in the esti-
mated breeding values.

Appendix A
In the following, we consider the effect of allele coding
method on the densities p(y | μ, g) and p(μ, g, | y). For
simplicity of presentation, the parameters in the distri-
bution of g and e are omitted. Let p0 denote density for
012 allele coding. Because the location parameters μ and
marker effects g relate to the observations y only
through 1nμ + Zg, we first study this term. By substitut-
ing Z = Z0 − 1nv′

m into the term, we have

1nμ + Zg = 1nμ + Z0g − 1nv′
mg

= 1n(μ − v′
mg) + Z0g.

So, when different allele coding systems are used, the
densities have equality by

p(y|μ, g) = p0(y|μ − v′
mg, g). (7)

By changing the integration variable μ0 = μ − v′
mg, we

obtain ∫ p (y | μ, g) dμ = ∫ p0 (y | μ0, g) dμ0 and, hence,
p(y) = ∫ ∫ p(y | μ, g)p(g)dμdg = p0(y). From these
results, we see that

p(μ, g|y) = p(y|μ, g)p(g)/p(y)
= p0(y|μ − v′

mg, g)p0(g)/p0(y)

= p0(μ − v′
mg, g|y).

(8)

Table 6 Summary statistics of genomic breeding value
reliabilities by allele coding

Allele coding min mean max std

012 0.41 0.49 0.59 0.022

210 0.30 0.37 0.42 0.017

101 0.55 0.62 0.73 0.024

centered 0.72 0.80 0.95 0.026

Table 7 Correlations between genomic breeding value
reliabilities by allele coding

Allele coding 210 101 centered

012 -0.22 0.32 0.43

210 0.82 0.59

101 0.91

Table 5 REML estimates by allele coding

Allele coding

Model Parameter 012 210 101 centered

Marker σ 2
g 6.623 × 10-4 6.623 × 10-4 6.623 × 10-4 6.623 × 10-4

Marker σ 2
e 2.993 2.993 2.993 2.993

G σ 2
a 1.540 1.540 1.540 1.540

G σ 2
e 2.993 2.993 2.993 2.992
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The results (7) and (8) are fairly general in terms of
distributional assumptions. The only requirements are
that p(y | μ, g) depends on μ and g only through 1nμ +
Zg, that an improper uniform prior is used for μ, and
that p(y) is finite. The later requirement is to assure the
posterior distribution becomes a proper distribution,
and this has to be proven for a model to be valid when
an improper prior is used.
When e ~ N(0, R), it is not difficult to show that

∫ p(y|μ, g) dμ ∝ exp(− 1
2(y − Zg)′M(y − Zg))

with M = R−1 − R−11n1′
nR

−1/(1′
nR

−11n). Therefore, ∫
p (y | μ, g) dμ < c0 where the constant c0 is independent
of g. Thus, p(y) = ∫ ∫ p(y | μ, g)dμp(g)dg < c0 ∫ p(g)dg =
c0 is finite, irrespective of distribution of the marker
effects g.

Appendix B
We consider a Gaussian distribution model where
g ∼ N(0, Imσ 2

g ) and e ~ N (0, R). Consequently, the dis-
tribution [μ, g | y] is a multivariate Gaussian distribu-
tion. In the following, we derive the variance-covariance
matrix for this distribution. The conditional density is

p(μ, g|y) ∝ p(y|g,μ)p(g)
∝ exp(− 1

2(y − 1nμ − Zg)′R−1(y − 1nμ − Zg)

− 1
2g’g/σ

2
g )

∝ exp

(
− 1

2 [μ − μ̂ g’ − ĝ′]Q

[
μ − μ̂

g − ĝ

])
,

where

Q = [Var(μ, g|y)]−1 =
[
r−1 z̄′

r
z̄r Cg

]

With r = 1/(1′
nR

−11n), z̄r = Z’R−11n and
Cg = Z’R−1Z + Imσ−2

g . The matrix Q is the coefficient
matrix in the mixed model equations and the inverse of
this matrix is

Var(μ, g|y) =
⎡
⎣ r + r2z′

rC
gzr −rz′

rC
g

−rCgzr Cg

⎤
⎦ ,

where Cg = (Cg − rz̄r z̄′
r)

−1. Note that the submatrix
Cg = Var(g | y) is independent of allele coding, because,
as shown in the main text, p(g | y) does not depend on
allele coding.
Variance-covariance matrix for the complete breeding

value is

Var(ad|y)

=
[
1n Z

] [
r + r2z̄′

rC
gz̄r −rz̄′

rC
g

−rCgz̄r Cg

] [
1′
n
Z′

]
= r1n1′

n + r21nz̄′
rC

gz̄r1′
n

−rZCgz̄r1′
n − r1nz̄′CgZ′ + ZCgZ′

= r1n1′
n

+(In − r1n1′
nR

−1) ZCgZ’(In − rR−11n1′
n).

Appendix C
The results in [8] state that the convergence rate of a
Gibbs sampler is equal to the largest modulus eigenva-
lue of a certain matrix B where the eigenvalues can be
complex numbers. As mentioned in [9] this convergence
rate is also a a measure of correlation between succes-
sive McMC samples, i.e., mixing of the algorithm. The
closer the convergence rate is to zero the less correlated
are the successive samples.
The B matrix is constructed as follows. Let Q be the

inverse of the variance-covariance matrix of the target
multivariate normal distribution, in our case the coeffi-
cient matrix in the mixed model equations. Assume that
a Gibbs sampling scheme is used where the variables
are grouped into s blocks and Q is split accordingly into
s blocks. First, define

A = I − diag(Q−1
11 , . . . ,Q−1

ss )Q.

Let L be the block lower triangular matrix with blocks
in the lower diagonal being those of A, and let U = A -
L. Thus, U is a strictly upper triangle matrix with zeros
in the diagonal. Then the matrix of interest is

B = (I − L)−1U.

We consider the genomic marker model (1) where g is
Gaussian g ∼ N(0, Imσ 2

g ) and e is Gaussian

e ∼ N(0, Inσ 2
e ). The conditional distribution [μ, g | y] is

a multivariate normal distribution with some mean vec-
tor and a variance-covariance matrix with inverse

Q = [Var(μ, g|y)]−1 =
[

n/σ 2
e 1′

nZ/σ
2
e

Z’1n/σ 2
e Cg

]
,

where Cg = Z’Z/σ 2
e + Im/σ 2

g ; see Appendix B. We con-
sider two McMC updating schemes. The first scheme
iterates two blocks: μ and g. The second scheme
updates successively all parameters: μ, g1, ..., gm. For the
first McMC updating scheme we have
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A = I −
[
(n/σ 2

e )
−1 0

0 C−1
g

]
Q

=
[

0 −z̄′

−C−1
g (nz̄/σ 2

e ) 0

]
,

where z̄ = Z’1n/n is a m × 1 vector. Hence,

B =⎛
⎝I −

⎡
⎣ 0 0

−C−1
g (nz/σ 2

e ) 0

⎤
⎦

⎞
⎠

−1 ⎡
⎣ 0 −z′

0 0

⎤
⎦

=

⎡
⎣ 1 0

−C−1
g zn/σ 2

e Im

⎤
⎦

⎡
⎣ 0 −z′

0 0

⎤
⎦

=

⎡
⎣ 0 −z′

0 C−1
g z z′n/σ 2

e

⎤
⎦ .

The convergence rate is

ρ1 = ρlv(B)

= ρlv(C−1
g z̄z̄′n/σ 2

e )

= n
σ 2
e
z̄′C−1

g z̄,

where rlv(B) of a matrix B is a notation for the maxi-
mum modulus eigenvalue of B. The final equality fol-
lows from a general property for a square matrix form
Cvv’ where v is a vector, saying that it only has one
eigenvalue different from zero which is equal to v’Cv.
For the second McMC update scheme,

A = I −
⎡
⎣ (n/σ 2

e )
−1 0

0 D−1

⎤
⎦Q

= I −
⎡
⎣ 1 z′

D−1(nz/σ 2
e ) D−1Cg

⎤
⎦

=

⎡
⎣ 0 −z′

−D−1(nz/σ 2
e ) Im − D−1Cg

⎤
⎦ ,

where D is the diagonal of Cg. Hence,

B =

⎡
⎣ 1 0

D−1zn/σ 2
e Lg

⎤
⎦

−1 ⎡
⎣ 0 −z′

0 −Ug

⎤
⎦ ,

where Ug is an upper triangular matrix containing the
upper triangle of D-1 Cg and Lg is a matrix containing
the diagonal and lower triangle of D-1 Cg. Therefore,

B =

⎡
⎣ 1 0

−L−1
g D−1zn/σ 2

e L−1
g

⎤
⎦

⎡
⎣ 0 −z′

0 −Ug

⎤
⎦

=

⎡
⎣ 0 z′

0 L−1
g (D−1z z′n/σ 2

e − Ug)

⎤
⎦ .

The convergence rate is

ρ2 = ρlv(B) = ρlv(L−1
g (D−1z̄z̄′n/σ 2

e − Ug)).
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