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Abstract. Future climate change will dramatically change
the carbon balance in the soil, and this change will affect
the terrestrial carbon stock and the climate itself. Earth sys-
tem models (ESMs) are used to understand the current cli-
mate and to project future climate conditions, but the soil
organic carbon (SOC) stock simulated by ESMs and those
of observational databases are not well correlated when the
two are compared at fine grid scales. However, the specific
key processes and factors, as well as the relationships among
these factors that govern the SOC stock, remain unclear; the
inclusion of such missing information would improve the
agreement between modeled and observational data. In this
study, we sought to identify the influential factors that gov-
ern global SOC distribution in observational databases, as
well as those simulated by ESMs. We used a data-mining
(machine-learning) (boosted regression trees – BRT) scheme
to identify the factors affecting the SOC stock. We applied
BRT scheme to three observational databases and 15 ESM
outputs from the fifth phase of the Coupled Model Intercom-
parison Project (CMIP5) and examined the effects of 13 vari-
ables/factors categorized into five groups (climate, soil prop-
erty, topography, vegetation, and land-use history). Globally,
the contributions of mean annual temperature, clay content,
carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover
were high in observational databases, whereas the contribu-
tions of the mean annual temperature, land cover, and net
primary productivity (NPP) were predominant in the SOC
distribution in ESMs. A comparison of the influential fac-
tors at a global scale revealed that the most distinct differ-
ences between the SOCs from the observational databases
and ESMs were the low clay content and CN ratio contribu-
tions, and the high NPP contribution in the ESMs. The results

of this study will aid in identifying the causes of the current
mismatches between observational SOC databases and ESM
outputs and improve the modeling of terrestrial carbon dy-
namics in ESMs. This study also reveals how a data-mining
algorithm can be used to assess model outputs.

1 Introduction

Soil is the largest organic carbon stock in terrestrial ecosys-
tems (Batjes, 1996; IPCC, 2013; Köchy et al., 2015). The soil
organic carbon (SOC) stock represents a balance between
carbon inputs to soil and carbon losses from soil via decom-
position and dissolved organic carbon, and this influx and
efflux of soil carbon is controlled directly and indirectly by
environmental conditions (Carvalhais et al., 2014; Schimel
et al., 1994). Future climate change will dramatically affect
the global soil carbon balance (Bond-Lamberty and Thom-
son, 2010; Crowther et al., 2016; Friedlingstein et al., 2006;
Hashimoto et al., 2011, 2015), and this change will affect ter-
restrial carbon and consequently the climate itself (Cox et al.,
2000; Zaehle, 2013).

Earth system models (ESMs) were developed to under-
stand the current climate and provide future climate projec-
tions, and these models incorporate the terrestrial carbon cy-
cle, including SOC (Arora et al., 2013; Friedlingstein et al.,
2014). In ecosystem carbon cycle models of ESMs, SOC is
calculated as the balance between carbon inputs via dead or-
ganic matter and carbon emissions via organic matter decom-
position, with both processes influenced by temperature and
water conditions. SOC dynamics have a critical influence on
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the land carbon sink in ESM simulations (Friedlingstein et
al., 2014).

Observational global soil databases are often used as
benchmarks to examine whether ESMs successfully describe
the global distribution of soil carbon stocks (Anav et al.,
2013; Hararuk et al., 2014; Todd-Brown et al., 2013; Wieder
et al., 2014). Several global soil databases have been de-
veloped over the past two decades, and several are un-
dergoing further improvement (Scharlemann et al., 2014).
Certain databases describe the global distribution of soil
physiochemical properties and enable calculations of the
global distribution of SOC stocks (e.g., Harmonized World
Soil Database – HWSD), whereas others provide SOC
stocks by default (e.g., International Geosphere Biosphere
Programme’s (IGBP) Data and Information System (DIS)
database). These databases incorporate observed data points
with global coverage, although there are biases in the spatial
distribution or density of the data points. In these databases,
gridded SOC data have been generated by linking the soil
properties to soil maps or by inter-extrapolating the model
outputs derived from analyses of observed SOC data points.
Compared with the SOC distribution derived from ESMs,
SOC estimates derived from SOC observations are more data
oriented; however, even the observational databases include
significant uncertainty because of errors in the source data
and building processes (Köchy et al., 2015; Todd-Brown et
al., 2013).

A recent study (Todd-Brown et al., 2013) found that al-
though ESM results are moderately consistent at the biome
level, the correlation between the distribution of soil carbon
stocks simulated by ESMs and observational databases is
poor when the two are compared at fine scales (e.g., a 1◦

scale). Furthermore, estimates of SOC by ESMs and terres-
trial biosphere models exhibit high uncertainty (Nishina et
al., 2014, 2015; Tian et al., 2015). Several studies have ex-
amined the cause of the inconsistency in data derived by
observational databases and ESMs, and the high variation
of SOC outputs from ESMs (Exbrayat et al., 2013; Todd-
Brown et al., 2013; Wieder et al., 2013). Todd-Brown et
al. (2013) analyzed the soil carbon outputs from 11 ESMs
from the fifth phase of the Coupled Model Intercomparison
Project (CMIP5) and soil carbon data from the HWSD, and
found that net primary productivity (NPP) and temperature
could explain the SOC spatial variations in the ESM out-
put but not in the HWSD output. These authors also found
that the differences in SOC from the ESMs were driven by
differences in the simulated NPP and the parameterization
of soil heterotrophic respiration and not by differences in
the soil model structure of the ESMs. The key influence of
parameterizing soil heterotrophic respiration (e.g., turnover
time) on SOC in the CMIP5 ESM has also been discussed by
Exbrayat et al. (2013). Anav et al. (2013) examined the rela-
tionships between simulated SOC and vegetation carbon and
compared them with reference data obtained from observa-
tional databases, and they found that although simulated val-

ues clustered around the reference values, the ratio of SOC
to vegetation carbon differed among the models. This find-
ing suggests that the parameterization of plant production,
mortality, and decomposition vary greatly among ESMs.
More realistic representations of turnover times (Koven et
al., 2015) and focusing on the model treatment of the hy-
drological cycle on the carbon cycle (Shao et al., 2013) are
suggested as future improvements.

Despite these research results, the key processes and fac-
tors that govern the SOC stock and the relationships among
them remain unclear. The appropriate inclusion of these pro-
cesses/factors would improve the consistency between the
model results and observational data. In this study, we sought
to identify the key factors that govern the global SOC dis-
tribution in observational databases as well as those simu-
lated by ESMs. We applied a data-mining (machine-learning)
scheme (boosted regression trees – BRT) to identify the in-
fluential factors and explore how they relate to SOC stocks
(Elith et al., 2008). The BRT method is based on regres-
sion trees and boosting. We combined the potentially in-
fluential variables from many data products and SOC data
from observational databases and ESMs, and examined the
factors influencing the distribution of SOC and the relation-
ships between these factors and SOC stocks. We assessed
how closely ESMs could match the influential factors and
their relationships with factors obtained from observational
databases. By comparing the influential factors in the obser-
vational databases with those in the ESMs, we clarified the
model–data discrepancies and the areas in which ESMs can
be improved.

2 Materials and methods

2.1 Observational global SOC database

We used SOC data from two global databases and one north-
ern observational database. The first global database was
the HWSD (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). The
HWSD is a global database of soil physiochemical proper-
ties that has been developed by the International Institute for
Applied Systems Analysis (IIASA) and the Food and Agri-
culture Organization of the United Nations (FAO) in collab-
oration with the International Soil Reference and Informa-
tion Centre (ISRIC) World Soil Information, the European
Commission Joint Research Centre (JRC), and the Institute
of Soil Science, Chinese Academy of Sciences (ISSCAS).
The database was constructed by compiling the European
Soil Database (ESDB), a 1 : 1 million soil map of China, var-
ious regional SOTER databases (SOTWIS database), and a
soil map of the world from the FAO. We used an SOC stock
database obtained with HWSD from the Joint Research Cen-
tre (JRC) (Hiederer and Köchy, 2011) (Fig. 1a). The second
database included global gridded surfaces of selected soil
characteristics (IGBP-DIS) (Global Soil Data Task Group,

Geosci. Model Dev., 10, 1321–1337, 2017 www.geosci-model-dev.net/10/1321/2017/



S. Hashimoto et al.: Data-mining analysis of the global distribution of soil carbon 1323

60˚ S

0˚

60˚ N

(a) HWSD

60˚ S

0˚

60˚ N

(b) IGBP−DIS

180˚ 90˚ W 0˚ 90˚ E 180˚

60˚ S

0˚

60˚ N

0 20 40 60 80 100

kg C m−2

(c) NCSCD

Figure 1. Soil carbon stock in the upper 100 cm (kg C m−2) from
the observational databases (HWSD, IGBP-DIS, and NCSCD).

2000) (Fig. 1b), which contains gridded soil physiochemical
properties. The database has been developed by the Global
Soil Data Task Group of the International Geosphere Bio-
sphere Programme’s (IGBP) Data and Information System
(DIS), and the database was generated by linking the pedon
records in the Global Pedon Database to the FAO/UNESCO
digital soil map of the world. The third database was the
Northern Circumpolar Soil Carbon Database, version 2 (NC-
SCD) (Hugelius et al., 2013; Tarnocai et al., 2009) (Fig. 1c).
This database is a spatial database of SOC stock of the north-
ern circumpolar permafrost region. The soil map data were
obtained from different regions/countries (USA, Canada,
Russia, etc.) and were harmonized. The NCSCD were based
on 1778 pedon data points.

We used the HWSD and IGBP-DIS to analyze the global
distribution of SOC stocks; then, we extracted a database of
northern circumpolar regions from the three above databases
and analyzed the SOC stocks in the northern region. The re-
lationships among the databases are shown in Fig. S1 in the

Supplement. The SOC in the upper 100 cm in each database
was used.

2.2 Global SOC estimated using Earth system models

The global distribution of SOC stocks estimated by ESMs
was obtained from CMIP5. We examined the results of 15
ESMs (Fig. 2; Table 2). When more than one result was ob-
tained by the same model family (e.g., MIROC-ESM and
MIROC-ESM-CHEM), we generated an ensemble average
database for each family (e.g., average of MIROC-ESM and
MIROC-ESM-CHEM): Todd-Brown et al. (2013) showed
through a hierarchical cluster analysis that SOC distributions
were very similar among ESMs from the same climate cen-
ter. The mean values from 1980–2004 were calculated. The
results of the historical and ensemble member r1i1p1 were
used in this study. The notation “r1i1p1” is an identifier of
the model simulation and is an ensemble member that is often
used for analyses (Chang et al., 2012; Dirmeyer et al., 2013;
Jiang et al., 2015; Kumar et al., 2014). The overviews of
SOC submodels in the ESMs have been previously described
(Exbrayat et al., 2014; Todd-Brown et al., 2013, 2014) and
are also shown in Table 2. In general, each soil submodel
consisted of one to nine pools and incorporated the effects
of temperature and moisture. Some ESMs have litter carbon
pools; these were excluded from this study. A comparison be-
tween the mean of ESMs and global observational databases
in a 1◦ grid is shown in Fig. S2.

2.3 Other databases

We used five groups of variables/factors to examine their ef-
fects on global SOC: climate, soil property, topography, veg-
etation, and land-use history. Detailed data sources for the
databases are described in Table 1. The mean annual tem-
perature and annual precipitation were used as the climate
variables, and the clay content, carbon-to-nitrogen (CN) ra-
tio, and texture (Appendix Table A1) were used as the soil
variables (0–30 cm). The compound topographic index, ele-
vation, slope, and wetland ratio were used as the topographic
indices. The CN ratio was calculated by dividing the car-
bon density by the nitrogen density. The wetland ratio was
calculated by dividing the number of wetland grids at 30 s
by the total grids at 1◦. The lake, reservoir, and river were
not quantified as wetlands and were excluded from the to-
tal grids. The land cover type (Appendix Table A2) and NPP
were adopted as vegetation indices, and the cropland ratio
and human appropriation of net primary production percent-
age, which is a percentage of human consumption of NPP to
local NPP (Imhoff and Bounoua, 2006), were used as the in-
dices of land-use history. The average human appropriation
of the NPP percentage was calculated at 1◦. Histograms of
the variables are shown in Fig. S3.
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Figure 2. Soil carbon stocks (kg C m−2) from Earth system models (CMIP5). The term “ensemble” indicates the result of an ensemble of
family members.

2.4 Database handling

All global databases, except for the databases with a spa-
tial resolution of 1◦ by default, including observational and
ESM model outputs, were regridded to a spatial resolution of
1◦ for the analyses. Regridding of data in the NetCDF for-
mat was performed using the Climate Data Operators (CDO)
software, version 1.6.9, provided by the Max Plank Institute
for Meteorology (https://code.zmaw.de/projects/cdo). A bi-
linear interpolation, which is one of the most widely used
algorithms, was used (remapbil in CDO).

2.5 Boosted regression trees (BRT) scheme

To identify the influential factors and their relationships with
SOC stocks, BRT scheme was used in this study (Elith et
al., 2008). This technique involves a data-mining (machine-
learning) algorithm that combines the advantages of a regres-
sion tree (decision tree) algorithm and boosting. Regression

trees are a classification algorithm that classify data through
recursive binary splits, and boosting is a machine-learning
algorithm that generates many rough models and combines
them to improve their predictive capability. The main advan-
tages of this method are that the BRT scheme can analyze dif-
ferent types of variables and interaction effects among vari-
ables, and is applicable to nonlinear relationships. In recent
years, the BRT technique has been used to examine the dis-
tribution of soil characteristics at a regional scale (Aertsen et
al., 2011; Cools et al., 2014; Martin et al., 2011). Major out-
puts from BRT analyses can identify the following: (1) the
relative importance (percentage of influence or contribution)
of predictor variables (explanatory variables) on the basis of
the weighted and scaled number of times a variable is se-
lected for splitting (Elith et al., 2008) and (2) the relation-
ships among variables and the explained variable shown in
partial dependence plots.

Geosci. Model Dev., 10, 1321–1337, 2017 www.geosci-model-dev.net/10/1321/2017/
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We used the open-source BRT package (brt.functions.R)
in R software versions 3.2.1 and 3.2.2 (R Core team, 2013)
developed by Elith et al. (2008). The R code for the BRT al-
gorithm is available in the supplementary material of Elith
et al. (2008). The gbm package was used (version 2.1.1) to
run the BRT package. The calculations were performed in
Mac OS X (version 10.9.5 and version 10.10.5). To do so,
the “windows” function in the “brt.functions.R” needed to
be replaced with the “quartz” function in R. In practice, three
parameters in the BRT package – the learning rate (lr), tree
complexity (tc), and bag fraction (bg) – control the BRT per-
formance. The lr determines the contribution of each tree,
the tc controls the number of splits, and the bg is the propor-
tion of data selected at each step. The number of trees was
determined using the cross-validation method in the R pack-
age. The maximum number of trees was set to 15 000. The tc
value was set to 5. We tested different lr (0.001, 0.005, 0.01,
0.05, 0.1) and bg values (0.5, 0.6, 0.7) and used the best pa-
rameter set for each database, but the changes in parameter
values had little effect on the model performance.

2.6 Model performance

The goodness of fit between the BRT model and data was
assessed by using the linear relationship between the pre-
dicted and observed values, the coefficient of determination
(R2), and the root mean square error (RMSE); it is shown
in Tables S2 and S3 in the Supplement. For both the obser-
vational databases and ESM databases, the BRT models ex-
hibited good performance, with high R2 values in most of
the databases, but the performance was relatively lower for
NCSCD and CMCC (northern soils).

3 Results

3.1 Observational databases

3.1.1 Global soil

The relative contributions of variables in the BRT model of
global SOC stocks to the observational databases are shown
in Fig. 3a and b. In HWSD, the contributions of land cover,
mean annual temperature, CN ratio, and wetland ratio were
high. For IGBP-DIS, the mean annual temperature, followed
by clay content, CN ratio, and land cover also highly con-
tributed. In particular, the mean annual temperature was very
influential. The contribution of elevation to each HWSD and
IGBP-DIS was 6 and 7 %, respectively. The NPP contributed
5 % in both databases.

The relationships between the influential variables and
SOC are shown in Fig. 4a–e. In general, the two databases
showed similar relationships. For example, the SOC de-
creased with increasing mean annual temperature, partic-
ularly at sites with a mean annual temperature > 0 ◦C
(Fig. 4a), but increased with increasing clay content and CN

www.geosci-model-dev.net/10/1321/2017/ Geosci. Model Dev., 10, 1321–1337, 2017
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Figure 3. Relative contribution (influence) of predictive variables for the model of soil carbon stocks in the global observational databases
(left) and northern observational databases (right).

ratio (Fig. 4b and c). The SOC increased rapidly with an in-
creasing CN ratio. Relationships with the mean annual tem-
perature were similar (Fig. 4a). The relationship with clay
was steeper in IGBP-DIS than in HWSD, but the opposite
was true for the CN ratio (Fig. 4b and c). With respect to land
cover, evergreen needleleaf forests and permanent wetlands
had higher SOC (Fig. 4e).

3.1.2 Northern soils

In the northern region, the dominant contributors differed
among northern soil databases and from those identified in
the global database analyses described above (Fig. 3c–e). In
HWSD, the CN ratio was the dominant contributor, followed
by the wetland ratio, clay content, and mean annual precip-
itation. In IGBP-DIS, clay content, CN ratio, and elevation
were the most important contributors. For NCSCD, elevation
contributed the most (∼ 25 %), but all of the variables except
for the cropland ratio and HANPPpct contributed 5–15 %.
The mean annual temperature was not as influential as the
global databases.

The relationships between variables and SOC stock varied
more among the databases for northern soils than those of
global databases (Fig. 4f–k). Furthermore, because the north-
ern regions were extracted, the ranges of variables were nar-
rower than the global databases. In NCSCD, the SOC de-
creased with increasing temperature (Fig. 4f) and increased
with increasing precipitation (Fig. 4g). The SOC increased

with increasing clay content and CN ratio in HWSD and
IGBP-DIS (Fig. 4h and i), which was consistent with the
findings obtained from the global databases. The increasing
trend with increasing CN ratio was also observed in NC-
SCD. The SOC decreased with increasing elevation in all
databases but showed considerable variability at low eleva-
tions (Fig. 4j).

3.2 Earth system models

3.2.1 Global soil

The contributions of some variables varied among ESMs, but
the mean of the results of the ESMs showed that the mean
annual temperature, land cover, and NPP clearly contributed
to SOC distribution (Fig. 5a and b). Large inconsistencies
between the observational databases and ESMs were found
in the low contributions of clay content and the CN ratio and
in the high contributions of NPP in ESMs (Fig. 5a and b).
The contribution of NPP to ESMs was greater than in the
observational databases.

The relationships between SOC and certain variables sub-
stantially varied among the ESM databases (Fig. 6a–e), par-
ticularly in the mean annual temperature (Fig. 6a). The SOC
decreased with increasing mean annual temperature (Fig. 6a)
but increased with increasing precipitation (Fig. 6b) and NPP
(Fig. 6e). The mean of the relationship with mean annual
temperature for ESMs was highly consistent with that in the
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Figure 4. Effects of the most influential variables in the model of the soil carbon stock for each global (a–e) and northern (f–k) observational
databases. The fitted functions were centered by subtracting their means. See Table A2 for land cover classifications. Because of the small
number of data points, the results for “permanent snow and ice” are not shown (e). The y-axis scales for clay and the CN ratio are different
from those of other factors (c, h, i).

HWSD and IGBP-DIS databases of the temperature range
−5 to 15 ◦C (Fig. 6a). The increasing trend with increasing
NPP in ESMs was consistent with that of the HWSD, par-
ticularly below approximately 500 g C m−2 of NPP (Fig. 6e).
Although the wetland ratio did not contribute to the ESMs
(Fig. 6a) with respect to land cover, permanent wetlands had
higher SOC (Fig. 6d).

3.2.2 Northern soils

The mean of the ESMs showed that for northern soils, the
main contributors (mean annual temperature, land cover, and
NPP) were mainly the same as in the ESM global outputs
(Fig. 5c and d). The contribution of the mean annual temper-

ature was lower than that of the global results of the ESMs
(mean of 14 % for the northern and 29 % for the global tem-
peratures). The relatively large discrepancy between the ob-
servational databases and ESMs included the lower contribu-
tion of clay content, CN ratio, and elevation, and the higher
contribution of the mean annual temperature, land cover, and
NPP in the ESMs.

The relationship between SOC and variables in ESMs as
well as the results of the observational databases are shown
in Fig. 6f–i. The mean of the ESMs indicated that the SOC
in the northern region increased with increasing NPP, and
the relationship was similar to that in HWSD (Fig. 6i), al-
though the contribution of NPP in the ESMs differed from
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Figure 5. Relative contribution (influence) of predictive variables for the model of the soil carbon stock from ESMs and a comparison with
those of observational databases. Box plots show the results of ESMs, and the purple, green, light blue, and blue marks indicate the mean
of the ESMs and results from observational databases (a: global; c: north). Mosaic plots of detailed relative contributions for each ESM
(b: global; d: north) are shown.

those of the observational database (Fig. 5c). The decreasing
trend with elevation was not replicated in the ESMs (Fig. 6g).

4 Discussion and concluding remarks

4.1 Identified influential factors

Compared with previous studies, we examined the contribu-
tions of a wider variety of factors to SOC distributions. Our
analyses revealed that the most distinct differences between
the observational database data and the ESM outputs were
the effects of the CN ratio and clay content (Fig. 5). For both
global observational databases, the CN ratio was a substantial
contributor (Fig. 3a and b). The important contribution of the
CN ratio was the same in the northern databases (Fig. 3c–e).
The SOC in the observational databases increased with in-
creases in the CN ratio (Fig. 4c), whereas the SOC values of
the ESMs were insensitive to the CN ratio. Our results sup-
port the importance of properly incorporating the nitrogen

(N) cycle into SOC models (e.g., control over decomposi-
tion, soil fertility, nutrient availability, and plant litter quality)
(Berg et al., 2001; Cotrufo et al., 2013; Fernández-Martínez
et al., 2014; Liski et al., 2005; Tuomi et al., 2009; Ťupek
et al., 2016). None of the ESMs except for the CESM1 and
NorESM in CMIP5 included terrestrial nitrogen processes
(Todd-Brown et al., 2013); however, including this parameter
has been suggested as a key improvement for the next model
intercomparison (CMIP6) (Hajima et al., 2014; Zaehle et al.,
2015). The results of our analysis support the importance of
including the N cycle in ESM models.

Clay content is also often used as a regulator of the decom-
posability of organic matter in the soil (e.g., CENTURY and
RothC) (Coleman and Jenkinson, 1999; Parton et al., 1987).
Generally, high clay content inhibits organic matter decom-
position in the soil. Furthermore, high clay contents often
result in low drainage and anaerobic soil conditions, which
also inhibit organic matter decomposition. For the IGBP-
DIS data, the contribution of the clay content was as high as
that of the CN ratio. The control of decomposability by the
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Figure 6. Effect of the most influential variables in the model for global (a–e) and northern (f–i) outputs from ESMs and a comparison with
those of observational databases. Grey lines show the results of each ESM, and the purple line indicates the mean of the ESMs. The fitted
functions were centered by subtracting their means. See Table A2 for land cover classifications. Because of the small number of data points,
the results for “permanent snow and ice” are not shown (d, h).

clay content has been previously incorporated in site-scale
process-based models (Parton et al., 1987) and may be in-
corporated in certain ESMs because the soil carbon submod-
els in these ESMs are based on the CENTURY model (see
the soil model history reported in Todd-Brown et al., 2014).
However, regardless of whether the control of decomposabil-
ity by clay is incorporated, our results suggest that the influ-
ence of clay on the carbon cycle is not well captured in most
ESMs.

The mean annual temperature was identified as an influen-
tial factor in the global databases (Fig. 3a and b) but not in
the northern soil databases (Fig. 3c–e). Temperature is a main
factor controlling both plant production (source of carbon in-
put to soil) and soil organic matter decomposition, which are
already incorporated in ESMs. Based on an analysis of the
output of heterotrophic respiration, the temperature sensitiv-

ity (e.g., Q10 value) of soil organic matter decomposition in
the ESMs has been reported as 1.4 to 2.2 (Todd-Brown et
al., 2014). In addition, our analyses identified diverse rela-
tionships between the mean annual temperature and SOC.
The lower contribution of the mean annual temperature in the
northern soils likely occurred because temperature sensitiv-
ity is an exponential process, and the magnitude of observed
changes under changing temperature is relatively small at a
low temperature range, as shown in a comparison of temper-
ature functions in common biogeochemical models (Sierra
et al., 2015). The relationships between the SOC and tem-
perature obtained in this study include the integration of the
temperature sensitivity of both plant production and soil or-
ganic decomposition and thus do not provide the tempera-
ture sensitivity parameter of individual processes for ESMs.
However, the results of this study can be used to examine

www.geosci-model-dev.net/10/1321/2017/ Geosci. Model Dev., 10, 1321–1337, 2017



1330 S. Hashimoto et al.: Data-mining analysis of the global distribution of soil carbon

the consistency between the ESM outputs and observational
databases.

The mean annual precipitation made a moderate contri-
bution to the global observational databases and ESM out-
puts, which was likely because NPP and temperature were
strongly correlated with moisture and the temperature sensi-
tivity of decomposition is generally more dominant than the
soil moisture sensitivity. Similar ESM outputs have been re-
ported in Todd-Brown et al. (2013). However, precipitation
does not necessarily represent the actual moisture conditions
in soil, and soil moisture conditions are related to climate
conditions as well as soil texture, terrain, and vegetation. In
addition, aerobic/anaerobic conditions are important because
the wetland ratio has been identified as one of the influential
factors (described below).

In the ESMs, NPP was selected as an influential factor in
analyses of the global and northern SOC (Fig. 5), whereas
in the observational databases (Fig. 3), NPP was not an in-
fluential factor, which is consistent with the findings of a
previous study (Todd-Brown et al., 2013). Todd-Brown et
al. (2013) found that one of the major causes of variations in
SOC among ESMs is differences in simulated NPP, and the
strong control by NPP are not observed in the HWSD out-
put. This high NPP contribution in ESMs is understandable
because the terrestrial carbon balance is modeled by calcu-
lating the SOC stock via NPP or plant litter input to soil and
soil organic matter decomposition because plant litter input is
proportionate to NPP. However, our analyses suggest that the
influence of NPP on soil organic matter in the observational
soil databases was obscured by other factors. When ESMs in-
corporate the effects of other factors, such as the N cycle, the
effect of NPP may be diluted. Moreover, the large variations
in the total amount of SOC from ESMs are partly caused by
variations in the modeled NPP in each ESM (Todd-Brown
et al., 2013). Furthermore, SOC storage occurs via organic
matter accumulation over decades and even millennia. Thus,
prior NPP, land fires, and land-use changes may still affect
current SOC values (Carvalhais et al., 2008; Wutzler and Re-
ichstein, 2007). Land cover is another important factor, and
incorporating the hydrology and resulting carbon dynamics
in wetlands may lead to important improvements in ESMs.

Elevation was another influential factor, particularly in the
northern observational databases (Fig. 3d and e). We spec-
ulate that elevation may serve as a comprehensive index of
SOC in limited areas because other variables, such as tem-
perature, NPP, soil texture and other factors, change with in-
creases in elevation. The effect of elevation in ESMs was not
as high as that in the observational databases (Fig. 5). We
estimated that the effect of elevation might automatically in-
crease if the other aforementioned processes are properly ad-
justed/included in the ESMs.

4.2 Similarity in influential factors for ESM outputs

Analyses of the ESM outputs showed large variability, al-
though the influential factors were largely similar among the
ESMs (Fig. 5). This similarity likely indicates that the struc-
ture of the models that describe SOC dynamics in the ESMs
is similar. One reason for the similarity may be that certain
ESMs share a common code (Alexander and Easterbrook,
2015). Another reason may be rooted in the basic structure
of the soil carbon model, wherein SOC is calculated as the
balance between dead organic matter input to soil and carbon
emissions from the decomposition of organic matter. These
processes are influenced by temperature and water condi-
tions. The SOC pool is characterized by its turnover time
(decomposition constant). In general, decomposition exhibits
an exponential response to temperature, which is more severe
than its response to water. As a result, model results for SOC
are strongly influenced by NPP (litter input), temperature,
and turnover time, which have been demonstrated by previ-
ous studies (Exbrayat et al., 2014; Todd-Brown et al., 2013)
and were confirmed in our analyses.

As shown in Table 2, the submodels of SOCs in ESMs
differ in the number of SOC pools, and temperature and
moisture functions. Todd-Brown et al. (2013) reported that
the ESM outputs and observational SOC database results
did not produce consistent patterns for soil carbon pools,
temperature, and moisture sensitivity functions. Exbrayat et
al. (2014) found that the turnover times of SOC in the ESM
outputs were not affected by the number of SOC pools. Our
analyses also indicated that a match or mismatch of major
contributing factors between the ESM outputs and observa-
tional database results is not strongly related to these prop-
erties of SOC submodels. Thus, the spatial pattern of SOC
from ESMs are likely more strongly affected by the basic
structure, driving variables (NPP and temperature), and pa-
rameterizations (turnover time, and temperature and mois-
ture sensitivity, which are influential) than by the number of
pools and the types of temperature and moisture sensitivity
functions. From a mathematical perspective, the similarity is
likely fundamentally based on the description of these SOC
dynamics by a series of first-order linear ordinary differen-
tial equations that are not autonomous (Manzoni and Porpo-
rato, 2009; Sierra and Müller, 2015). With these equations,
the outputs generally do not show chaotic behaviors.

4.3 Uncertainty and other factors

Observational databases are directly generated from SOC ob-
servations; therefore, these databases should be closer to the
real SOC distribution than databases based on ESM outputs.
Hence, observational databases are often used as benchmarks
to evaluate the outputs of ESMs. Still, we should be aware
that these observational databases are generated using as-
sumptions, certain algorithms, and uncertain inputs. In par-
ticular, the uncertainty in the SOC for the northern regions
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is high in the observational databases (Fig. 1), which was
also observed in the results from our BRT analysis (Fig. 3c–
e). When the estimated SOC distribution from various ap-
proaches, such as data-driven and process-oriented model-
ing, are consistent, then our estimations have high confi-
dence.

Although we examined key factors from a wide variety
of candidate properties, potentially important mechanisms
that would improve the reproducibility of SOC distributions
by ESMs and process-based ecosystem models may still be
missing. For example, including microbial dynamics in SOC
models may improve projections of global soil carbon by
ESMs (Wieder et al., 2013), although models that include
these dynamics are still in development (see Wang et al.,
2014, 2016; Wieder et al., 2015). Reports indicate that the
role of mycorrhizae in soil carbon storage is important (Aver-
ill et al., 2014). Because soil carbon accumulation and de-
composition are slow processes and land cover is an impor-
tant factor in SOC, as shown in our study, considering the
land-use history of an area may be essential for improving
ESMs. Furthermore, because soil has depth and SOC and
soil environments vary according to depth (Davidson and
Trumbore, 1995; Hashimoto and Komatsu, 2006; Jobbágy
and Jackson, 2000), vertical soil heterogeneity/processes are
important (Braakhekke et al., 2013; Wieder et al., 2013).
The importance of mineral reactivity has also been suggested
(Doetterl et al., 2015). However, our results suggest that the
performance of ESMs can be improved simply through ade-
quate re-evaluation/inclusion of well-known processes. An-
other approach for improving ESMs is model–data fusion
(assimilation) (Hararuk et al., 2014). Although its application
to a part of an ESM (e.g., ecosystem carbon cycle model) is
realistic in consideration of the long running time, constrain-
ing model parameters with observational databases via data
assimilation, such as a Bayesian approach, would improve
the performance of ESMs. Another uncertainty of this anal-
ysis is the issue of scale because analyses applied at much
finer resolutions, such as 1 km, might be governed by differ-
ent influential factors. The potential mechanisms, parameter-
ization, and other modeling issues for next-generation ESMs
are not limited to those listed above and have been thor-
oughly discussed elsewhere (Luo et al., 2016; Ostle et al.,
2009; Wieder et al., 2015).

5 Concluding remarks

Although observational estimations of SOC are still un-
der development and have significant uncertainty, the con-
sistency between observational SOC database results and
ESM outputs will enhance our confidence in predicting SOC
dynamics under climate change. In this study, the same
data-mining BRT algorithm was applied to observational
databases of SOC stocks and ESM outputs. By comparing the
outputs from both analyses, we revealed the similarities and
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differences among the observational databases and ESMs.
On a global scale, in addition to improving the parameteri-
zation of temperature sensitivity and NPP, properly incorpo-
rating the influence of the nitrogen cycle and clay content in
ESMs was identified as a potential method of improving the
ability of these models to reproduce the distribution of SOC
found in observational databases. The results of this study
should help to identify the causes of the current mismatches
between observational SOC databases and ESM outputs and
improve the terrestrial carbon dynamics modeled in ESMs.
This study demonstrates that the data-mining scheme can be
used to compare the results from observational databases and
ESMs in detail and determine the key factors involved in the
mismatches.

Code and data availability. The R code, with a tutorial, for the
BRT algorithm is available in the supplementary material of Elith et
al. (2008) (doi:10.1111/j.1365-2656.2008.01390.x). The codes and
data for the observational databases are available in the Supplement.

Geosci. Model Dev., 10, 1321–1337, 2017 www.geosci-model-dev.net/10/1321/2017/
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Appendix A

Table A1. Classification of soil texture in ISLSCPII (see Table 1).

ID Texture

1 Sand
2 Loamy sand
3 Sandy loam
4 Silt loam
5 Silt
6 Loam
7 Sandy clay loam
8 Silt clay loam
9 Clay loam

10 Sandy clay
11 Silty clay
12 Clay

Table A2. Classification of land cover in ISLSCPII (see Table 1).

ID Land cover

1 Evergreen needleleaf forests
2 Evergreen broadleaf forests
3 Deciduous needleleaf forests
4 Deciduous broadleaf forests
5 Mixed forests
6 Closed shrublands
7 Open shrublands
8 Woody savannahs
9 Savannahs

10 Grasslands
11 Permanent wetlands
12 Croplands
13 Urban and built-up
14 Cropland/natural vegetation mosaic
15 Permanent snow and ice
16 Barren or sparsely vegetated

www.geosci-model-dev.net/10/1321/2017/ Geosci. Model Dev., 10, 1321–1337, 2017
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The Supplement related to this article is available online
at doi:10.5194/gmd-10-1321-2017-supplement.
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