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Abstract 

The literature of productive efficiency analysis is divided into two main branches: the 

parametric Stochastic Frontier Analysis (SFA) and nonparametric Data Envelopment 

Analysis (DEA). This paper attempts to combine the virtues of both approaches in a unified 

framework. We follow the SFA literature and introduce a stochastic component decomposed 

into idiosyncratic error and technical inefficiency components imposing the standard SFA 

assumptions. In contrast to the SFA, we do not make any prior assumptions about the 

functional form of the deterministic production function. In this respect, we follow the 

nonparametric route of DEA that only imposes free disposability, convexity, and some 

specification of returns to scale. From the postulated class of production functions, the 

proposed method identifies the production function with the best empirical fit to the data. The 

resulting function will always take a piece-wise linear form analogous to the DEA frontiers. 

We discuss the practical implementation of the method and illustrate its potential by means 

empirical examples. 
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1. Introduction 

The literature of production frontier estimation is voluminous and growing rapidly (see e.g. recent 

surveys by Cherchye and Post, 2003; Murillo-Zamorano, 2004; and Worthington, 2001, 2004). For 

decades, this literature has been dominated by two separate branches: the nonparametric data 

envelopment analysis (DEA) and the parametric stochastic frontier analysis (SFA). The origins of DEA 

date back to the seminal paper by Farrell (1957), but its current popularity is largely due to the influential 

work by Charnes et al. (1978). The late seventies also saw the birth of SFA in the works of Aigner et al. 

(1977) and Meeusen and van den Broeck (1977), among others. SFA builds directly on the classic 

econometric ordinary least squares (OLS) and corrected OLS (COLS: Aigner and Chu, 1968) 

approaches to production function estimation, which relies heavily on the ex ante specification of the 

functional form. The main attention has been in the decomposition of the residual into a non-negative 

inefficiency term and an idiosyncratic error. By contrast, DEA has focused on the nonparametric 

treatment of the frontier, which does not assume a particular functional form but relies on the general 

regularity properties such as monotonicity, convexity, and homogeneity. However, DEA attributes all 

deviations from the frontier to inefficiency, completely ignoring any stochastic noise in the data. In 

summary, it is generally accepted that the virtues of SFA lie in the stochastic, probabilistic treatment of 

inefficiency and noise, while the virtues of DEA lie in its general nonparametric frontier (see e.g. Bauer, 

1990; and Seiford and Thrall, 1990).   

 The objective of this paper is to combine these virtues of SFA and DEA in a unified framework 

of frontier analysis. More specifically, we propose to combine the DEA-style nonparametric piece-wise 

linear frontier with the SFA-style decomposition of residuals into stochastic noise and inefficiency, and 

show that the nonparametric frontier and stochastic composite residual can be pursued simultaneously. 

The main advantage of our approach to the parametric SFA approach is the independence of the ad 

hoc parametric assumptions about the functional form of the production function (or cost/distance 

functions). In contrast to the flexible functional forms, one can impose monotonicity, concavity and 
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homogeneity constraints without sacrificing the flexibility of the regression function. On the other hand, 

the main advantage to the nonparametric DEA approach is the better robustness to outliers, data errors, 

and other stochastic noise in the data. While in DEA the frontier is spanned by a relatively small number 

of efficient firms, in our method all observations influence the shape of the frontier. Also many standard 

tools from parametric regression such as goodness of fit statistics and statistical tests are directly 

applicable in our approach. In summary, our method addresses the main points of critique that are 

usually presented against SFA and DEA, combining the advantages of them both. Such a powerful 

frontier framework warrants a catchy name, so we will henceforth refer to the proposed approach as 

stochastic nonparametric envelopment of data (StoNED).  

 Table 1 presents a classification of the frontier estimation literature into parametric vs. non-

parametric approaches and deterministic vs. stochastic approaches (see e.g. Murillo-Zamorano, 2004), 

with two key references to the established approaches. Thus far, the area of stochastic non-parametric 

frontier estimation has been an uncharted terrain. The ambitious objective of this paper is to fill in this 

void corner. 1  

   

Table 1: Classification of the frontier estimation literature 

 parametric non-parametric 

 

deterministic 

COLS 

Aigner and Chu (1968), 

Timmer (1971) 

DEA 

Farrell (1957)  

Charnes, Cooper, Rhodes (1978) 

 

stochastic 

SFA (MOLS) 

Aigner, Lovell, Schmidt (1977) 

Meeusen and van den Broeck (1977) 

StoNED 

this paper 

 

                                                 
1 Two important sources of influence outside the realm of frontier estimation warrant acknowledgement: 1) Hildreth’s (1954) 
nonparametric regression approach (see also Kuosmanen, 2006) and 2) Varian’s (1985) nonparametric tests of optimizing 
behavior with measurement error.   
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This study is by no means the first attempt to combine features of DEA and SFA, but 

contributes to a long series of prior studies that have pursued similar aims. For example, Park and 

Simar (1994), Fan et al., (1996), and Park et al. (1998, 2003) have explored semiparametric estimation 

of SFA models in the context of panel data. On the other hand, the random parameters SFA models 

(e.g., Tsionas, 2002; Greene, 2005) allow for heterogeneity across firms by introducing firm-specific 

coefficients that are in common with DEA. On the purely nonparametric side, Cazals et al. (2002) and 

Aragon et al. (2002) have developed more robust versions of DEA-type estimators, but these 

approaches still do not allow for rigorous analysis of the stochastic noise. Two recent papers by 

Kumbhakar et al. (2004) and Henderson and Simar (2005) presented the first fully nonparametric SFA 

frameworks based on local maximum likelihood and kernel regression. While earlier papers come a long 

way of combining the virtues of DEA and SFA, they tend to limit to some specific settings and thus lack 

the generality of DEA and SFA approaches. More importantly, the conceptual link between the 

parametric and non-parametric branches is still missing: none of the recent nonparametric techniques 

relates to DEA like SFA relates to COLS.  

This paper intends to show that DEA and SFA can be combined together without compromising 

their attractive features. The main advantage of the present approach to the existing alternatives is its 

heavy reliance on the established concepts and principles of SFA and DEA without introducing new 

concepts or tools (such as kernel regression). We build on the standard assumptions that practitioners 

of SFA and DEA are comfortable with. Thus, readers familiar with classic SFA and DEA approaches will 

be able to appreciate and apply the proposed approach relatively easily. The conceptual bridges 

between DEA and SFA are also of considerable instrumental value for the further integration of the field.   

 The remainder of the paper is organized as follows. Section 2 starts by presenting the StoNED 

model in the cross-sectional case assuming a single-output technology. Section 3 illustrates the 

approach by a simulated numerical example. Section 4 expands the analysis to the panel data settings. 

Section 5 presents some useful extensions that allow one to model alternative assumptions about 
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returns to scale and multiplicative error terms, introduce environmental variables and multiple outputs, 

and estimate cost functions. Section 6 presents an illustrative application to industry-level panel data of 

wholesale and retail sectors in 14 OECD countries. Section 7 presents the concluding remarks. 

Supplementary technical materials are presented in three appendices. 

  

2. Cross-sectional model 

This section presents the cross-sectional StoNED model in the multi-input single-output setting where 

input vector is denoted by x and output by y. In this section we represent the production technology by 

the classic production function f: y = f(x), which characterizes the boundary of the production possibility 

set. Production function is not known a priori, and one of our principal aims is to estimate it from data. 

Following the DEA literature, we assume that function f belongs to the class of monotonic increasing 

and concave functions (i.e., the sub-gradients of f satisfy ∇ ≥ ∇ ≤2( ) , ( ) 0f fx   0  x  ), denoted by 2F . In 

contrast to the SFA literature, no specific functional form for f is assumed a priori. Rather, we will 

endogenously select function ∈ 2f F  that fits the data best. Thus, our specification of the deterministic 

production function proceeds along the nonparametric lines of the DEA literature.   

We deviate from the DEA approach by introducing a stochastic component following the usual 

practice of the SFA literature. The observed output iy  for firm i may differ from the value of x( )if  by 

residual ε = −i i iv u , which consists of inefficiency term > 0iu  and idiosyncratic error term iv , formally,  

ε= + = − + =x x   ( ) ( ) , 1,...,i i i i i iy f f u v i n .       (1) 

The SFA literature typically assumes σ∼
2

. .
(0, )i u

i i d
u N  and σ∼

2

. .
(0, )i v

i i d
v N  (e.g. Aigner et al., 1977). Other 

distributions such as gamma or exponential are also sometimes used for the inefficiency term ui (see 

e.g. Kumbhakar and Lovell, 2000), but in this paper we restrict to the standard half-normal specification. 

 Analogous to the modified ordinary least-squares (MOLS) approach of the SFA literature, we 

can estimate the StoNED model (1) by using the method of moments. The procedure consists of three 
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steps: 1) least-squares estimation of residuals ε ε= 1
ˆ ˆ ˆ( ... )nε , 2) estimation of variance parameters 

σ σ2 2,u v  based on the second and third moments of the residual distribution, and 3) estimation of 

inefficiency term based on its conditional distribution.  

Note first that the parameter estimates of the classic OLS model used in the MOLS procedure 

are obtained from the optimal solution to the quadratic programming problem:2  

ε

α ε

=

′= + + ∀ =

∑ 2

ˆ, ,
1

ˆmin

. . 

ˆ  1,...,

n

i

I

i i i

s t

y i n

α β ε

β x

        (2) 

where α ,β  denote the intercept and slope coefficients of the linear regression function which are 

common to all observations (the input-output values y,x are usually transformed by taking logarithms). 

The objective function (divided by n) provides an estimate for the error variance. Note that the classic 

deterministic COLS model by Aigner and Chu (1968) is obtained from the OLS model (2) by imposing 

the constraint ≤ε̂ 0 , and interpreting the residuals as inefficiency.   

In the StoNED approach we replace the OLS regression by a nonparametric regression 

technique called concave nonparametric least squares (CLNS: see Kuosmanen, 2006, for details). The 

CNLS differs from the OLS in that it allows for a general nonparametric representation of a monotonic 

and concave regression function. Formally, the CNLS model can be written as the quadratic 

programming problem  

ε

α ε

α ε

=

′= + + ∀ =

′≤ + + ∀ =

′ ≥ ∀ =

∑ 2

ˆ, ,
1

ˆmin

. . 

ˆ  1,...,

ˆ  , 1,...,

 1,...,

i

n

i

I

i i i i i

h i i h h

i

s t

y i n

y h i n

i n

α β ε

β x

β x

β 0

       (3) 

                                                 
2 See Wang et al. (2004) for further discussion about the relationship between the OLS regression and quadratic 
programming. 
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In contrast to the OLS, CNLS allows the intercept and slope coefficients to vary from one firm to 

another. Similar to the random parameters models of the SFA literature (e.g., Tsionas, 2002; Greene, 

2005), there are n different slope vectors ′
iβ , i=1,…,n. Whereas the random parameters models 

estimate n different production functions of the same a priori specified functional form, the CNLS 

regression (3) estimates n tangent hyper-planes to one unspecified production function. The slope 

coefficients ′
iβ  represent the marginal products of inputs (i.e., the sub-gradients ∇ x( )nf ). The second 

constraint imposes concavity by applying of a system of inequality constraints known as “Afriat 

inequalities” (Afriat 1967, 1972; see Kuosmanen, 2006, for further discussion). The third constraint 

imposes monotonicity.  

The CNLS estimate of the production function is a piece-wise linear function that closely 

resembles the usual DEA frontiers (see Figure 1 below). Yet, the least-squares formulation (3) differs 

from the usual linear programming formulations of DEA (see e.g. Seiford and Thrall, 1990) in many 

notable respects. First, the usual DEA formulations solve a separate linear programming problem for 

each observed firm, whereas problem (3) solves the residuals ε̂  simultaneously for all firms (compare 

with Kuosmanen et al., 2006). Second, the standard DEA models resort to multiplicative efficiency 

measures defined on a relative (percentage) scale, whereas model (3) uses an additive, absolute-scale 

departure from the frontier in line with the SFA literature. Third, the usual DEA formulations provide only 

implicit representations of the production frontier, whereas model (3) explicitly characterizes the sub-

gradients of the production function. Finally, the most important difference is that while DEA has one-

sided inefficiency term, the CNLS model uses unrestricted residuals ε̂ .  

It is worth to note that if we impose in (3) an extra constraint ≤ε̂ 0  and interpret the residuals 

as inefficiency terms (as in the COLS method), we obtain the standard output-oriented variable returns-

to-scale (VRS) DEA model as a special case of (3) [see Appendix 1 for details]. Therefore, DEA is a 

deterministic special case of StoNED in the same way as COLS is a deterministic special case of MOLS 

in the SFA literature. 
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 Returning to the StoNED model, the CNLS regression provides us with the composite residuals 

ε̂  which consist of error and inefficiency. To disentangle these two components, we next apply the 

method of moments and calculate the second and third central moments of residual distributions: 

ε ε
=

= −∑ 2

2

1

ˆˆ( ( )) /
n

i i

i

m E n          (4) 

 ε ε
=

= −∑ 3

3

1

ˆˆ( ( )) /
n

i i

i

m E n .         (5) 

These moments are consistent estimators of the true moments µ µ2 3, , which depend on the variance of 

the inefficiency term and the error terms in the following manner 

 
π

µ σ σ
π

− 
= +  

2 2

2

2
u v           (6) 

 µ σ
π π

   
= −       

3

3

2 4
1 u  .         (7) 

Thus, the variances σ σ2 2,u v  are easily estimated based on the moments m2 and m3. The estimation is 

based on the skewness of the distribution of the compound disturbance ε , which is due to the 

inefficiency term. Thus, the third moment m3 should be negative. In practice, it can occur that the CNLS 

residuals are skewed in the wrong direction (m3 is positive), in which case the maximum likelihood 

estimate for the inefficiency term is û  = 0. According to Greene (1999, p. 105): “One might view this as 

a built-in diagnostic, since the phenomenon is likely to arise in a badly specified model or in an 

inappropriate application”. It can also occur that the skewness is so great that the σ̂ u  estimate obtained 

from (7) based on (5) is greater than m2 and thus σ̂ v  would be negative. In that case, Kumbhakar and 

Lovell (2000) suggest to use σ̂ v = 0 and attribute all variance to the inefficiency term. 

Given the variance estimates, we can use the conditional estimator for the inefficiency term. 

Jondrow et al. (1982) showed that the conditional distribution of inefficiency ui given ε̂ i  is a zero-
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truncated normal distribution with mean µ ε σ σ σ∗ = − +2 2 2ˆ /( )i u u v  and variance σ σ σ σ σ∗ = +2 2 2 2 2/( )u v u v . 

As a point estimator for ui one can use the conditional mean 

φ µ σ
ε µ σ

µ σ
∗ ∗

∗ ∗

∗ ∗

 −
= +  

− Φ − 

( / )
ˆ( )

1 ( / )
i iE u ,        (8) 

where  φ  is the standard normal density function, and Φ  is the standard normal cumulative distribution 

function. This conditional mean has an intuitive interpretation as the mode of the conditional distribution 

plus the standard deviation multiplied by the normal hazard function (the ratio in brackets). As an 

alternative point estimator one may use the mode of the conditional distribution, which is the minimum of 

µ∗  and zero. We can also derive intervals for the inefficiency term based on the conditional distribution 

(Horrace and Schmidt, 1996): a α−100(1 )  percent confidence interval is given by 

[ ]µ σ µ σ∗ ∗ ∗ ∗− − − −,L Uz z  where α µ σ−
∗ ∗= Φ − Φ1(1 ( / 2) ( / ))Lz  and 

α µ σ−

∗ ∗= Φ − − Φ1(1 (1 / 2) ( / ))Uz . 

 Using the parametrization by Aigner et al. (1977) with σ σ σ≡ +2 2 2

u v  and λ σ σ≡ /u v , the log-

likelihood function of the of the StoNED regression can be expressed as 

ε λ
σ λ π σ ε

σ σ= =

− 
= − + Φ −  

∑ ∑2 2

2
1 1

ˆ 1
ˆln ( , ) ln(2 / ) ln ln

2 2

n n
i

i

i i

n
L y n .    (9) 

The log-likelihood function is useful for testing additional constraints such as returns to scale (see 

Section 5 for details) using the likelihood ratio test. In principle, maximum likelihood estimation of the 

model parameters is possible, but the computational burden can be large compared to the method of 

moments. Statistical inference on other model parameters such as the marginal products iβ  is also 

possible (see Kuosmanen, 2006, for details).  

 We conclude this section by noting two critical remarks to the cross-sectional model. First, it is 

well known in the SFA literature that the conditional mean estimator for the inefficiency term ui is not 

statistically consistent (e.g., Greene, 1999). Second, the absolute levels of the inefficiency terms are 

driven by rather ad hoc assumptions about the functional form of the inefficiency distribution. As Ondrich 
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and Ruggiero (2001) point out, decomposition of the residual into inefficiency and error terms does not 

influence the relative efficiency rankings of the firms - whichever distribution is assumed. Thus, if we are 

interested in the relative efficiency of the firms, the CNLS residuals would be equally good indicators as 

the decomposed inefficiency terms. Both these problems arise from the fact that we try to disentangle 

inefficiency from the noise based on merely a single observation per firm. Therefore, resorting to a panel 

data can help to solve both these problems. We return to the panel data models in more detail in 

Section 4. But first, consider a simple numerical example. 

  

3. Simulation example 

This section illustrates the cross-sectional StoNED model by a simulated numerical example. We 

assume a sample of 100 firms who employ a concave single-input single-output technology. The input 

values of the firms were randomly sampled from Uni[1,11], and the efficient output levels were 

calculated using the production function y = ln(x) + 2. Subsequently, we subtracted from the efficient 

output level a random inefficiency term ∼
2

. .
(0,0.6 )i

i i d
u N  and a random error ∼

2

. .
(0,0.3 )i

i i d
v N , which 

results as the observed outputs. Figure 1 illustrates the observed sample by means of the scatter plot 

diagram. Figure 1 also shows the true production function assumed in the simulations (the broken line).  
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Figure 1: Scatter plot of the simulated data and the true production function (broken line) 

 

We next ran the CNLS regression (3), which gave the R2 value 0.887. From the distribution of 

the CNLS residuals we calculated the second and third moments m2 and m3 (see (4) and (5)) and 

estimated the standard deviations σ σ,u v  (see (6) and (7)). The estimated values σ =ˆ 0.574u , 

σ =ˆ 0.250v  come rather close to their true values (0.6 and 0.3). Based on these estimates, we 

calculated the conditional expected value for the firm-specific inefficiency using the Jondrow et al. 

(1982) result. The correlation coefficient between the estimated ( ˆiu ) and true inefficiencies ( iu ) was 

0.746 (rank correlation 0.683). We also used the expected value of the inefficiency distribution (derived 

by Aigner et al., 1977) E[u] = 0.458 to correct for the nonparametric CNLS estimate to obtain the 

StoNED production function estimate.  
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Figure 2 illustrates graphically the CNLS regression curve and the StoNED frontier. This figure 

shows how the CNLS regression estimates the central tendency by means of a piecewise linear function 

that consists of five different line segments; the number of line segments is endogenously determined in 

the model to maximize the empirical fit. The StoNED frontier function that takes into account the 

expected value of inefficiency comes very close to the true production function used in the simulation. 
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StoNED frontier

 

Figure 2: The CNLS regression curve and the StoNED frontier 

 

 We next computed the 95 percent confidence intervals for the StoNED frontier applying the 

results derived by Horrace and Schmidt (1996). Figure 3 plots the confidence intervals in the scatterplot 

of observation, together with the true frontier and the mean StoNED estimate. As can be seen from the 
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figure, the true frontier coincides within the confidence interval for the most parts of the frontier. The true 

output value fits within the 95 percent confidence interval for 86 percent of the observations. 
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Figure 3: 95 percent confidence intervals of the StoNED frontier. 

 

For comparison, we also considered the standard parametric MOLS procedure assuming the 

Cobb-Douglas production function. Running the OLS model (2) with the log-transformed data gave an 

R2 value of 0.917.3 The slope estimate 0.700 was statistically highly significant (p-value 0.000) and the 

intercept estimate 0.097 was almost significant (p-value 0.076). However, the residuals were too much 

skewed: the estimated σ 2ˆu (= 0.131) was much larger than the second moment of the residual 

                                                 
3
 This statistic is based on the log-transformed data and is hence not directly comparable with the R2 of the CNLS 
regression. 
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distribution m2 (=0.033), which leaves a negative value for σ̂ v . The usual approach to resolve this 

inconsistency is to assign a very small value for σ̂ v  (here 0.001) and estimate σ 2ˆu  based on the 

second moment m2. This gives σ
2ˆu = 0.008.  
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0 1 2 3 4 5 6 7 8 9 10 11
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true f

Cobb-Douglas OLS

Cobb-Douglas MOLS

 

Figure 4: Illustration of the Cobb-Douglas production function estimated with the OLS and MOLS. 

 

Figure 4 illustrates the OLS and MOLS estimates of the Cobb-Douglas production function. The 

Cobb-Douglas function appears too inflexible to model the curvature of the true production function in 

this case: the log-transformation of input and output still leaves a non-linear relationship between the 

variables. This results as heteroskedasticity in residuals, and may also contribute to the too high 

skewness that contradicts method of moments variance estimators. Note that the MOLS correction that 

uses a multiplicative inefficiency term makes the MOLS frontier steeper than the OLS curve. 
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Finally, we tried the MOLS estimation with the translog specification for the production function. 

This gave the R2 value of 0.917 which is exactly the same as that of the Cobb-Douglas model. All 

parameter estimates (intercept -0.177 (p-value 0.027); slope of lnx 1.210 (p-value 0.000); slope of (lnx)2 

-0.185 (p-value 0.000)) were statistically significant. However, also in the translog case the residuals 

were too skewed: the estimated σ 2ˆu (= 0.120) was much larger than the second moment of the residual 

distribution m2 (=0.027), which leaves a negative value for σ̂ v . Again, we resolve this inconsistency by 

assigning a very small value for σ̂ v  (0.001) and estimating σ 2ˆu  based on the second moment m2. This 

gives σ 2ˆu = 0.006.   
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Translog OLS
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Figure 5: Illustration of the translog production function estimated with the OLS. 
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Figure 5 illustrates the OLS and MOLS estimates of the translog production function. Translog 

proves more flexible than the Cobb-Douglas in following the curvature of the true production function. 

However, the method of moments estimator σ 2ˆu  underestimates the magnitude of inefficiency even 

though we assign all of the residual variance to the inefficiency term. Consequently, the expected MOLS 

frontier falls considerably below the true production function in particular at low input levels. 

In conclusion, the StoNED model worked remarkably well in this simple example. This is in line 

with the more extensive simulation results by Kuosmanen (2006), which compared the performance of 

the CNLS regression with that of the OLS (assuming Cobb-Douglas and translog functions) in nine 

alternative scenarios, and found CNLS to be more robust than the parametric approach. While these 

simulation results are promising and suggest a great potential for the approach, they do not guarantee 

good performance in all settings. In particular, as the number of input variables increases, ever larger 

sample sizes are necessary to counter the curse of dimensionality associated with the nonparametric 

approaches.  

 

4. Panel data models 

In this section we assume a balanced panel data covering T time periods indexed by subscript t. 

Extensions to unbalanced data are straightforward and will not be discussed herein. Observing each 

firm T times provides additional information that can be helpful for efficiency estimation (see e.g. 

Kumbhakar and Lovell, 2000). The possibilities to exploit this information in the StoNED panel model will 

be explored next.     

 

4.1 Freely varying efficiency and technology 

The DEA treatments typically choose to ignore the panel structure even if it is available (a notable 

exception is Ruggiero, 2004). Indeed, one could treat each time period as a unique and independent 

cross-section, and proceed with estimation as described in Section 2. This approach does not impose 
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any structure on the inter-temporal changes in the production function (i.e., technical progress or 

regress) or efficiency – they both can vary freely from one period to another. This might be a desirable 

feature when the model results are used for estimating and decomposing total factor productivity growth 

using the Malmquist productivity indices. However, the problems of the cross-sectional model noted 

above (i.e., inconsistency of inefficiency estimator, dependence on the parametric assumptions) remain. 

To circumvent these problems, one might impose additional structure on the dynamic patterns of 

technical progress of efficiency changes. 

 

4.2 Constant efficiency and technology 

The opposite extreme is to assume that both the production technology and the efficiency levels remain 

constant over time; these assumptions give rise to the basic fixed effects treatment in the SFA literature. 

In the StoNED framework, constant efficiency and technology facilitate a fully nonparametric estimation 

of efficiency: we can relax the assumption about half-normally distributed inefficiency. We can write the 

fixed effects panel data variant of the CNLS model (3) as follows:          

α

α

α

= =

′= + − + ∀ = ∀ =

′≤ + − + ∀ = ∀ =

′ ≥ ∀ =

∑∑ 2

, , ,
1 1

min

. . 

  1,..., ; 1,...,

 , 1,..., ;  , 1,...,

 1,...,

i i

T n

it

t I

it it it it i it

hs it it hs h hs

i

v

s t

y u v i n t T

y u v h i n s t T

i n

β u v

β x

β x

β 0

     (10) 

This least-squares problem minimizes the sum of squares of the error terms vit, and treats the one-sided 

inefficiency term ui as a firm-specific constant. Note that the coefficients α ,it itβ  are specific to each firm 

and period; the variable parameter models in the SFA literature impose firm-specific coefficients that do 

not change over time. In contrast to the fixed effects OLS model, we cannot incorporate the inefficiency 

term to the varying intercept. Nevertheless, the absolute levels of inefficiency terms are not identifiable: 

any increase in iu  can be offset by a parallel increase of α it  intercepts for all t = 1,...,T.  
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The standard Gabrielsen-Greene approach (Gabrielsen, 1975; Greene, 1980) uses the 

benchmark value of zero for the most efficient firm in the sample and normalize the inefficiency terms as  

 = −ˆ mini i h
h

u u u .          (11) 

A weakness of this additive, absolute-scale normalization is that it does not take into account the 

magnitude of inefficiency relative to the output size. As an alternative approach we propose to normalize 

the Shephard output distance function (or the inverse of the Farrell efficiency measure) to be less than 

or equal to one using 

 
[ ]

+
=

+

ˆ ˆ( )
( , )

ˆ ˆmax ( )

o it it i
t it it

ht ht h
h

y y u
D y

y y u
x ,       (12) 

where = −ˆ  it it ity y v  denotes the fitted output values. Note that the two normalizations can yield 

different results.4 We prefer the latter approach that proportions the inefficiency term to the fitted output 

level, and thus adjusts for possible differences in the firm size.   

The main advantages of the constant efficiency approach include the fully nonparametric 

treatment of inefficiency (i.e., no assumption about its distribution is needed) and the statistical 

consistency of the inefficiency estimator. The main disadvantage of the approach is that it does not 

allow for inter-temporal changes in efficiency levels or production technology. The approach can be very 

useful for applications involving high-frequency (i.e., weekly, monthly) data over a relatively short time 

span, but in long panels the assumptions of constant efficiency and technology seem untenable.   

 

4.3 Polynomial model of efficiency or technical change  

Instead of a constant inefficiency term ui, one could specify the inefficiency term as a polynomial 

function of time (ui(t)). In the SFA literature, the most commonly used functional forms are the linear 

                                                 
4
 The following numerical example illustrates. Assume three firms with outputs y1=1, y2=10, and y3=100, and let u1=0.5, u2=2, 

and u3=5. Thus, using additive normalization we have
1û =0, 

2û =1.5, and 
3û =4.5. By contrast, using the proportional 

normalization (assuming errors v are zero), we obtain y1/( y1+ u1)=2/3, y2/( y2+ u2)=5/6, and y3/( y3+ u3)=100/105, and thus 
D1=0.7, D2=0.875, and D3=1. 
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( = +( )i i iu t a b t ) and quadratic ( = + + 2( )i i i iu t a b t c t ) [e.g., Cornwell et al., 1990]. Technically, these 

variants can be directly inserted to the CNLS problem (10) in the place of constant ui. The output 

distance function estimates relative to the benchmark technology of period s can be subsequently 

calculated similar to (12) as 

[ ]
+

=
+

ˆ ˆ( ( ))
( , )

ˆ ˆmax ( ( ))

o it it i
s it it

hs hs h
h

y y u t
D y

y y u s
x .       (13) 

Provided that the semiparametric specification of efficiency term is appropriate, the approach provides 

consistent estimates and does allow for inter-temporal changes in efficiency. Note that the case of 

constant efficiency and technology described in Section 3.2 is a special case of this model.  

This semiparametric specification also features Hicks neutral technical progress (or regress) 

which preserves the shape of the input isoquants. One can use the output distance function (13) for 

calculating the Malmquist productivity index and its components using the standard formulas (see e.g. 

Färe et al., 1994). Hicks neutrality implies that the rate of technical change is uniform across all firms but 

varies over time. Efficiency changes can vary both across firms and across time periods.  

 

4.4 Rolling window analysis  

Rolling window analysis is one of the few panel data techniques known in the DEA literature (e.g., 

Asmild et al., 2004). The main idea is simple: the technology of period t is estimated using a cross-

sectional model with data that includes observations from periods [t - w/2, t + w/2] where w is the 

window length. The main appeal of the rolling window approach is that it does not impose any limitations 

on technical progress (regress) or changes in efficiency over time; it can also capture biases in 

technological progress. Its main drawback is its ad hoc nature. If the rate of technical progress is 

speedy, then including observations from multiple time periods in the same sample can bias the 

estimates. For example, the assumptions of the stochastic component such as independence and 

identical distribution of the noise term are likely violated. While in DEA the inefficient observations do not 
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influence the shape of the frontier, the StoNED model is similar to SFA in that all observations count. 

The rolling window approach may be a useful approach for smoothing random temporary fluctuations in 

applications where technical progress occurs relatively slowly (consider e.g. agriculture).  

     

5. Extensions 

5.1 Returns to scale 

All models presented thus far exhibit variable returns to scale. In many applications it is meaningful to 

impose constant or non-increasing returns. Imposing further structure on returns to scale is relatively 

straightforward in the StoNED framework. We only need to add the following constraints to the intercept 

term of the relevant CNLS regression:    

• constant returns to scale (CRS): α = ∀ =0 1,...,i i n  

• non-increasing returns to scale (NIRS): α ≥ ∀ =0 1,...,i i n  

• non-decreasing returns to scale (NDRS): α ≤ ∀ =0 1,...,i i n  

In the CRS case one can delete the intercept term α( )i  altogether.  

 

5.2 Multiple outputs 

Thus far we have restricted to the single-output setting. One important strength of the DEA is its ability 

to handle joint production of multiple outputs. In the SFA and StoNED frameworks, multiple outputs can 

be handled by means of distance functions. For generality, consider the directional distance function 

(Chambers et al., 1996, 1998) that encompasses almost all known distance metrics as its special cases. 

The directional distance function is defined as  

{ }δ δ δ= − + ∈( , ; , ) sup ( , )x y x yDD Tx y g g x g y g .     (14) 

where T denotes a closed and compact production possibility set and ≥( , )x yg g 0  is an ex ante 

specified direction vector that defines the projection path to the frontier (e.g., setting =( , )x yg g ( , )0 y , 
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we obtain the Shephard output distance function as +1 ( , ; , )DD x y 0 y ). As Chambers et al. (1998) have 

shown, the directional distance function has an equivalent dual formulation as  

{ }
∗ ∗

∗ ∗ ∗ ∗

≥

′ ′ ′= − − − − ∈ + =
( , )
( , )

( , ; , ) inf ( ' ) ( ' ) ( , ) ; ' 1x y x yDD T
x y
ω ρ 0

x y g g ρ y ω x ρ y ω x x y ρ g ω g , (15) 

where vectors ( , )ω ρ  represent the shadow prices of inputs and outputs. This dual formulation proves 

useful for estimation within the StoNED framework. 

 Since the distance to the frontier depends on both inefficiency and noise, a common approach 

is to specify the value of the distance function as a stochastic composite residual  δ = −i i iv u  that is 

subsequently decomposed to inefficiency term > 0iu  and idiosyncratic error iv . Thus, we can apply 

the method of moments estimation described in Section 2. In the case of the directional distance 

function, the CNLS regression can be written as 

δ

δ δ

=

′ ′ ′ ′− ≥ − − − ∀ =

′ ′+ = ∀ =

′ ′ ≥ ∀ =

∑ 2

, ,
1

min

. . 

( ) ( ) , 1,...,

1 1,...,

( , )  1,...,

n

i

I

i h i h i h i i i i

i y i x

i i

s t

h i n

i n

i n

ρ ω ε

ρ y ω x ρ y ω x

ρ g ω g

ρ ω 0

      (16) 

This quadratic programming problem minimizes the square-sum of the composite residuals, subject to 

the constraints derived from the dual expression (15). Further details of the derivation are presented in 

Appendix 2. The decomposition of the composite residual into the inefficiency and error terms is 

subsequently conducted as described in Section 2. 

 

5.3 Multiplicative errors 

Thus far we have applied an additive specification of the composite error following the standard model 

of errors in variables. This specification implicitly assumes that the error variance is independent on the 

firm size. Violations of this assumption may show up as heteroskedasticity across different sized firms. 
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Such heteroskedasticity may be alleviated by assuming a multiplicative error structure. Note that the 

SFA literature typically postulates a multiplicative error structure of form  

ε= ⋅ =( ) exp , 1,...,i

i iy f i nx   ,        (17) 

which is converted to the additive form by taking logarithms of both sides of the equation. For our 

purposes, it is more convenient to use the following multiplicative specification 

ε −= ⋅ − =1( ) (1 ) , 1,...,i i iy f i nx   ,         (18) 

which can be equivalently expressed as ε− =(1 ) ( ),i i iy f x  and further ε= +( ) ,i i i iy f yx . Thus, the 

cross sectional model can be estimated with the multiplicative error specification by running the 

following CNLS regression  

ε

α ε

α ε

=

′= + + ∀ =

′≤ + + ∀ =

′ ≥ ∀ =

∑ 2

ˆ, ,
1

ˆmin

. . 

ˆ  1,...,
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 1,...,

i

n

i

I

i i i i i i

h i i h h h

i

s t

y y i n

y y h i n

i n

α β ε

β x

β x

β 0

       (19) 

and applying the method of moments to decompose the composite residuals. 

 

5.4 Firm characteristics and environmental variables 

It is popular to estimate the impact of the firm characteristics and environmental factors on the firm 

efficiency in a parametric or semi-parametric fashion (e.g., Wang and Schmidt, 2002; and Simar and 

Wilson, 2006). Such estimation can be easily incorporated into the present StoNED framework. Denote 

the vector of environmental variables by z, which may include binary dummy variables as its elements. 

Suppose for simplicity that the environmental variables have a linear effect on efficiency as 

 = +( ) 'i i i iu uz γ z          (20) 
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where ui is a firm-specific random variable and multipliers γ  describe the efficiency impacts of the 

environmental variables, which are assumed to be uniform across all firms. Thus, the model to be 

estimated can be written as     

ε= − + + = + + =( ) ( ' ) ( ) ' , 1,...,i i i i i i i iy f u v f i nx γ z x γ z   .     (21) 

Since the functional form of the production function f is unknown but the effects of the environmental 

variables are assumed to linear and common across all firms, we can resort to a semi-parametric 

version of the cross-sectional CNLS regression. This regression model can be written as  

α
ε

α ε

α ε

=

′ ′= + + + =

′ ′≤ + + + =

′ ≥ =
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 for all 1,...,

n n
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s t

y i n

y h i n

i n

β ε

β x γ z

β x γ z

β 0

       (22) 

In this model, the parameters α ,i iβ  describing the production function are specific to each firm i, 

whereas the coefficients γ  describing the effects of environmental variables are uniform across firms. 

Given the optimal solution to problem (22), the composite residuals can be decomposed as described in 

Section 2.  

The linear specification of the environmental variables was presented here for sake of example; 

nonlinear and multiplicative effects of environmental variables can also be modeled in the semi-

parametric fashion in the StoNED framework. Nonlinear effects of environmental variables could be 

modeled directly analogous to the treatments of nonlinear polynomial time trends (Section 4.3). 

Multiplicative effects of the environmental variables could be treated similar to the multiplicative errors 

(Section 5.3). 

 

5.5 Cost functions 

Duality theory has established that the production technology can be equivalently modeled by monetary 

representations. The most popular dual representation is the cost function, formally defined as 
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{ }′= =( , ) min ( )C y f y
x

w w x x ,         (23) 

where w denotes the exogenously given input price vector. The cost function gives the minimum cost of 

producing a given target output at given input prices. It is non-negative, non-decreasing, homogenous of 

degree one, concave and continuous in prices w (Kuosmanen, 2003; Theorem 3.3). These known 

properties provide a sound rationale for the nonparametric estimation. 

 The observed costs Ci  (i = 1,…,n) differ from the cost function due to stochastic term (ε i ) which 

is the sum of the inefficiency term (ui) and the noise term (vi), that is, 

  ε= + = + +( , ) ( , )i i i i i i i iC C y C y u vw w .       (24) 

Maintaining the stochastic assumptions of Section 2, the cross-sectional cost frontier can be estimated 

analogous to the production function procedure. The cost based CNLS problem can be written as 

α
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β ε
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       (25) 

where coefficients χ i  represent the marginal cost of output, coefficients iβ  indicate the marginal cost of 

input prices (which depends on the input substitution possibilities), and intercepts α i  have an 

interpretation as the fixed cost. The composite residual can be decomposed along the lines described in 

Section 2. Note the changed sign of the inefficiency component and the direction of skewness. The 

interpretation of the inefficiency term also changes: it here represents (overall) cost efficiency that 

captures both technical and allocative efficiency. Extending the cost function estimation to multi-output 

settings is straightforward; the cost function provides another useful way to handle multi-output 

technologies.    
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6. Application: productive efficiency in the wholesale and retail trade sector  

6.1 Motivation and setup 

The purpose of this section is to illustrate the application of the StoNED model in a real-world data and 

show how the various tools and extensions discussed in Sections 4 and 5 can be combined together. 

The present application uses the industry-level data of the wholesale and retail trade sectors in thirteen 

OECD countries.5 A balanced panel of industry level data for the period 1975-2003 was collected from 

the OECD’s Structural Analysis database STAN (http://www.oecd.org). The list of countries 

(abbreviation) is the following: Austria (AUT), Canada (CAN), Denmark (DEN), Finland (FIN), France 

(FRA), Germany (GER, 1975-1990 West Germany), Italy (ITA), Netherlands (NLD), New Zealand (NZL), 

Norway (NOR), Portugal, Sweden (SWE), and United Kingdom (GBR), and United States (USA). We 

will henceforth refer to the trade sector of a specific country by these three-letter abbreviations.  

The input and output variables are the following 

Output: gross sales (y) (in Bill. €, prices of 2000)  

Inputs: 1) gross capital stock (K) (in Bill. €, prices of 2000),6  

2) labor (L) (Bill. hours),7  

3) intermediate inputs (M) (Bill. €, prices of 2000). 

Table 2 illustrates the data by providing the output and input values for all countries in years 

1975, 1990, and 2003. The data shows that the trade sector has grown fast in all countries during this 

29 year period. USA is the largest sector, while GBR overtook GER as the second largest. 

 

 

 

                                                 
5 This industry classification covers the ISIC codes 51-52. Data for Canada, Sweden, and New Zeeland also include ISIC 
code 50 (the sale and repair of motor vehicles and the retail sale of fuels). 
6 For Austria, West Germany, Italy, Netherlands, Norway, Portugal, and Sweden, the capital stock was estimated based on 
the data of gross fixed capital formation using the perpetual inventory method assuming 8% depreciation rate.    
7 The labor hours were estimated based on the employment data (full-time equivalents) for the following countries: Austria, 
Germany, Italy, Portugal, United Kingdom.  
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Table 2: Output and input data for 1975, 1990, and 2003 
 output labor (L) capital (K) interm. inputs (M) 

 1975 1990 2003 1975 1990 2003 1975 1990 2003 1975 1990 2003 

AUT 8.5 23.3 38.8 690.7 754.5 812.2 8.8 14.2 22.7 2.6 8.8 16.8 

CAN 19.0 72.7 143.4 2996.5 4231.5 5024.5 22.3 33.2 67.6 3.9 19.7 52.3 

DEN 6.3 20.5 33.5 596.6 522.6 545.8 24.0 31.2 41.3 2.0 8.1 15.0 

FIN 2.6 11.4 20.0 519.6 487.3 427.9 13.3 21.1 21.0 1.0 4.1 8.9 

FRA 32.9 123.3 171.1 1292.2 1423.3 1729.3 74.9 151.2 225.0 11.5 37.4 57.6 

GBR 47.7 133.5 314.1 2430.0 2763.6 3225.2 75.9 149.6 270.5 16.9 57.0 152.5 

GER 74.2 165.4 249.5 3515.2 4399.2 5642.0 50.7 89.3 249.5 25.6 62.9 105.4 

ITA 10.9 112.1 217.8 3417.4 4320.2 4415.3 46.1 110.9 183.1 3.6 37.3 88.0 

NLD 16.1 42.2 74.9 921.7 1140.1 1412.0 13.3 25.2 45.5 5.4 14.9 30.1 

NZL 2.5 12.7 21.3 330.8 1680.8 2532.0 5.0 7.1 8.2 1.3 7.0 10.7 

NOR 4.1 14.3 25.6 356.3 364.7 370.8 4.6 14.3 13.2 1.4 5.8 11.9 

POR 0.6 10.0 21.7 2576.9 3090.7 3680.2 1.7 6.0 18.3 0.2 4.0 10.4 

SWE 5.8 25.1 37.3 982.8 996.3 911.5 4.1 13.5 26.3 2.7 9.6 12.7 

USA 375.2 1051.5 1968.1 18735.8 28340.4 33930.5 243.8 701.8 3575.7 128.5 332.2 603.7 

 

6.2 Model specification  

Our preliminary data analysis showed the sample size to be too small for a meaningful cross-sectional 

estimation. For example, the standard DEA models identify 10-13 efficient sectors out of 14 depending 

on year and the model assumptions. On the other hand, the time horizon spans 29 years so it is 

necessary to account for technical progress. For these reasons, we resort to a semi-parametric model 

where the production technology is modeled in nonparametric fashion and Hicks neutral technical 

change is modeled by including a quadratic trend as discussed in Section 3.3. Constant returns to scale 

were postulated to assess small and large sectors against the same benchmark. We first estimated the 

model using the additive error specification, but this resulted in major heteroskedasticity across sectors. 

Given the vast differences in the sizes of the sectors (as seen in Table 1), a multiplicative error structure 

(discussed in Section 4.3) was found to be more appropriate. Thus, our preferred model is described by 

the following least squares problem   
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The coefficients β  characterize a common CRS production function. The quadratic sector-specific time 

trend within the brackets describes the Hicks neutral technical progress; exceeding the growth rate of 

the frontier countries is interpreted as catching up. Finally, the error terms v are multiplied by the 

corresponding output values to model errors proportional to the output level. The GAMS code used for 

solving problem (25) is presented in the Appendix 3. 

 

6.3 Results 

The StoNED model (25) gave a good empirical fit: the R2 statistic was as high as 0.999 and log-

likelihood value -2772.51. The large value of the R2 statistic (almost 1) is due to the fact that there are 

large differences in the output sizes of the sectors (e.g., output of FIN is only about 1% of that of USA), 

and the input use and the time trend explain most of the variation in the output. The total monetary 

value of the residuals amounts to 6.7 Mill. Euro, which is a considerable amount of money in absolute 

sense, but of minuscule scale compared to the variation in the output size.   

Note that the marginal product (MP) estimates (β β β, ,L K M  coefficients) of the StoNED model 

are specific to each country and year. To provide further insight to the working of the model, we report 

the complete set of MP coefficients in Tables 3-5 for all observations.  

The MP of labor has increased over time in almost all countries. This is an expected result as 

the capital stock has increased considerably. Compared with the hourly wage rates, the MPs are 

generally of the right magnitude, although the values for FRA and GBR appear unrealistically high and 

values of NZL and POR too low. Note however that these shadow prices need not be unique; the same 

applies to the input-output multipliers in the standard DEA models. 
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Table 3: Marginal product of labor (βL , €/hour), StoNED regression (25) 

year AUT CAN DEN FIN FRA GBR GER ITA NED NOR NZL POR SWE USA 

1975 6,8 2,0 6,8 6,8 11,5 8,4 8,5 2,0 7,3 6,8 6,8 0,0 2,8 7,6 

1976 6,8 2,0 6,8 6,8 13,1 8,4 8,5 6,8 7,6 6,8 6,9 0,0 2,8 7,6 

1977 6,9 4,0 11,5 6,8 13,1 8,4 8,5 6,8 7,7 6,9 6,8 0,0 2,8 7,7 

1978 6,9 4,0 11,5 6,8 13,1 8,8 8,5 6,8 8,5 6,9 6,8 0,0 2,3 8,5 

1979 7,1 4,0 11,5 6,8 13,1 11,6 8,5 6,8 8,5 6,9 7,1 0,0 2,3 8,5 

1980 7,3 4,0 11,5 6,8 13,1 12,9 8,6 6,8 8,5 6,9 6,9 0,0 2,3 8,5 

1981 7,3 4,0 11,5 6,8 13,1 13,1 8,6 6,8 8,5 6,9 2,8 0,0 2,3 8,5 

1982 7,7 4,0 11,5 6,8 13,1 13,1 8,6 6,8 8,5 6,9 2,8 0,0 2,3 7,7 

1983 7,7 4,0 12,9 6,8 13,1 13,1 8,6 6,8 8,5 8,8 2,8 0,1 2,3 7,7 

1984 8,5 4,0 13,1 6,8 13,1 16,8 8,6 6,8 8,6 12,4 2,3 0,0 2,3 8,5 

1985 8,5 4,0 13,1 6,8 13,1 16,8 10,4 6,9 10,4 12,4 2,3 0,0 7,7 8,5 

1986 8,5 4,0 13,1 10,2 13,1 16,8 8,5 6,9 13,8 12,4 2,3 0,0 7,7 10,5 

1987 8,5 4,0 13,1 11,5 13,1 19,7 8,6 6,9 13,8 12,4 2,3 0,1 7,7 10,1 

1988 8,5 4,0 13,1 11,5 13,1 19,9 10,4 6,9 13,8 12,5 2,3 0,2 8,5 10,1 

1989 8,6 7,1 13,1 11,5 13,1 19,9 10,4 8,8 13,8 16,8 2,3 0,0 8,5 11,8 

1990 8,6 7,7 13,1 11,5 13,1 19,9 10,4 11,3 13,8 16,8 2,3 0,0 8,6 11,7 

1991 8,6 7,7 13,1 13,1 19,9 19,9 17,4 12,4 13,8 19,9 2,3 0,0 8,6 11,9 

1992 13,8 7,7 13,1 13,1 19,3 19,9 17,4 12,4 13,8 19,9 2,3 1,1 8,5 11,9 

1993 13,8 7,7 13,1 13,1 59,7 19,9 17,4 12,5 13,8 19,9 2,3 0,3 8,5 11,9 

1994 13,8 7,7 14,9 13,1 18,5 19,9 17,4 12,5 13,8 19,9 1,1 1,1 8,5 16,0 

1995 13,8 7,7 16,8 13,1 59,7 19,9 19,9 17,4 13,8 19,9 1,1 2,3 8,5 13,8 

1996 13,8 7,7 16,8 13,1 59,7 19,9 17,7 16,8 13,8 19,9 1,1 2,8 8,5 17,4 

1997 13,8 7,7 19,9 13,1 59,7 19,9 19,9 19,9 13,8 19,9 1,1 2,8 8,5 16,8 

1998 13,8 7,7 19,9 16,8 59,7 19,9 19,9 19,9 13,8 19,9 1,1 2,3 11,7 13,1 

1999 13,8 7,7 19,9 16,8 59,7 19,9 19,9 19,9 13,8 22,3 1,1 2,8 11,7 13,1 

2000 13,8 8,5 19,9 19,9 59,7 19,9 19,9 19,9 13,8 13,0 3,8 2,8 11,8 13,1 

2001 11,7 8,5 19,9 19,9 59,7 59,7 19,9 19,9 17,4 16,2 1,1 2,8 11,9 13,1 

2002 16,5 9,3 19,9 19,9 59,7 59,7 19,9 19,9 19,9 30,3 1,1 2,8 13,8 13,1 

2003 16,5 10,4 19,9 19,9 59,7 59,7 19,9 19,9 19,9 30,3 1,1 2,4 13,8 13,1 

 

The estimated MPs of capital are low for most observations; even zero values are common. 

Since the MP of one would be consistent with long-run profit maximization, a low MP suggests that the 

sector has over-invested in capital inputs. Only NZL and POR had MPs significantly greater than one, 

which indicates under-investment. Note the strong negative correlation between the MPs of labor and 

capital: the Pearson correlation coefficient between the two MP series is -0.42.      

 

 

 

 

 



 29 

Table 4: Marginal product of capital (βK ), StoNED regression (25) 

year AUT CAN DEN FIN FRA GBR GER ITA NED NOR NZL POR SWE USA 

1975 0,10 0,37 0,10 0,10 0,00 0,07 0,41 0,37 0,34 0,10 0,10 0,42 0,78 0,40 

1976 0,10 0,37 0,10 0,10 0,00 0,07 0,41 0,10 0,38 0,10 0,10 0,47 0,78 0,40 

1977 0,10 0,30 0,00 0,10 0,00 0,07 0,41 0,10 0,37 0,10 0,10 0,47 0,78 0,37 

1978 0,10 0,30 0,00 0,10 0,00 0,08 0,41 0,10 0,41 0,10 0,10 0,47 1,48 0,41 

1979 0,22 0,30 0,00 0,10 0,00 0,08 0,41 0,10 0,41 0,10 0,33 0,51 1,48 0,41 

1980 0,34 0,30 0,00 0,10 0,00 0,00 0,42 0,10 0,41 0,10 0,33 0,55 1,48 0,41 

1981 0,34 0,30 0,00 0,10 0,00 0,00 0,42 0,10 0,41 0,10 0,78 0,55 1,48 0,41 

1982 0,37 0,30 0,00 0,10 0,00 0,00 0,42 0,10 0,41 0,10 0,78 0,53 1,48 0,37 

1983 0,37 0,30 0,00 0,10 0,00 0,00 0,42 0,10 0,41 0,08 0,78 0,57 1,48 0,21 

1984 0,41 0,30 0,00 0,10 0,00 0,16 0,42 0,10 0,42 0,15 1,48 0,66 1,48 0,41 

1985 0,41 0,30 0,00 0,10 0,00 0,16 0,61 0,10 0,61 0,15 1,48 0,66 0,45 0,41 

1986 0,41 0,30 0,00 0,03 0,00 0,16 0,41 0,10 0,36 0,15 1,48 0,66 0,45 0,29 

1987 0,41 0,30 0,00 0,00 0,00 0,20 0,42 0,10 0,36 0,15 1,48 0,57 0,45 0,32 

1988 0,41 0,30 0,00 0,00 0,00 0,20 0,61 0,10 0,36 0,16 1,48 0,65 0,48 0,32 

1989 0,42 0,33 0,00 0,00 0,00 0,20 0,61 0,08 0,36 0,16 1,48 0,97 0,48 0,24 

1990 0,42 0,45 0,00 0,00 0,00 0,20 0,61 0,08 0,36 0,16 1,48 1,62 0,42 0,29 

1991 0,41 0,45 0,00 0,00 0,20 0,20 0,25 0,15 0,36 0,20 1,48 2,70 0,42 0,24 

1992 0,36 0,45 0,00 0,00 0,01 0,20 0,25 0,15 0,36 0,20 1,48 2,02 0,41 0,24 

1993 0,36 0,45 0,00 0,00 0,00 0,20 0,25 0,17 0,36 0,20 1,48 0,58 0,41 0,24 

1994 0,36 0,45 0,08 0,00 0,00 0,20 0,25 0,17 0,36 0,20 2,02 2,02 0,41 0,18 

1995 0,36 0,45 0,16 0,00 0,00 0,20 0,20 0,25 0,36 0,20 2,02 0,51 0,41 0,36 

1996 0,36 0,45 0,16 0,00 0,00 0,20 0,17 0,16 0,36 0,20 2,02 0,78 0,41 0,25 

1997 0,36 0,45 0,20 0,00 0,00 0,20 0,20 0,20 0,36 0,20 2,02 0,78 0,41 0,16 

1998 0,36 0,45 0,20 0,16 0,00 0,20 0,20 0,20 0,36 0,20 2,02 1,48 0,29 0,00 

1999 0,36 0,45 0,20 0,16 0,00 0,20 0,20 0,20 0,36 0,31 2,02 0,78 0,29 0,00 

2000 0,36 0,41 0,20 0,20 0,00 0,20 0,20 0,20 0,36 1,00 2,14 0,78 0,29 0,00 

2001 1,05 0,41 0,20 0,20 0,00 0,00 0,20 0,20 0,25 0,90 2,02 0,78 0,30 0,00 

2002 0,34 0,59 0,20 0,20 0,00 0,00 0,20 0,20 0,20 0,50 2,02 0,78 0,36 0,00 

2003 0,34 0,61 0,20 0,20 0,00 0,00 0,20 0,20 0,20 0,50 2,02 0,51 0,36 0,00 

 

  The MPs of intermediate inputs have decreased over time in most sectors, USA being a 

notable exception. Again, the value of one would be consistent with the long-run profit maximization. In 

most countries, the under-utilization of intermediate inputs in the 1970s and 1980s has changed to over-

use of intermediate inputs in the 1990s. 
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Table 5: Marginal product of intermediate inputs (βM ), StoNED regression (25) 

year AUT CAN DEN FIN FRA GBR GER ITA NED NOR NZL POR SWE USA 

1975 2,20 3,38 2,20 2,20 2,00 2,06 1,17 3,38 1,48 2,20 2,20 4,61 1,78 1,30 

1976 2,20 3,38 2,20 2,20 1,81 2,06 1,17 2,20 1,37 2,20 2,18 4,32 1,78 1,30 

1977 2,18 2,38 2,00 2,20 1,81 2,06 1,17 2,20 1,37 2,18 2,20 4,32 1,78 1,37 

1978 2,18 2,38 2,00 2,20 1,81 2,00 1,17 2,20 1,17 2,18 2,20 4,32 0,92 1,17 

1979 1,83 2,38 2,00 2,20 1,81 1,66 1,17 2,20 1,17 2,18 1,55 4,07 0,92 1,17 

1980 1,48 2,38 2,00 2,20 1,81 1,83 1,14 2,20 1,17 2,18 1,60 3,93 0,92 1,17 

1981 1,48 2,38 2,00 2,20 1,81 1,81 1,14 2,20 1,17 2,18 1,78 3,93 0,92 1,17 

1982 1,37 2,38 2,00 2,20 1,81 1,81 1,14 2,20 1,17 2,18 1,78 3,95 0,92 1,37 

1983 1,37 2,38 1,83 2,20 1,81 1,81 1,14 2,20 1,17 2,00 1,78 3,70 0,92 1,78 

1984 1,17 2,38 1,81 2,20 1,81 1,03 1,14 2,20 1,14 1,37 0,92 3,59 0,92 1,17 

1985 1,17 2,38 1,81 2,20 1,81 1,03 0,69 2,19 0,69 1,37 0,92 3,59 1,21 1,17 

1986 1,17 2,38 1,81 2,03 1,81 1,03 1,17 2,18 0,81 1,37 0,92 3,59 1,21 1,22 

1987 1,17 2,38 1,81 2,00 1,81 0,76 1,14 2,19 0,81 1,37 0,92 3,70 1,21 1,19 

1988 1,17 2,38 1,81 2,00 1,81 0,74 0,69 2,18 0,81 1,36 0,92 3,40 1,06 1,19 

1989 1,14 1,55 1,81 2,00 1,81 0,74 0,69 2,00 0,81 1,03 0,92 3,04 1,06 1,21 

1990 1,14 1,21 1,81 2,00 1,81 0,74 0,69 1,70 0,81 1,03 0,92 2,03 1,14 1,10 

1991 1,15 1,21 1,81 1,81 0,74 0,74 0,79 1,37 0,81 0,74 0,92 0,47 1,14 1,21 

1992 0,81 1,21 1,81 1,81 1,55 0,74 0,79 1,37 0,81 0,74 0,92 0,73 1,17 1,21 

1993 0,81 1,21 1,81 1,81 0,18 0,74 0,79 1,32 0,81 0,74 0,92 3,48 1,17 1,21 

1994 0,81 1,21 1,44 1,81 1,61 0,74 0,79 1,32 0,81 0,74 0,73 0,73 1,17 1,04 

1995 0,81 1,21 1,03 1,81 0,18 0,74 0,74 0,79 0,81 0,74 0,73 2,45 1,17 0,81 

1996 0,81 1,21 1,03 1,81 0,18 0,74 0,94 1,03 0,81 0,74 0,73 1,78 1,17 0,79 

1997 0,81 1,21 0,74 1,81 0,18 0,74 0,74 0,74 0,81 0,74 0,73 1,78 1,17 1,03 

1998 0,81 1,21 0,74 1,03 0,18 0,74 0,74 0,74 0,81 0,74 0,73 0,92 1,10 1,81 

1999 0,81 1,21 0,74 1,03 0,18 0,74 0,74 0,74 0,81 0,50 0,73 1,78 1,10 1,81 

2000 0,81 1,17 0,74 0,74 0,18 0,74 0,74 0,74 0,81 0,00 0,00 1,78 1,11 1,81 

2001 0,00 1,17 0,74 0,74 0,18 0,18 0,74 0,74 0,79 0,00 0,73 1,78 1,08 1,81 

2002 0,69 0,82 0,74 0,74 0,18 0,18 0,74 0,74 0,74 0,00 0,73 1,78 0,81 1,81 

2003 0,69 0,69 0,74 0,74 0,18 0,18 0,74 0,74 0,74 0,00 0,73 2,38 0,81 1,81 

 

  As a general observation, we see that the shadow prices reported in Tables 3-5 are 

concentrated to certain levels. This reflects the piece-wise linear nature of the StoNED frontier. The 

estimated frontier consists of 77 linear hyper-plane segments in total. Majority of these segments were 

small: only one observation was projected to 39 segments, and 20 segments contained two or three 

projections. On the other hand, there were five super-segments with more than 25 observations each. 

The largest hyper-plane segment contains 50 observations. More than 71 percent of the observations 

are projected to segments with at least ten other observations.  

Table 5 presents the sector-specific coefficients of the quadratic time trend function; all 

coefficient are statistically highly significant. The constants ai are negative for all sectors, whereas both 

bi and ci are positive for most sectors, signaling productivity growth over the time period. Only POR had 
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both bi and ci , which implies productivity decline. The time trend is graphically illustrated in Figure 6 for 

the five largest sectors. The diagram shows that the USA experienced the greatest output growth that 

can not explained by input use. All smaller sectors not depicted in the figure would lie somewhere 

between GER and CAN series. 

 

Table 6: Time trend ( + + 2

i i ia b t c t ), StoNED regression (25)   

 a b c 

AUT -3063,9 118,1 7,4 

CAN -8266,2 81,6 23,3 

DEN -4858,9 165,1 5,3 

FIN -4540,9 93,1 2,4 

FRA -9478,1 1938,3 30,7 

GBR -10583,7 -1474,4 169,4 

GER -7088,8 1761,1 -16,8 

ITA -24838,9 -248,6 79,0 

NED -3432,7 410,0 8,3 

NOR -1600,2 -190,4 18,2 

NZL -2467,6 -630,6 16,5 

POR -998,0 -77,7 -21,8 

SWE -4987,0 226,4 4,0 

USA -72073,4 10874,6 209,8 

  

FRA

GER

GBR

USA

CAN

-100

0

100

200

300

400

500

1
9
7
5

1
9
7
7

1
9
7
9

1
9
8
1

1
9
8
3

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

 

Figure 6: Time-trend functions u(t) for five largest sectors.  
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 Having discussed the non-parametric production frontier and the parametric trend function, it is 

worth to pay attention on the residuals. Figure 7 plots the residuals by sector over the time period 

(horizontal axis). The residuals appear to be randomly distributed, and no systematic sector specific or 

inter-temporal patterns are visible in the residual plot. In other words, no signs of heteroskedasticity or 

autocorrelation are present.  
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Figure 7: Residual plot.  

  

6.4 Absolute vs. relative normalization 

Returning back to Figure 6, we saw that the trend function for USA showed most rapid growth. This 

pattern is largely due to the dominant size of USA among other sectors. Resorting to the standard 

Gabrielsen-Greene standardization would use USA as a benchmark and compare the performance of 

other countries to the vast growth of USA in absolute terms without taking into account the difference in 
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the industry size. Consequently, all other countries appear utterly inefficient compared to USA. In fact, in 

2003 all other countries yield larger inefficiency estimates than their total output. This implies that the 

output distance functions get negative values. Figure 8 illustrates the development of the output 

distance function values (inverse of the Farrell output efficiency measure) over the study period for the 

five largest sectors. This figure aptly illustrates the problem of the additive normalization in the present 

setting.  
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Figure 8: Relative output efficiency: additive Gabrielse-Greene normalization.  
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Figure 9: Relative output efficiency: direct multiplicative normalization. 

 

More meaningful efficiency estimates are obtained by applying the multiplicative normalization 

presented in equations (12) and (13). Figure 9 describes the development of the output distance 

function values over the time period for the five largest and the three smallest sectors. Although USA 

showed the largest growth in absolute sense, the largest percentage growth occurs in FRA, which 

overtook GER as the most productive sector in 1979 and kept its leading position till the end of the 

study period. In fact, the relative normalization indicates that the growth of USA has been slow in 

relative terms. Regarding the small sectors, we note that FIN has shown considerable catching up while 

NZL and POR have fallen somewhat behind in relative efficiency terms.  

 

6.5 Comparison with Parametric SFA 
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For comparison, we ran analogous fixed-effects SFA models with quadratic trend using the Cobb-

Douglas and translog specifications for production function. The Cobb-Douglas model can be presented 

as the following least-squares problem: 

[ ]
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α β β β

= =

 = + + + + + + + 

∑∑ 2
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1 1
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   (26) 

In contrast to the StoNED model (25), the coefficientsβ  are here the same for all observations. Further, 

the translog model can be written as  
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   (27) 

The Cobb-Douglas model is a special case of (27) where all second-order coefficients γ  are set equal 

to zero.   

Table 7 presents the results of the two SFA models. For comparison, we also include the 

average values of the StoNED model. We note that the translog model achieved the highest R2 and log-

likelihood values. In theory, the CNLS regression yields a better fit than any non-linear OLS regression; 

the higher values of the translog regression are here due to the fact that we impose both concavity and 

CRS restrictions in the StoNED model while the SFA model is unrestricted in these respects. 

It is worth to emphasize that the coefficients of the trend function are country-specific, as are all 

coefficients of the StoNED model. For clarity, the average values and their standard deviations are 

typeset in italics. These should not be confused with the estimated regression coefficients and standard 

errors typeset in normal font.  
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Table 7: Comparison of the regression results 

 
StoNED 

 
SFA  

Cobb-Douglass 
SFA  

translog 

R2 0.9994 0.9992 0.9996 

ln L -2772.51 -2837.97 -2670.51 

Variable 
Average 
(St.Dev) 

Coefficient  
(st. err.) 

Coefficient  
(st. err.) 

βL  
0.0123)  
(0.0105) 

0.4748 
(0.0121) 

0.9972 
(0.0099) 

βK  
0.4487) 
(0.4619) 

0.0512 
(0.0094) 

-0.4596 
(0.0078) 

βM  
1.4317) 
(0.7786) 

0.5532 
(0.0095) 

1.6840 
(0.0078) 

γ LL
 

  
-0.0806 
(0.000) 

γ KK
 

  
0.0476 
(0.000) 

γMM
 

  
0.0415 
(0.000) 

γ LK    
0.1632 
(0.000) 

γ KM    
-0.2326 
(0.000) 

γ LM    
-0.0461 
(0.000) 

Variable 
Average 
(St.Dev) 

Average 
(St.Dev) 

Average 
(St.Dev) 

a 
-11305.5943) 
(18485.8823) 

0.0892 
(0.0309) 

0.0001 
 (0.0000)   

b 
931.8968) 

(2985.9747) 
1.0445 

(0.0356) 
1.0361 

(0.0340) 

c 
38.2488) 
(68.7749) 

0.9992 
(0.0007) 

0.9994 
(0.0007) 

 

Figures 10 and 11 describe the development of the efficiency scores for the five largest and 

three smallest sectors according to the SFA models, using the multiplicative normalization (13). All 

models agree that FRA was the benchmark country, but for other countries there are considerable 

differences in the results. Consider USA (the thickest line), for example. The Cobb-Douglas model 

suggests at least 10 percent points lower efficiency level for USA compared to the StoNED model, and 

also the shape of the trend is different. By contrast, the translog model suggests that USA reached the 

world frontier in years 1980 and 2003 with a temporary decline between those years. The good 

performance of USA in the translog model is explained by the fact that the flexible production function 

allows for locally varying returns to scale, and allowing for decreasing returns to scale makes USA look 
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more efficient in the translog model. By contrast, the Cobb-Douglas regression exhibited globally 

increasing returns to scale (scale elasticity 1.08) which explains the lower efficiency of USA. In 

conclusion, the efficiency estimates proved rather sensitive to the specification of the functional form of 

the production function even though the differences in the empirical fit were negligible.     
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Figure 10: Relative output efficiency – the SFA model with Cobb-Douglas production function. 
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Figure 11: Relative output efficiency – the SFA model with translog production function. 

 

6.6 Malmquist productivity index 

We next used the output distance function estimates from the StoNED model to calculate the Malmquist 

productivity indices and decompose them to technical change and efficiency change components. 

Figure 12 illustrates the cumulative Malmquist indices for the five largest sectors, together with ITA and 

FIN which showed the greatest productivity growth during the period. Scandinavian sectors SWE, DEN 

and NOR not depicted in Figure 12 followed closely the productivity development of FRA. All other 

sectors followed the paths of GBR and USA. GER exhibited notably the lowest productivity growth 

especially since 1987.   



 39 

FIN

FRA

GER

ITA

GBR

USA

CAN

0,5

1

1,5

2

2,5

3

3,5

4

1
9
7
5

1
9
7
7

1
9
7
9

1
9
8
1

1
9
8
3

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

 

Figure 12: Malmquist productivity indices (cumulative, 1975=1)  
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Figure 13: Technical change component of the Malmquist index (cumulative, 1975=1)  
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Figure 14: Efficiency change component of the Malmquist index (cumulative, 1975=1)  

 

The technical change and efficiency components of the Malmquist index are depicted in Figures 

13 and 14 for these seven countries. The technical change component of Figure 13 is the same for all 

sectors due to the Hicks neutral specification of technical progress. Comparing Figures 13 and 14 we 

see that the overall technical change follows very closely the productivity development of FRA, which 

was the frontier shifting sector throughout 1979-2003. From Figure 14 we see that the rapid productivity 

growth of ITA and FIN has been largely due to efficiency increase, in other words catching up. Also in 

Figure 14, the efficiency change of FRA also approximates that of Scandinavian sectors SWE, DEN, 

and NOR, while all other sectors lie somewhere between GBR and USA.  

Comparing the results of the StoNED model with the recent report by the Nordic Competition 

Authorities (2005) reveals some interesting insights. It is not surprising that FRA distinguishes itself as a 

frontier shifting sector: France has a modern hypermarket sector and today more than half of the retail 

sales are done in markets with floor area of 10,000 m2 or greater. Also the trading hours have become 

very flexible in France, the main limitation being the maximum number of hours that employees are 
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permitted to work per week. Development of large-scale super and hypermarkets has also been rapid in 

Italy and Finland, which explains their catching up. By contrast, in Germany the trading hours and the 

construction of large-scale retail schemes are more restrictive than anywhere in else in Europe. 

Consequently, Germany has relatively few large hypermarkets and the small discount shops and hard 

discounters have currently almost 40 percent market share. The United Kingdom had an early start in 

the development of shopping centers with hypermarkets, but since the 1980s the building of large out-

of-town shopping centers has been restricted in favor of town center development. The USA and 

Canada have large-scale shopping malls and hypermarkets, and the trading hours are very liberal. 

However, the relatively low wage rates and the competition with opening hours allow the North 

American retail markets to use more inputs per sale than their European counterparts, which shows in 

the productivity and efficiency comparisons. 

        

7. Concluding discussion 

We have shown how a stochastic noise term can be introduced to the nonparametric frontier estimation, 

to combine the key merits of SFA and DEA in a uniform framework. The new approach was named 

Stochastic Nonparametric Envelopment of Data (StoNED). We started from the estimation of a single-

output production function in the cross-sectional setting, and then extended the framework towards 

panel data settings, and allowed for multiple outputs by using distance or cost functions. We also 

showed how alternative assumptions about returns to scale or multiplicative errors can be implemented 

in the StoNED framework, and discussed the semi-parametric treatment of environmental factors.  

The approach was illustrated by means of a simulated numerical example and an industry-level 

application to wholesale and retail trade sector in 14 OECD countries. The simulation showed the 

potential of the StoNED approach, and the application demonstrated its usefulness in the panel data 

settings where the standard DEA does not have sufficient discriminatory power. The application also 

demonstrated the sensitivity of the results to the parametric specification of the functional form even 
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when the empirical fit is very high. In this respect, the StoNED approach uses a nonparametric function 

that has its foundation in optimization. The application also demonstrated how one can apply the 

StoNED method for estimating and decomposing total factor productivity growth using the Malmquist 

productivity indices.  

The proposed StoNED approach shares many similarities with SFA and DEA, being a genuine 

hybrid of the two. Thus, many existing tools and techniques can be incorporated into the StoNED 

framework. However, the hybrid nature of StoNED also means that there are many important 

differences to both SFA and DEA which must be kept in mind in application and interpretation of the 

StoNED models. For example, the interpretation of the StoNED input coefficients differs considerably 

from those of the SFA coefficients. Moreover, in contrast to DEA, all observations influence the shape of 

the frontier. In this respect, further research is needed for a better understanding of these similarities 

and differences. This paper has briefly noted a number of possibilities to apply the StoNED approach: 

each of them would merit more detailed discussion than the short sketches provided here. We hope that 

this paper can provide inspiration for further work and thus contribute the unification of the productive 

efficiency analysis and the integration and cross-fertilization of the parametric and nonparametric 

streams of the literature. 

While the StoNED approach combines the best features of DEA and SFA, it also shares some 

of their limitations. Similar to DEA, the nonparametric approach makes also StoNED vulnerable to the 

curse of dimensionality, which means that the sample size must be very large when the number of input 

variables is high. On the other hand, the maintained SFA assumptions regarding the error distribution 

(e.g., normality, independence) may be violated. Moreover, stochastic noise does not restrict to the 

output, but also input data may be perturbed by measurement errors and other noise. Treatment of the 

noise in input data remains somewhat problematic in the SFA framework, and hence also in the StoNED 

approach. Despite these shared limitations, the benefits of the unified framework clearly outweigh the 

costs.  



 43 

References 

Afriat, S.N. (1967): The Construction of a Utility Function from Expenditure Data, International Economic 

Review 8, 67-77. 

Afriat, S. (1972): Efficiency Estimation of Production Functions, International Economic Review 13, 568-

598. 

Aigner, D.J., and S. Chu (1968): On Estimating the Industry Production Function, American Economic 

Review 58, 826-839. 

Aigner, D.J., C.A.K. Lovell, and P. Schmidt (1977): Formulation and Estimation of Stochastic Frontier 

Models, Journal of Econometrics 6, 21-37. 

Asmild, M., J.C. Paradi, V. Aggarwall, and C. Schaffnit (2004): Combining DEA Window Analysis with 

the Malmquist Index Approach in a Study of the Canadian Banking Industry, Journal of 

Productivity Analysis 21(1), 67-89. 

Aragon, Y., A. Daouia, and C. Thomas-Agnan (2002): Nonparametric Frontier Estimation: A Conditional 

Quantile-based Approach, Discussion paper, GREMAQ et LSP, UniversitVe de Toulouse. 

Bauer, P.W. (1990): Recent Developments in the Econometric Estimation of Frontiers, Journal of 

Econometrics 46 (1-2), 39-56. 

Cazals, C., J.P. Florens, and L. Simar (2002): Nonparametric Frontier Estimation: A Robust Approach, 

Journal of Econometrics 106, 1-25. 

Chambers, R.G., Y. Chung and R. Färe (1996): Benefit and Distance Functions, Journal of Economic Theory 

70(2), 407-419. 

Chambers, R.G., Y. Chung and R. Färe (1998): Profit, Directional Distance Functions, and Nerlovian Efficiency, 

Journal of Optimization Theory and Applications 98(2), 351-364. 

Cherchye, L., and T. Post (2003): Methodological Advances in DEA: A Survey and an Application for 

the Dutch Electricity Sector, Statistica Neerlandica 57(4), 410-438. 

Charnes, A., W.W. Cooper and E. Rhodes (1978): Measuring the Inefficiency of Decision Making Units, 

European Journal of Operational Research 2(6), 429-444. 



 44 

Cornwell, C., P. Schmidt, and R. Sickles (1990): Production Frontiers with Cross Sectional and Time 

Series Variation in Efficiency Levels, journal of Econometrics 46, 185-200. 

Fan, Y., Q. Li and A. Weersink (1996): Semiparametric Estimation of Stochastic Production Frontier 

Models, Journal of Business and Economic Statistics 14(4), 460-468. 

Färe, R., S. Grosskopf, M. Norris, and Z. Zhang (1994): Productivity Growth, Technical Progress and 

Efficiency Change in Industrialized Countries. American Economic Review 84(1): 66-83. 

Farrell, M.J. (1957): The Measurement of Productive Efficiency, Journal of the Royal Statistical Society 

Series A. General 120(3): 253-282. 

Gabrielsen, A. (1975): On Estimating Efficient Production Functions, Working Paper A-85, Dept. of 

Humanities and Social Sciences, Chr. Michelsen Institute, Bergen. 

Greene, W.H. (1980): Maximum Likelihood Estimation of Econometric Frontier Functions, Journal of 

Econometrics 13, 27-56. 

Greene, W.H. (1999): Frontier Production Functions, Ch. 3 (pp. 81–166) in: M. Pesaran and P. Schmidt 

(Eds.): Handbook of applied econometrics, Vol II: Microeconomics, Blackwell Publishers, Oxford. 

Greene, W.H. (2005): Reconsidering Heterogeneity in Panel Data Estimators of the Stochastic Frontier 

Model, Journal of Econometrics 126, 269-303.  

Henderson, D.J., and L. Simar (2005): A Fully Nonparametric Stochastic Frontier Model for Panel Data, 

Discussion Paper 0417, Institut de Statistique, Universite Catholique de Louvain. 

Hildreth, C. (1954): Point Estimates of Ordinates of Concave Functions, Journal of the American 

Statistical Association 49(267), 598-619.   

Horrace, W.C. and P. Schmidt (1996): Confidence Statements for Efficiency Estimates from Stochastic 

Frontier Models, Journal of Productivity Analysis 7, 257-282. 

Jondrow, J., C.A.K. Lovell, I.S. Materov, and P. Schmidt (1982): On estimation of Technical Inefficiency 

in the Stochastic Frontier Production Function Model, Journal of Econometrics 19, 233-238. 



 45 

Kumbhakar, S.C., and C.A.K. Lovell (2000): Stochastic Frontier Analysis, Cambridge University Press, 

Cambridge. 

Kumbhakar, S.C., B.U. Park, L. Simar, and E.G. Tsionas (2004): Nonparametric Stochastic Frontiers: A 

Local Maximum Likelihood Approach, Journal of Econometrics, to appear. 

Kuosmanen, T., (2003): Duality Theory of Non-convex Technologies, Journal of Productivity Analysis 

20, 273–304. 

Kuosmanen, T., (2006): Convex Nonparametric Least Squares: Multiple Regression, Interpolation and 

Statistical Inference, unpublished manuscript, available from the author by request. 

Kuosmanen, T., L. Cherchye, and T. Sipiläinen (2006): The Law of One Price in Data Envelopment 

Analysis: Restricting Weight Flexibility across Firms, European Journal of Operational Research 

170(3), 735-757.  

Meeusen, W., and J. van den Broeck (1977): Efficiency Estimation from Cobb-Douglas Production 

Function with Composed Error, International Economic Review 8, 435-444. 

Murillo-Zamorano, L.R. (2004): Economic Efficiency and Frontier Techniques, Journal of Economic 

Surveys 18(1), 33-77. 

Nordic Competition Authorities (2005): Nordic Food Markets – A Taste for Competition, report from the 

Nordic Competition Authorities No 1/2005.  

Ondrich, J., and J. Ruggiero (2001): Efficiency Measurement in the Stochastic Frontier Model, European 

Journal of Operational Research 129(2), 434-442. 

Park, B., R.C. Sickles, and L. Simar (1998): Stochastic Panel Frontiers: A Semiparametric Approach, 

Journal of Econometrics 84, 273-301. 

Park, B., R.C. Sickles, and L. Simar (2003): Semiparametric Efficient Estimation of AR(1) Panel Data 

Models, Journal of Econometrics 117, 279-309. 

Park, B., and L. Simar (1994): Efficient Semiparametric Estimation in a Stochastic Frontier Model, 

Journal of the American Statistical Association 89(427), 929-936. 



 46 

Ruggiero, J. (2004): Data Envelopment Analysis with Stochastic Data, Journal of the Operational 

Research Society 55(9), 1008-1012. 

Seiford, L. M., and R.M. Thrall (1990): Recent Developments in DEA: The Mathematical Programming 

Approach to Frontier Analysis, Journal of Econometrics 46 (1-2), 7-38. 

Simar, L., and P. Wilson (2006): Estimation and Inference in Two-Stage, Semi-Parametric Models of 

Production Processes, Journal of Econometrics (in press).  

Timmer, P., (1971): Using a Probabilistic Frontier Production Function to Measure Technical Efficiency, 

Journal of Political Economy 79, 776-794. 

Tsionas, M. (2002): Stochastic frontier models with random coefficients, Journal of Applied 

Econometrics 17, 127–147. 

Varian, H. (1985): Nonparametric Analysis of Optimizing Behavior with Measurement Error, Journal of 

Econometrics 30(1/2), 445-458. 

Wang, D.Q., S. Chukova, and C.D. Lai (2004): On the Relationship between Regression Analysis and 

Mathematical Programming, Journal of Applied Mathematics and Decision Sciences 8(2), 131–

140. 

Wang, H.-J., and P. Schmidt (2002): One-Step and Two-Step Estimation of the Effects of Exogenous 

Variables on Technical Efficiency Levels, Journal of Productivity Analysis 18, 129-144. 

Worthington, A.C. (2001): An Empirical Survey of Frontier Efficiency Measurement Techniques in 

Education, Education Economics 9(3), 245-268 

Worthington, A.C. (2004): An Empirical Survey of Frontier Efficiency Measurement Techniques in 

Healthcare Services, Medical Care Research and Review 61(2), 1-36. 



 47 

Appendix 1: DEA as least-squares regression  

The standard output-oriented variable returns to scale (VRS) DEA envelopment model can be written as  
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In the single-output case, we can harmlessly write the problem in an additive form as  
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Note that the multiplicative efficiency score can be recovered as θ φ∗ ∗= + 01 / y .  

The dual problem of (A1.2) can be written as  
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where vector β  represents the multiplier weights for inputs, and α  is the shadow price of the VRS 

constraint. Note that the additive formulation of the efficiency score implies that the output y0 appears in 

the objective function and not in the first constraint (as it would be in the dual of (A1.1)). Thus, we can 

remove the redundant multiplier γ  and write the dual problem as 
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Next, we introduce ε α ′= + −�
0 0 0yβ x  as an auxiliary variable for the objective function, and write the 

problem as 
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Instead of solving problem (A1.5) for each firm separately, we can solve the efficiency scores 

simultaneously for all firms. As in Kuosmanen et al. (2006), we can minimize the sum of the efficiency 

scores as  
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where α( , )i iβ  are the multiplier weights used for evaluating firm i. The optimal ε ∗
�
i  from (A1.6) gives the 

efficiency score of firm i. Since the efficiency score is invariant to monotonic transformation, we can 

equally well minimize the sum of squares as 
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    Since ε ε= −� �
2 2( )i i , we can substitute ε�i  by ε− ˆi  and write the least squares problem as 
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Finally, since the inefficient firms (for which ε <ˆ 0i ) do not influence the shape of the DEA frontier, we 

can harmlessly add the inefficiency component to the constraints of the reference firms (the second 

constraint) as   
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This gives the CNLS problem (3) augmented by the non-positivity constraint ≤ˆ 0ε  for the residuals.  

Similar to the deterministic COLS model by Aigner and Chu (1968) that inserts constraint ≤ˆ 0ε  

for the residuals of the OLS regression, we have here shown that DEA model can be viewed as a 

“corrected CNLS” regression.   
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Appendix 2: Derivation of the directional distance function StoNED model of Section 5.2 

Recall from (15) that the dual expression of the directional distance function can be written as  
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Provided that the direction vector ( , )x yg g  is the same for all firms, the DEA estimates for the directional 

distance functions can be obtained from the optimal solutions to the following linear programming 

problem 
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as � δ ∗=( , ; , )x y

i i iDD x y g g . Now, adopting a stochastic specification of the distance measure δ i , we will 

minimize the square sum of δ i  distances. We also need to adjust the “shadow profit” of the reference 

firm h by adding its distance to the frontier δh  as δ′ ′− +i h i h hρ y ω x . This provides the least-squares 

problem: 
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Reorganizing the first constraint gives   
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Appendix 3: The GAMS code for the panel data StoNED model used in Section 6 (14 industries, 

29 time periods, 3 inputs, 1 output) 

 

SETS 
i                observations /i1*i14/ 
t                time periods /t1*t29/; 
alias(i,h) 
alias(t,s); 
 
PARAMETERS 
Y(i,t)            output 
L(i,t)           labor 
K(i,t)            capital 
M(i,t)           intermediate input 
Tr(t)            trend 
Tr2(t)           trend-squared; 
 
VARIABLES 
E(i,t)             error term 
SS                sum of square of errors 
A(i)               trend coefficient 
B(i)               trend coefficient 
C(i)               trend coefficient; 
 
POSITIVE VARIABLES 
BL(i,t)          marginal product of labor  
BK(i,t)          marginal product of capital 
BM(i,t)           marginal product of intermediate inputs; 
 
EQUATIONS 
QSSE               objective=sum of squares of errors 
QREGR(i,t)         regression equation 
QCONC (i,h,t,s)    concavity constraint; 
 
QSSE..            SS =e= sum(t, sum(i, E(i,t)*E(i,t))); 
QREGR (i,t)..     Y(i,t) =e= BL(i,t)*L(i,t) + BK(i,t)*K(i,t) + BM(i,t)*M(i,t) – (A(i) + B(i)*Tr(t) + C(i)*Tr2(t))  

+ Y(i,t)*E(i,t); 
QCONC(i,h,t,s).. Y(h,s) =l= BL(i,t)*L(h,s) + BK(i,t)*K(h,s) + BM(i,t)*M(h,s) –(A(h) + B(h)*Tr(s)  

+ C(h)*Tr2(s)) + Y(h,s)*E(h,s); 
 
MODEL StoNED /all/ 
 
SOLVE StoNED using NLP Minimizing SS; 
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