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The paper develops  a model in which a  forest  owner  decides  an optimal  rotation pattern  for 

a forest  consisting  any  number of even-aged  stands. The  owner  has finite lifetime, nonforest 

income,  bequest  motive and access  to perfect  capital  markets  but  may not  have access  to 

markets for forest land. The model is  motivated by  empirical  findings suggesting  that 

timber supply  depends on variables that are  absent  from the original  Faustmann-Pressler 

-Ohlin formulation. Given a specific  form for the bequest  motive, each stand is cut  

according to  the Faustmann-Pressler-Ohlin rotation,  but more generally  the optimal 

rotations of  different stands  are  linked  together.  Imperfect  capital  markets  may shorten the 

rotation period and cause incentives to  smooth forest income over  time. The  effects  of in 

situ  valuation on the rotation period  depend  on forest owner  -specific  factors  like  subjective  

time preference  and forest owners  age. 

Pohjoismaissa ja Yhdysvalloissa huomattava osa raakapuusta tuotetaan  

yksityismetsänomistajien  toimesta. Yksityismetsänomistajien  puuntarjontapääksiin  

vaikuttavien tekijöiden  ymmärtäminen on entistä tärkeämpää  metsälakien uusimisen ja 

metsien in  situ -arvostuksen korostumisen seurauksena.  Tutkimuksen  tavoitteena on kehittää  

taloustieteellistä kuvausta yksityismetsänomistajan  päätöksenteosta  siten,  että kuvaukseen 

voitaisiin sisällyttää  metsänomistajan  muu  talous ja metsien in situ -arvostus  aikaisempia  

talousteoreettisia malleja  realistisemmalla tavalla. 

Faustmannin mallin ongelmana  ovat  empiiriset  havainnot,  joiden mukaan  puun  

tarjontaan vaikuttavat Faustmannin mallista puuttuvat metsänomistajakohtaiset  tekijät. 

Metsäekonomiassa näiden vaikutusta on tutkittu erityisesti  kahden periodin  mallilla. 

Tulosten mukaan puun tarjonta riippuu  metsänomistajakohtaisista  tekijöistä esimerkiksi,  jos  

pääomamarkkinat  ovat  epätäydelliset,  puun hintaan tai korkoon  liittyy  epävarmuutta  tai,  jos  

metsää arvostetaan  in situ. Kahden periodin  malli perustuu kuitenkin yksinkertaistukseen,  

jossa metsää kuvataan homogeenisena  biomassana ilman ikäluokkia. Malli ei tämän 

seurauksena voi tuottaa  tuloksia puustojen  optimaalisista  kiertoajoista  ja saatujen  tulosten  

empiirinen  (käytännön)  tulkinta on  ongelmallista.  

Faustmannin kiertoaikamallia on aikaisemmassa tutkimuksessa laajennettu  

sisältämään puuston mahdollinen in  situ -arvostus  sekä hintaan,  että puuston kasvuun  

sisältyvä  epävarmuus.  Nämä laajennukset on kuitenkin tehty ottamatta huomioon 



metsänomistajan  muun  talouden vaikutuksia hakkuupäätöksiin.  Kahden periodin  mallilla 

saatujen  tulosten perusteella,  nämä kiertoaikamallin laajennukset  ovat  puutteellisia  ja  ehkä 

harhaanjohtavia.  

Tässä tutkimuksessa kehitetään puuntarjontamalli,  joka sisältää kuvauksen  

metsänomistajan  taloudesta samalla kun  metsää kuvataan todellisuutta vastaavasti  

ikäluokittain. Faustmannin mallin oletus täydellisistä maamarkkinoista korvataan 

metsänomistajan  mahdollisella perinnönjättömotiivilla.  Lisäksi  tutkitaan epätäydellisten  

pääomamarkkinoiden  ja  in situ  arvostusten  vaikutusta puun tarjontaan.  Tutkimuksessa 

kehitetyssä mallissa metsänomistajan  ongelmana  on ajoittaa tasaikäisten puustojen  

hakkuupäätökset  elinkaarelleen samalla kun metsänomistajalla  on mahdollisuus toimia 

pääomamarkkinoilla  ja  jättää perintöä jälkeläisille.  

Faustmannin kiertoaika osoittautuu erikoistapaukseksi,  joka  toteutuu vain, jos 

"epätäydellisyydet"  kuten in situ -arvostukset  ja  epävarmuus  eivät vaikuta tarkasteltavan 

metsänomistajan  eiväkä kenenkään hänen tulevan jälkeläisensä  päätöksentekoon.  Lisäksi  

Faustmannin ratkaisun toteutuminen edellyttää,  että metsäperintöön  saa  liittyä vain 

rahallisia arvostuksia.  Lisäksi  perintöverotuksen  tulee kohdistua tasapuolisesti  metsään  ja 

muuhun omaisuuteen. Jos nämä Faustmannin kiertoajan edellyttämät  ehdot eivät  ole 

voimassa, optimaaliset  kiertoajat poikkeavat  Faustmannin kiertoajasta  ja metsänomistajan  

kaikkien  puustojen  hakkuupäätökset  voivat olla sidoksissa toisiinsa. Toisaalta, jos  

Faustmannin  kiertoaikaan liittyvät  ehdot toteutuvat, ei  yksittäisen metsänomistajan  kohdalla 

synny  taloudellisia kannustimia sopeuttaa  puustokokonaisuutta  kohti  normaalimetsää. Toisin 

sanoen monissa metsän hakkuupäätöksiä  kuvaavissa malleissa oletettu hakkuiden 

tasaisuuden vaatimus ei ole yksittäisen metsänomistajan kohdalla taloudellisesti 

perusteltavissa.  

Tutkimuksessa tarkastellaan hakkuupäätöstä  myös epätäydellisten  

pääomamarkkinoiden  tapauksessa  siten, että  metsänomistajan  lainansaanti on rajoitettua.  

Optimaalinen kiertoaika poikkeaa Faustmannin kiertoajasta  ja on sidoksissa  

metsänomistajakohtaisiin  tekijöihin. Karkea numeerinen tarkastelu osoittaa että,  

luotonsäännöstelyn  seurauksena optimaalinen kiertoaika voi olla merkittävästi Faustmannin 

kiertoaikaa lyhyempi.  Lisäksi  metsänomistajalle  syntyy  taloudellinen kannustin korjata  

tasaikäinen puusto pienemmissä  erissä  eli hakkuiden tasaisuuden vaatimus saa  taloudellista 

tukea. 

Lopuksi  mallia laajennetaan  ottamaan huomioon puuston in situ -arvostus.  

Optimaalinen kiertoaika on tässäkin tapauksessa  sidoksissa metsänomistajakohtaisiin  

tekijöihin,  jotka  ovat aikaisemmissa kiertoaikamalleissa sivuutettu. Lisäksi  optimaalisen  

kiertoajan  riippuvuus  taloudellisista parametreista  kuten puun hinnasta poikkeaa  



aikaisemmassa tutkimuksessa saaduista tuloksista. Kiertoajan  pituus  ja samalla puun tarjonta 

ovat funktionaalisesti riippuvia  esimerkiksi metsänomistajan  iästä, varallisuudesta ja 

subjektiivisesta  aikapreferenssistä.  

Tutkimuksen tavoitteena oli ensisijaisesti kehittää puun tarjonnan  

talousteoreettista perustaa ja  mallia,  johon  voidaan myöhemmässä  tutkimuksessa  sisällyttää  

metsään liitetyt ei-puuntuotannolliset  arvot ja arvostukset.  Jos tutkimustuloksia halutaan 

tulkita käytännönläheisemmästä  näkökulmasta, ne osoittavat, että puustojen  

optimikiertoaikojen  määrittäminen vain arvokasvun  ja maakoron avulla on mahdollista 

ainoastaan poikkeustapauksissa.  Metsänomistajakohtaisten  tekijöiden  (subjektiiviset  arvot  ja 

arvostukset,  tulot, ikä ja varallisuus)  huomiotta jättäminen saattaa  aiheuttaa merkittäviä 

taloudellisia hyvinvointitappioita.  Kehitetyllä  mallilla on  lisäksi merkitystä metsämaan 

arvon määrittelyssä ja suunniteltaessa metsänomistajien hakkuupäätöksiä  ohjaavia  

taloudellisia kannustimia kuten verotusta  ja  ympäristötukea.  
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1 Introduction  

Although  the Faustmann-Pressler-Ohlin (FPO)  forest  rotation model (Johannson  and Löfgren  

1985,  p. 73)  has maintained its importance  in forest  economics,  its ability  to explain  timber 

harvesting  decisions has been  questioned.  In the Nordic  Countries and USA a significant  

part  of timber supply  comes  from private nonindustrial forest  owners.  Several studies have  

found that cutting  decisions depend  on forest owner -specific variables that are missing 

from the FPO model such  as nontimber incomes and wealth (Binkley  1981,  Dennis 1990, 

Kuuluvainen et ai. 1996). Attempts to predict  forest  harvesting  decisions have  become 

increasingly  important  because  of the recent tendency  to liberalize public regulation of  

nonindustrial private  forest (NIPF)  owners  simultaneously  with increasing  in situ value  of  

forests  (Hultkranz  1992).  This study  presents  the FPO model in the continuous time life 

cycle  context  and offers  a  new  approach  for understanding  the harvesting  decisions of NIPF 

owners.  

As described by Binkley  (1981)  the first reaction to  the above -mentioned 

empirical  findings  was  that timber supply  should be explained  by  both  economic and 

"noneconomic" factors. However,  he shows  that a static  timber supply  can cover  forest 

owner -specific  factors  as well. More recently,  NIPF owners'  behavior has  been explained  by  

the Fisherian two-period  model (Lohmander  1983)  augmented  by  the dynamics  of  forest 

growth.  Using  this  formulation timber supply  is  studied under capital  market imperfections,  

uncertainty as  to  prices  and  interest rates  (Koskela  1989, Kuuluvainen 1990, Ollikainen 

1996)  and in situ  values (Ovaskainen  1992).  With these extensions,  the Fisherian separation  

may not  hold and timber supply  depends  e.g. on  preferences  and nontimber income. Most 

recently  the model has been extended to  the OLG framework (Löfgren 1990, Hultkrantz  

1992,  and Ollikainen 1996). 

The two-period model has greatly  increased our understanding  of timber supply,  

but the results have not  been obtained without costs. The two-period  model and its  
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continuous time version (Binkley 1987, Kuuluvainen and Salo 1991) neglects forest  

age-classes.  Instead of analyzing the rotation problem,  the model considers the problem  of 

maintaining  a biomass at its optimal  level over  time (cf. the fishery  model of Clark 1990). 

Since the age of stands is  an essential factor in forest harvesting,  this application  has been 

criticized by  Johansson and Löfgren  (1985,  p.  55) and Binkley  (1987).  Recently  the model 

has  been interpreted  to  describe uneven-aged  forest management (Montgomery  and Adams  

1995). However, in boreal forests, forestry is largely  based  on even-aged  stands. Binkley  

(1987)  shows  that models based on homogeneous  biomass do not  correspond  directly  with  

optimal  rotation analysis'.  

Along  with the development of  the two-period  forest model the FPO rotation 

analysis  has been  extended toward  several  directions. Hartman (1976)  adds in situ valuation. 

Uncertainty  in the form of stochastic price has been studied e.g. by  Norström (1975)  and 

Brazee  and Mendelsohn (1988).  However,  referring  to  results from the two-period  tradition, 

we  can hypothesize  that when the FPO model is  extended to include in situ  preferences  or  

uncertainty,  Fisherian separation  may not  hold. The model should also include 

consumption/saving  decisions and forest owner  -specific  features such  as  subjective  time 

preference  and nonforest income. Among other things,  these notions may change  the results 

as  to  how different types of forest taxation affect the rotation period.  

The strength  of  the two-period  model is  that it includes consumption/saving  decisions, 

but  it suffers  from neglect  of forest age-classes.  By contrast  the strength  of the FPO 

extensions is  the inclusion of age-class  structure  while the problem  is  neglect  of  owner  

-specific  factors.  An  attempt  to  include nonforest  income in the FPO  model is  that of Hyberg  

and Holthausen (1989),  but their model also  excludes the consumption/savings  decision. 

'Period t+l harvestable timber is  given by  xr h
t+F(xt

-h
t), where F  is  a  (strictly)  concave  

growth function and  ht is  the harvest  in period  t. Under constant  prices  and separability  
conditions,  the first  period  cuttings  satisfy  F'=p,  where p  is  the rate of interest. These  
equations  are  identical to those of the discrete time version of Clark's  (1990)  fishery  model. 
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The model presented  in this  paper observes  the  FPO approach  while including  a  

continuous-time description  of life cycle decisions. The owner  inherits a forest consisting  of 

n>l stands. The stands may differ in  age, growth, species, timber price  and harvesting  and 

regeneration  costs. The owner's problem  is to decide whether and  when to harvest the 

stands within his life time and what amount  and form of bequest  to leave for his heirs. 

Along  with the cutting  decision,  the owner  decides his  consumption  and savings,  including  

the pecuniary  bequest.  Nonforest assets can be consumed or  saved, and their  amount  can  be 

increased by nonforest income,  net  revenues  from harvests and interest on investments. 

Technically,  we  include the FPO model in  the life cycle  model of Yaari (1964).  When the 

original  FPO model is  applied  to  NIPF owners,  the infinite horizon reflects  competitive  land 

markets.  However, land markets are seldom competitive  and a major share of  NIPF owners  

inherit their  forests (Hultkrantz 1992). This raises  additional unresolved problems,  and both 

the determination of the rotation period and the role of bequest  motives are open. In 

contrast  to Mitra and  Wan (1985)  we assume that the forest owner has access  to perfect  

capital  markets. 

This study  shows that  under perfect capital  markets,  without in situ values and 

uncertainty,  the harvesting  and consumption  decisions are separable,  given the  bequest  

motive  has a  specific  form. As a bequest,  the forest land must  be a  perfect  substitute for 

other  assets. If the forest  owner or any future generation  deviates from such a bequest  

motive,  harvesting  of  all stands  are  linked together  and depend  on all the properties  of  the 

present  and (perhaps)  future forest owners.  The owner  applies  the FPO rotation if the value 

of land for his  heirs is  expected  to  be given  by the FPO  formula and  this  holds for  all future 

generations.  Thus a specific  form of bequest  motive yields  FPO rotation and "replaces"  the 

land  markets. However, an inheritance tax that treats forest and other assets asymmetrically 

or  an expected  future in situ  value, for  example, would suffice to  produce  a  deviation from 

FPO rotation and its comparative  statics.  These results  show that describing  forests as  

homogeneous  biomass neglects  part  of  the long-term  decisionmaking  that makes  the forest a  
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unique  economic resource.  Because of perfect  capital  markets there may not  be any  

convergence toward a normal forest at a  level of  a single  "tree  farm" (cf. Mitra and Wan 

1985). 

The rotation analysis  under imperfect  capital  markets  is  virtually  nonexistent in 

forest  economics. As  a  step  in this  direction,  we next  consider a  simplified  version of  the 

model with credit rationing.  It is  shown that at the moment  of harvesting  the consumption  

level jumps up.  Imperfect  capital markets create  incentives to smooth the forest  income 

over time, implying  that stands  cannot  be cut  independently  and that two  perfectly  similar 

stands may  not  be cut  simultaneously.  Credit rationing may decrease rotation length  and 

timber supply and using  the FPO rotation under imperfect capital  markets may  lead to serius 

deviation from the optimal  harvesting  policy.  These results are  new  and cannot  be obtained 

when forests are described without the age classes.  

Finally,  we study  in situ  preferences  with  competitive  capital  markets  and without 

bequest  motives. The rotation exceeds  the FPO solution and all the comparative  statics  

results deviate from the existing  literature based on  Hartman (1976).  In addition,  the 

rotation depends  on owner-specific  factors and e.g. if the rate  of interest exceeds  the 

subjective  time preference  the rotation length  increases with the owner's  age. The  study  

generalizes  the  FPO model to  include the forest  owner-specific  factors.  Although  such  a 

model has obvious  demand in empirical  studies, it has been absent in the forest economic 

literature. 

The paper is  organized  as  follows. Section 2 contains  the life cycle  model with n 

even-aged  stands and  derives the optimal  cutting  rule. Section 3 develops  the FPO rotation 

as  a special  case.  Section  4 considers optimal  rotation under credit rationing,  and section 5 

deals with in situ preferences.  Section 6  concludes the  study. 
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2 Life  cycle  consumption decisions  and even-aged forest  

harvesting  

Assume  that any economically  relevant rotation period  is longer  than the period for which a  

forest  owner makes  his  harvesting  decisions. For  example,  in boreal  forests  rotation periods  

typically  vary  from 50  to 150 years  but  on average forest owners  hold their  forests  for only  

about 30-50 years. The owner's problem  is now  to  choose the year for  harvesting  each of 

his stands  within his  life cycle  after inheriting a  forest consisting  of  n even-aged  stands.  We 

define a stand as  the smallest unit of trees  that can  be harvested and sold  one by  one. 

Physically  this  smallest unit  is one tree  since  it is  impossible  to  harvest  half a  tree  and leave  

the other half growing.  However, we  may as  well assume  that a  stand is  the number of  trees  

in one hectare since  it  is  normally  impossible  to  sell  coniferous trees  in smaller  units. As  for 

the  forest  owner's  preferences  we assume  that  he has  preferences  regarding  the bequest  he 

will  leave for his heirs. During  his life cycle  he can borrow and lend money from perfect  

capital  markets. The  possibility  of selling  forest land during  the life cycle  is  neglected  on 

the assumption  that well-functioning land markets  do not  exist.  

We first  specify  the optimal  consumption  schedule  for the period  following the 

last  harvest.  The  maximum utility  for  this  period will depend  on the moment  of  last  harvest  

and the level of  nonforest and forest  assets  at  the beginning  of  the period.  After solving  this  

problem we  can  use  the obtained value function to  solve  the  problem  for the period between 

the last  and second-to-the-last cutting.  This chain of interrelated optimization  problems  can  

be extended backwards to  the beginning  of  the forest  owner's  life cycle.  Figure  1 depicts  the 

evolution of  the forest for the three-stand case.  With n stands, there are n+l periods  and a 

chain of n+l optimization  problems.  

Denote the volume of  any  stand by  x ;  (m 3), i=1,...,n. For any  stand,  the annual 

growth  is  given  by  Fj(Xj)  (m 3), which is  a concave  growth  function with Fj(o)=Fj(Xj)=o,  
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Figure 1.  Optimization  periods with three stands. 

where Xj>o. We will frequently  assume  that the growth  function satisfies  the logistic  form. 

The  date for cutting  the ith stand is  tj  and the length  of the forest  owner's  life is  T years 

(after inheriting  the forest).  U(c)  is an increasing  and  strictly concave utility function  with 

the  inada conditions and  B  [a(T),xi(T),...,x
n
(T)] an increasing  and  concave bequest  function,  

where nonforest assets are denoted by  a(T).  The  annual interest  rate  is  p and  5 is  the 

subjective  rate  of discount. Let m(t)  denote the annual nonforest income, p ;(t)  the net  price  

of harvested stand i (i.e.  net  of cutting  costs) and Wj the planting  costs. Because some 

variables  of  this  problem  may  jump  at tj  we apply  the notation tj=tj~  when t approaches  tj  

from below. 

The  problem  for the period  after the last  cutting,  i.e. for te  [t
n
,T]  takes  the form: 
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Note that in (1) utility  is  given  in terms of  t=o.  At  the beginning  of  the last period (t=t
n
), 

nonforest assets  equal nonforest assets  at the end of the second-to-the-last period  a(tn~)  plus  

the net  benefits from the last  cutting  pn(tn_)x n(t;
n

_)"w
n
 (equation  3). Planting  costs w

n
 are 

assumed  to  follow the clearcutting  2.  Equation  (4)  defines  the (given)  initial level of  the new 

stand after planting.  Equation  (5) shows  that the volume in stands not  cut  at t
n
 are  

continuous. Finally,  equation  (6)  gives  growth  for the i=1,...,n stands. 

Let the costate  for nonforest assets  be  A  and (ft  the costate  for the ith stand. The 

current  value Hamiltonian (with  i=n+l) and the necessary  conditions for optimum  are:
3  

together with conditions (2)-(6).  Wn+l  depends  on the length  of  the optimization  period and 

2The  planting  decision  can  be studied  as  in the FPO  model. 

3Seierstad and  Sydsaeter  (1987,  p.  182),  theorem 3. By  theorem 4 (p.  182)  the conditions are  
sufficent. 

T 

Wn+l =max [ U(c)e"
st

dt+e-
sr

ß[a(T),x l (T),...,x n
(T)], (1)  

{  c,a(T)} Jt„ 

s.t. a=pa+m-c, (2) 

a(t
n
)=a(t

n-)+pn(tn-)x
n(tn

-)-w
n ,
 (3) 

Xn(tn)=Xn
f  , (4) 
l
n 

Xi(tn)=Xj(tn-) for ali ,i/n, (5) 

xpFjCxj),  i=1,...,n. (6) 

Hi=U(c)+A(pa+m-c)+l <PiFj(x;), (7) 
i =1 

U'(c)-A=o, (8) 

(9) 

%=<pi [s-Fi '(xi )],i=l,...,n, (10)  

A(T)=dß [a(T),x,  (T),...  ,xn(T)]  /da(T), (11) 

<pI
(T)=^[a(T),x l (T),...,x n

(T)]/dx i (T), i=1,...n. (12)  



14 

the level of assets  at t
n
~.  We write W

n+]=Wn+l  [a(t
n-),Xi(tn

-),...,x
n
(t

n
-),t

n
] and assume  that  

this function is  differentiate w.r.t. a(tn~), Xj(tj-), for i=1,...,n  and t
n

.  It is  now  possible  to 

proceed  period  by period backwards  toward t=o and for any  period  i=2,...n, we obtain  the  

following  optimization  problem:  

together  with conditions (2) and (6). When i=l we have  the first period.  In this case we 

maximize (13)  with  i=l subject  to (2),  (6),  a(0)=ao,  and the initial volumes in each stand 

Xj(o)=Xjo, i=1,...,n. If there are cuttings  at t=o, we include their net  benefits in  the initial 

value of  nonforest assets a<).  

Again  the Hamiltonian is given by (7), and the necessary conditions for 

optimality are:  

together  with (2), (6), and  (8)-(10)4.  Note  that  in (19)  we have taken into account  two 

effects  of tj  on Wi+l .  The first effect  is  Hj + i(tj),  i.e. increasing  tj  decreases the length  of the 

period  after the last cutting.  The second effect follows if pj(tj_)*0 because  increasing  tj 

changes  the initial value  of  the next  period  nonforest  assets.  

A priori, it is possible to obtain cases  where interior solutions for some of the 

4Seierstad &  Sydsaeter  (1987)  theorem 4 and note  2,  pages 182, 183 and theorem 9 page  213 

Wpmax f
l

U(c)e"
a

dt+W
i+l [a(tr),x l (tr ),...,x

n
(t i-),t i ], (13)  

{ c.tj,  a(tj-), J 
xi(tr) x

n
(tf)} 1 1 

s.t. a(ti_l )=a(ti_,-)+p (ti_r)xi_i(ti_,-)-wi_ l (14) 
i-i 

Xj— !  (tj—  i  )—x i . (15) 
M—l 

Xj(tj— i  )=Xj(tj— |  ), for all  j*i-l, (16) 

A(ti-)=e
stl

dW
i+l

 [a(tj-),x  |(tf),...,x
n
(t i-),ti ] /  <9a(tr), (17)  

<Pj(tr)=e
stl

sW
n+ i

 [a(tj-),xi(ti -)v,x
n
(tr),ti ]/sxj(ti -))  j=1,...n, (18)  

Hi  (ti-)=Hi+ !  (t,)-Ad^pidi^Xidi")
. (19) 
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most  mature  stands do not  exist,  and it  may then be optimal to  cut  these stands immediately  

at t=o. In addition,  there is  no need to exclude an option  where some  of the stands are  not  

cut  at all nor  the possibility  that there are  boundary  solutions such that for  some stands  tpT.  

The restrictions T>t
n and tj>tj_i i=1,...,n,  can be included but here they  are neglected  for 

simplicity.  

We study  the optimal  cutting  moments.  By  (19),  (7),  (14)  and (15)  we obtain 

By  theorem  9  in  Seierstad  and  Sydsaster  (1987,  page  213)  we  obtain  e^t| sW
i+ i/<9a(ti)=A(ti).  

(14)  implies  (9a(tj)/da(t;-)=l.  Thus by  (17)  A(tj~)=A(tj)  and by  (8) c(tj-)=c(tj). Note that the 

states  and costates  for j=1,...,n, j*i are  continuous (equations  16 and 18).  Now equation  (20)  

simplifies  to: <p(tr)Fi[xi (ti-)]= A(tj)p [p(ti -)x i(t i -)-wi ]+9i (ti )Fi  [xj  ]-A(ti )p(t i -)x i(t i -), for 
l

l  

i=1,...n,  where it is  assumed  that mis continuous at  t
r
 Next  da(tj)/dx(tj-)=pj(tj)  and (17)  and 

(18) yield  <pj(ti-)=pi(tj-)A(tj).  We obtain 

For  interpretation of the term <p(tj)Fj  [xj  ]in (21)  note  that after cutting  at tj  the volume of  
M 

stand i  is a  function of time and  the cutting  moment.  Thus Xj(tj,T)=j Fj  [x,(s)]  ds+Xj By  
M 

equation  (10) we obtain a linear first order differential equation  with nonconstant  

coefficient;  its solution can be written as  

U  [c(tj-)]  +A(tr)  [pa(t i -)+m(ti -)-c(ti -)] <Pj(tr)Fj  [>j(tj-)]  +<p(tj-)Fj  [x(tf)]  =  

U  [c(ti)] +A(t i ){p[a(t i -)+Pi(ti -)xi(tr)-wi ]  +m(ti)-c(tj)} (20) 

+1  <Pj(tj)Fj[xj(tj)][xj ] for  i=1,...,n  and  j*i. 
j = l l

i 

Pi(tf  )A(tj)  (Fj  [xj(tr)]  -Xi(tj-)  [p-p i(ti -)/pj (t i -)]  +pwi/pi (ti -)i=<pi (t i )F i (xitj
),  i=  1  ~..n. (21)  

<Pi(t i )=<pi(T)e Fi ' C x iCti» T)]  }dT  i=l>  n (22)  
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Integration,  applying  the logistic  growth function (22) and (12)  yields  

Substituting  (23)  for <p(ti)Fi(Xi )  in (21)  gives  an equation  for the  optimal  cutting  moment.  
M 

According to (23)  the RHS of (21)  equals  the present value of a decrease in bequest  

evaluated at tj  caused  by  a marginal  increase in the growing period  for the  inherited stand. 

The LHS of (21)  is  the increase in utility at tj  due to a  marginal  increase in the growing 

period  for the initial forest stock.  This  equals  the value of additional growth,  

Pl(tj-)A(tj){Fj  [xj(tj-)] minus the interest on the value of harvest at tj,  

Pi(ti-)A(ti)xi(t i-)[p-Pi(tr)/pi(t i-)]  plus  the gain  in interest  due to a  delay  in the regeneration  

costs,  A(t,)pwj.  All  terms  are  evaluated in current  value utility units at t,.  Note that the rate  

of  interest p,  is  "corrected" by  the rate  of price  change  at tj. More briefly (21) specifies the 

cutting  moment  as  the moment  where the net  gain  due to  an incremental increase in the 

length  of the growing  period of  a  stand equals  the associated loss  in the value of  bequest  

evaluated at tj. 

In equations  (21) and (23),  the terms  a(T)  and A(tj)  depend on the forest  owner's  

life-cycle  consumption  schedule. In addition, the cuttings  of  the stands may  be connected  

through  the bequest  function. Thus the  cutting  moment  for any  stand depends,  in general,  

on  the cutting of all other stands,  nonforest income,  consumption  preferences,  time 

preference,  and initial nonforest assets,  in addition to  forest  growth,  prices,  planting costs  

and the rate  of interest.  

In the case  of  one stand,  equations  (21)  and (23) form one equation  with two 

unknowns, tj  and  A(tj).  By  (9)  the  latter equals  Aoe' where Ao  is  unknown. For 

determining  these unknowns,  (8) implies  consumption  as  a function of time and Aq: 

c=c(Ao,t).  Equation  (2)  and the initial value of  nonforest  assets  implies  a(t)  for te  [o,tj~)  

<Pi(tj)Fj  [Xi  ]  =(pi(T)e-
JT

i
{s-Fi '  [x'(t "T)]  )dT

F,  [Xi  ]  =<pi (T)e"
s(T-ti)

F i  [XiCD]  =  
l
l ll  

{sB[a(T),xi(T),...,x
n
(T)]/i9xi(T)}Fi[Xj(T)]e"^(T "ti)

,

 i=1,...n. (23)  
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Next  (14)  and (2)  yields  a(T) as  a  function of  t]  and Aq. This  together  with (11)  implies  Aq  

as a function of tj, which makes it  possible  to solve  the optimal  cutting moment  by  

equation  (21).  When the number of  stands  is  higher,  following  the above procedure  gives  Ao  

as  a  function of  all  the cutting  moments:  Ao=Ao(tt
n).  Equation  system  (21)  can  then be 

used to solve for the optimal  cutting  moments.  We next  specify  some examples  for the 

bequest  function that separate the consumption  and cutting  decisions. 

3 The FPO rotation  

Assume that nonforest assets and forest land are  perfect  substitutes as  a  bequest  and that the 

bequest  function is: B=B  [a(T)+£  V;]
,
 where  Vj is  the owner's  expectation  for  the  monetary 

i =1 

value of stand i. Note  that this  rules  out  all future capital  market imperfections  and in situ 

preferences.  Vj  may depend  on the stand volume at t=T,  on  expected  long-run values for 

timber prices  p, rates of  interest p and planting costs w. Thus VpVj  [xj(T),pj,p,Wj] . In 

general,  Vj may reflect any  future rotation program and may be determined by numerous 

factors  such  as,  inheritage  taxation that favors forest bequest,  expected  changes  in prices,  

interest rates  and biotechnology.  Assume that any  Vj  is  higher,  the higher the stand volume, 

i.e.  5Vj/sxj(T)>o.  Equation  (11)  yields  A(T)=B',  which  by  (9)  implies  A<j=e^~^T
B'.  By  

equation  (12),  <Pj(T)=B'(?Vj/<?Xj(T).  From equations  (21) and (23)  one obtains  for  i=1,...n, 

This is  a  cutting  rule where the optimal  harvesting  moment  depends  on stand growth,  prices  

net  of  cutting  costs,  rate of  price change,  regenerating  costs,  marginal  valuation of  the stand 

at T, and the length  of the life cycle.  Of  these, the expected  value of  the stands and the  

Pi(tj-)  {F;  [xj(ti")]  -  [p-Pi(ti-)/pi(ti-)]  x i(t i -)+pwi/p i(ti-)} -  

e-pOMi)  [5Vj /axi(T)]  Fi  [Xj(T)]  =O. (24)  
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length  of  life cycle  are forest owner  -specific.  However, in spite  of the bequest  motive,  the 

cutting  moment  is independent  of such forest owner -specific  features as nonforest income 

and preferences.  Another implication  of perfect  substitutability  is that the different stands 

are  cut  independently. s  We next  show that  the FPO rotation is  a  special  case  of  rule (24).  

Denote the value of  the land area  for  stand i under the FPO rotation by  Vj.  Thus  

Vi=[pxi(tjf)e -Wj](l-e \ where t; f is  the  FPO  rotation period  and  pis  the constant  

price  for timber. Recall  that Vj is the maximized value of forest land just  after the 

regeneration.  The value T-tj years after the regeneration  equals (c.f. 

Johansson and  Löfgren  1985, p.  85).  

Proposition  1. Given that p=o,  B=B{a(T)+X  (V i+w i )e^"t'-'}  and that Fi(xj),  
i =1 

i=1,...n,  satisfy  the logistic  form,  then  tj  , for  i=1,...,n,  equals  the  FPO  rotation period.  

Proof:  The  task  is  to  show  that  <p(t i )Fi  [xj  ]=A(ti )p(Vi
+w i)A<)

e^^ti  because  then  
M 

(21) yields  the FPO rotation. For  this  purpose we  compute (23)  using  the assumptions  above. 

In differentiating  the bequest  function w.r.t. Xj(T), note  that at T the level of  Xj(T) is  a 

(decreasing)  function of  t;  (by  the properties  of Fj).  The inverse of  this  function  gives tj  as  a 

function of Xj(T). Denote this  by  tj=tj  [xj(T)] .  Using  the logistic  growth  function we obtain 

Xj(T)=Ki/[l+Cie  r where Ci=e
r,t '  [(xjti-KiVxjtj] .  This  can be  solved  for  ti; implying  

tj'[xj(T)]=Kj/{xi(T)rj[xj(T)-Kj] }, where x i(T)=K i/(l+cie"ri Using this,  (11) and the 

assumed form for  the bequest  function implies 

where the explicit  form of tj'[xj(T)]  is given  above. The  equation  above, (23)  and 

A.(t)=Aoe^ yield  

sBy  differentiating  (24)  it can  be shown that the optimal  rotation  period  is  longer,  the lower 
the value  of  <9Vj/dxj(T),  i.e. the effect  of stand  volume on  land value,  the higher the planting  
costs  and the greater  the price  increase. The  effects  for short-run timber price  and interest 
rate  are  ambiguos. 

dB  { a(T)+l  (Vi
+w

i )e
p(T" ti)

}/sxi(T)=-A(T)ti'  [xj(T)]  p(V,+Wi)e
P{T " 1

'  t x' (T) ] }
,
 

i  =1 
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We have  shown that in the absence  of "imperfections"  like in situ preferences  or  

imperfect  capital market, the bequest motive may guarantee the FPO rotation and efficient 

allocation of total assets between forest land and monetary assets. However,  the 

requirements for  the FPO  rotation are rather restrictive. We hypothesize  that the forest 

owner  cannot  have in situ  preferences;  he must  have  access  to  perfect  capital  markets;  the 

price, interest rates  and forest growth must be known with certainty;  and the bequest  motive 

must satisfy  the specification  in Proposition  1.  In addition,  these requirements  must be 

expected  to hold  for all  future generations  up  to infinity. 

In comparison  with  the above results  the homogeneous  biomass forest models 

neglect part  of the long-run  dynamics  involved in forestry. In these models the stock  level 

can be adjusted  between different singular  paths  within a relatively  short period  of time and 

e.g. neglecting  the bequest  motive does not  typically  change  the first period  harvest  in the 

two  period model (e.g.  Kuuluvainen and Salo 1991).  In our  model neglect  of  the bequest  

motive always  changes  the current  generations harvesting decisions and also has permanent 

consequences on the future rotation program. 

Mitra and Wan  (1985)  ask what is the optimal  pattern  of  harvesting  trees  if a  

forest  owner  (with  infinite life  time)  obtains  utility  in any  time period,  which is  determined 

by the trees  harvested in that period.  The answer is complicated  but e.g. with  strictly 

concave  utility function  and zero  rate of  discount it is  optimal  to  adjust the forest  toward a  

normal forest,  where  each stand is cut according  the FPO rotation. With discounting,  there 

may not occur  converge toward the normal forest. Their model has many interesting  

interpretations,  but as  a  description  of NIPF owner's problem  it neglects  capital markets. 

Above we have  considered a  similar question,  except  that the owner  has a finite lifetime, 

bequest  motive, and access  to  perfect  capital  markets.  Under the conditions in Proposition  

<Pi(ti)Fi  [xjtj]  =-p(Vi
+w

i)ti l  [xj(T)]  Fj  [xi(T)]  Vi(^P)-  

where ti '[x i(T)]F i [x i(T)]=-l  completes  the proof.B 
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1, a  forest owner  with n>l similar stands of  the same age  will  cut  them at the same moment  

and  still have a continuous consumption  schedule. Due to  perfect  capital  markets  there are  

no incentives to smooth the forest  incomes in time and convergence toward  the normal 

forest does not  occur.  

4 Imperfect  capital  markets  

The above analysis  suggests  that the  FPO solution and related consumption  path  depend  

strongly  on perfect capital markets. Several  authors (e.g. Samuelson 1976) stress  the 

importance of extending  the optimal  rotation analysis  to  the case  of  imperfect  capital  

markets. However, this  question  has been studied mainly  in the context of the two-period 

model (Koskela  1989, Kuuluvainen 1990, Ollikainen 1996) and optimal  rotation analysis 

with imperfect  capital  markets is  virtually  nonexistent. As  a step in this direction, we  study 

our model with  one stand and without nonforest income. This yields a theoretical 

formulation and  reveals  a  route  for studying  the difficult case  of  imperfect  capital  markets 

with multiple stands. 

We introduce imperfect capital  markets in the  form of credit rationing  and 

assume that nonforest assets must be nonnegative.  With one stand and without nonforest 

income, the owner's problem  is  to 

and x=F(x),  x(o)=xq,  where  t[ is  the cutting  moment  and W2 is  the maximized value of  a 

consumption/  rotation program after the first  harvest  at tj.  Note that the inada conditions 

*t] C*  

max Wj= (25) 

{c>o,tj} 

s.t. ä=pa-c,  a(0)=ao,  a(tr)>o, (26) 
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imply  c>o  and that it is  enough  to  have an endpoint  constraint a(t]-)>0 on  the assets  to  be  

consumed before the first harvest. 

The  problem  (25)-(27)  may take  different forms depending  on the assumptions  as  

to bequest  motives. We concentrate  on  a theoretical case  where 2 [a(t] —),x(t]—),t ; ] is  a  

value function of  an optimization problem  identical to that stated above and the situation 

holds forever. This means that we either assume  that  each human generation  has  perfectly  

altruistic  bequest  motives or  that the forest owner  lives infinitely.  

We obtain the Hamiltonian H=U(c)+/l(pa-c)+<pF(x)  and the following  necessary  

conditions: U'(c)-A=o,  A=X{s-p),  <p=<p[s-F'(x)]  and 

where we assumed that p=o.  When studying  a  problem  where the only  source  of income is  

forestry,  it is  natural  to  study  a stationary  solution and assume ao=px(t]~)-w  in equation  

(26).  We can  study  two  cases  depending  on whether the credit rationing  is  binding.  

Case  5-p<o: In this  case  a  solution where consumption  is  continuous and where 

the rotation length  equals  FPO satisfies the necessary  conditions. To show  this  we can  argue 

precisely  as  for equation  (23)  to  obtain <p(ti)F(x
t where t2  is  the  

date  for the second  cutting  moment.  In the FPO solution the  rotation period  is  constant, 

implying  t2=2tj  and  x(t2")=x(tr). Thus  ?(t2
-)e"^ trt|¥[x(t 2-)]  =  <p(t 2-)e"

st
'F[x(tr)] .  

Equation  (29)  implies  <p(t 2-)=pA(t 2)=pAoe^''^ tl and yields with A^Age that  

(Kt 2-)e"
st

'F[x(tr)]=  pAoe
(s"P)tl "Ptl

F[x(t r)].  Next,  by  (27)  and  (29)  

u [c(tr)]  +A(t,-)  [pa(t,-)-c(tr)]+<p(tr)F[x(tr)3 = 

U  [c(t !)]  +A(t!)  { p  [a(t  I  -)+px(t  r)-w]  -c(t!)}1  )F(x
ti

) (27)  

[A^t,-)-^!)] >o, (2Ba,b,c)  

<p(tr)=PA(t,), (29)  

pF  [x(t, —)]  =p  [px(t  r)-w]  +pe"
ptl  F  [x(tr)j

,
 (30)  
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which is one form of the FPO  formula. Note that this result is perfectly in line with 

Proposition  1 because when s<p  and when we consider a  stationary  solution where the 

initial assets equal  the net  income from optimal  harvest,  the credit rationing  constraint 

cannot  be binding. 

Case s>p: The case  where A.(t 1
_)-A(ti)=o  and a(t!-)>0 in (28)  implies  that  X  is  

continuous and that A-*» and c-iO  as t-**>.  This cannot  be  optimal  in  the case  of credit 

rationing  and continuously  available income from  forestry. Thus a(ti~)=o and A(t 1~)>A(t 1 ),  

implying that c(t)-)<c(ti). In a stationary  solution the cycles  are repeated  as perfectly  

similar,  implying  that c(ti)=c(o) and A(t])=Ao.  

Thus when the credit rationing  constraint is  binding the value  of  X jumps down 

and consumption  up at each harvesting  moment. This follows because due to the constraint 

a(t)>o, consumption  possibilities  cannot  be transferred from the future to the present. A 

transfer  from present to  future is  possible  by  saving  and  thus  downward jumps  in c  are ruled 

out, as implied by  (28a).  Between rotations the shadow price of saved forest income 

increases exponentially,  implying  that consumption  decreases between the moments of 

forest harvesting.  

For studying  the optimal  cutting  moment, note that (29)  yields  <p(t 1 -)=pAo  and 

next  applying  (23)  <p(ti)F(x
t Equation  (27)  takes  the  form 

where c0=c(0).  The RHS  of (31)  is  the current  value Hamiltonian after  the first  harvest.  

Appendix  1 shows that Hamiltonian at tj equals  the value of the optimal  solution for 

te[ti,°°)  multiplied  by  the rate  of  time  preference,  i.e. 5W
2=H(ti). Thus equation  (31) gets 

u[c(tr)]-u'[c(tr)]c(tr)+u'(c o)pF[x(tr)]= 

U(c o)+U,(co){p[px(tr)-w]-c o }+U'(co)pF[x(tr)]e"
,stl

,
 (31) 
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the form U[c(t]-)]-U'[c(tr)]c(tr)+  U'(co)pF[x(ti-)]=öW 2 . The  term U'(co)pF[x(tr)]  on 

the LHS  is  the marginal  increase in stand value if the growing  period  is  marginally  longer.  

Because an increase in stand volume increases the stock  of assets to be consumed before 

the next  cut, this term is given  in  utility units at tj.  Lengthening  the rotation also  changes  

the consumption  profile  before  the cut as  reflected by  the terms U[c(t!-)]-  U'  [c(ti~)]c(ti-).  

The term U[c(ti~)]  is  the utility from extending  the rotation and U 1 [c(t]-)]c(tj-)  is  the cost  

of  producing  this  prolongation  by  marginally  decreasing  the rate  of consumption  before the 

cut.  The RHS  is  the cost  of postponing  the whole future rotation/consumption  program. Thus  

equation  (31) can be compared  with the FPO  rule given in the form pF=p[px(t]~)-w] 

/(1 -e where the RHS  is  the rate  of discount multiplied  by  the value of  the mature  stand. 

Write equation  (31) in the form U'(c o){pF[x(tr)]-p[px(ti-)-w]-  

F[x(tr)]e where G=U(co )-U'(co)co-{U[c(ti-)]-  U'[c(tj-)]c(ti - )}.  A comparison  

with equation  (30)  reveals  that with FPO rotation  and <s>p  the term pF[x(t|~)]-p[px(ti - )-w]- 

pF[x(t] _)]e is  positive. Because  G>o  it is  not  immediately  clear whether credit rationing  

lengthens  or  shortens the rotation period.  

When credit rationing  is  binding  the optimal  cutting  moment  always  depends  on 

owner  -specific  factors  such as  the subjective  time preference  and the utility function. For  

studying  these dependencies  we consider a  simple  case where p=o and the  utility  function 

takes  the form U(c)=(c'  a-l)/(l-a), where ae(0,l).  We obtain  c-c o
e'^a.  Because  the 

optimal  consumption  schedule exhausts  the harvest net  income between rotations we obtain 

the  budget  constraint  l^'coe"
1

 
a

dt-px(ti-)+w=o  and  

Equations  (31)  and (32)  yield  the comparative  statics  for the optimal  rotation period.  Using  

the utility function given above and assuming  p=o, equation  (31)  takes the form 

Co=P  [x(tr)-w/p]  <5/a(  1  -e" I'
s/a

). (32)  
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value of  T  depends  only  on  w/p  and not  on the absolute values of  timber price  or  planting  

costs. Differentiating  T implies  

By  (32)  the level of  c  0  is higher,  the higher  the timber price  and the lower the planting 

costs. Thus dS/dp>o  and <3S/<9w<o. Equations  (33)  and (34)  now  imply  that the higher  the 

timber price or the lower are  planting costs the longer  is the rotation period.  Thus these 

comparative  statics results  are  qualitatively  similar as in the FPO model. The effects  of the 

subjective  time preference  and utility parameter a are more complicated  and are  

demonstrated by  numerical examples.  

Figure  2a,b,c.  Optimal  rotation and  imperfect  capital markets  

Note: 

The  parameter  values  approximating the  conditions  in  Sounthern  Finland  are: K=500  (m' ), r=0.048/a, 

x
1
 =10  (m3), w=3000  (FIM). In  addition,p=l70 (FIM), δ=0.02/a and  α=0.5  if not  expessed otherwise.  

cze

-sti/5t i/a
Co(l-oc)( e

5ti/«-  e^ t
i)/( a.i)+Co

"a

pF[x(t 1-)](l-e"^tl
)=0.  By  (32)  we  can  write  co=pS,  

where S=[x(t! - )-w/p]s/  [aO-e"^ 1
' 05

)]. This  yields  (pS)  ap{aS(l-e  t,^a+^t
')/(a-l)+  

F[x(tr)](l-c"
&1

)}=0. Comparative  static  results  follow by  using the fact  that  

r=aS(l-e"^t'^a+^tl
)/(a-l)+F[x(t 1-)](l-e"^ 1 )=0  is  necessary  for  optimality.  Note  that  the  

dV/dp=adS/dp(  1  . e

-<st,/a+<st i  )/(a- 1  )<O, (33)  

dT/dw=adS/dw{  1  -e

" st ' /a+<stl
)/(a-1)>0. (34)  
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Figure  2 shows examples  of the rotation with credit rationing  and the FPO 

rotation. With zero rate of  interest the latter maximizes the "average  net  sustained yield", 

[px(t 1 -)-w]/t]. In Figure (2a)  both  periods  are  shorter,  the higher the price.  Rotation with 

credit rationing  is  considerably  shorter than  the FPO  rotations. When timber price  equals  300  

the FPO rotation is about three times longer  than the rotation with  credit rationing.  Note, 

however,  that the logistic growth model is able to give only rough numerical 

appriximations.  Figure  (2b)  shows that rotation period  decreases with the subjective  time 

preference  8.  The periods  converge in length  as  8-*0  because  with  s=o  the credit rationing  

constraint is  not  binding.  Figure  2c compares rotation periods  with different levels of the 

utility parameter a. With greater curvature  (greater  a)  the forest owner  prefers  a flatter 

consumption  schedule and  more frequent  but  lower forest income implying shorter  

rotations. In general, Figures  3a-c  demonstrate that using FPO rotation when capital  markets  

are  imperfect  may lead to rather serious deviations from the optimal  harvesting  policy.  

In section 3 we showed that with perfect capital  markets  there are no incentives 

to smooth the forest income over  time and thus there cannot  be convergence toward  a  

normal forest.  Binding  credit rationing  implies an outcome  where consumption  jumps  up at 

the harvesting  moments.  Such  a  jump in consumption  reveals  inefficiency  caused by  the 

forest owner's  inability  to  borrow. The stand may be cut  before the FPO rotation age, 

implying  that after the harvest  the assets  of  the owner earn a  lower marginal  rate  of  interest  

than which would be obtainable if the stand could be  harvested in smaller units. This 

suggests that extending the model to  include multiple stands implies  that it will not  be 

optimal  to  cut  two  perfectly  similar stands  simultaneously  but instead to  smooth the forest 

income over  time. The solution with multiple stands may converge toward some long-run  

steady  state solution. If  the number of  stands  is  finite the resulting  rotation period  may still 

deviate from the FPO  rotation and resemble the rotation period with one  stand as  described 

by  equation  (31). 

It is shown by Koskela (1989)  and Kuuluvainen (1990)  that credit rationing  
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increases  the first  period  harvest  in the two-period  model. In Figure  3  the result  is  quite the 

reverse  because credit rationing  shortens the rotation period,  implying  a lower level of 

harvestable timber. However, the comparison  of these two  models is  far from unambiguous.  

Our  model based on the FPO approach  suggests  that imperfect  capital  markets  

may contain economic motives to smooth the forest income over time and sell timber in 

smaller units. In addition,  this  leads to  long-term  differences  in  the age structure  of forests.  

Whether these incentives are  actually  realized  depends  on whether the  imperfections  of  

capital  markets  are  binding.  This in turn  may depend  on various factors  like the subjective  

time preference, rate  of interest,  nonforest income, initial amount  of  nonforest assets and the 

initial age composition  of the forest. These problems  may  be studied e.g. by  extending  the 

number of  stands but neglecting  the bequest  motive. 

5  In  situ  preferences  

We next  extend our perspective  by  taking  into account that the forest owner  may 

evaluate  forests  in situ  in addition to  the  pecuniary  value of  timber. It  may be expected  that 

with in  situ valuation the Fisherian separation theorem may not  hold, implying that the 

cutting  decision depends  on forest owner -specific  factors. Recall that this complication  is 

not  taken into  account  by  simply  adding the in situ valuation in the FPO model (e.g.  

Hartman 1976). Thus this widely applied  extension presents only  a partial  picture of  how in 

situ valuation changes  the rotation period.  In our  framework,  analogous  extensions  may  take 

many different forms depending  on capital  markets,  bequest  motive and number of stands. 

We consider a case with one stand, perfect  capital  markets and a bequest  motive reflected 

by  a  lower bound restriction  for nonforest assets at the end of the life cycle.  To simplify  we  

neglect  forest bequest  motive  but assume (as  is  the case in Finland)  that replanting is  

required  by  the law. 
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Let the in situ  preferences  be given by  A(x), A'(x)>o,  A"(x)<0.  Thus the in situ 

value of the stand is  taken to be an increasing  concave function of timber volume. We will 

focus the analysis  on optimal  interior solutions instead of cases  where the stand is  cut  at the 

end  of  the owner's  life cycle.  For the period  after the stand is  cut,  the forest  owner  aims to 

subject  to  a=pa+m-c, a(t l )=a(t l -)+px(tl -)-w, x=F(x), (given),  and a(T)>O.  Using  

Seierstad and Sydsaeter (1987,  p. 85,  theorem 2), the Hamiltonian is H2=U(c)+A(x)+ 

A(pa+m-c)+cpF(x)  and the necessary  conditions include A=A(S-p)  

Write the value function  as  W2
=W

2 [a(ti-)
> x(t 1 ),t I ] .  The criterion for the period te  [o,ti)  is 

A(x)]e  
t
+W

2 [a(ti-),x(tr).ti]  ■ The necessary  conditions for interior tj  include 

a(0)=ao,  x(0)=x0 and 

In (40)  we assumed that p=o. Condition (38)  implies  that X must be continuous and  

condition (39)  with a(t l )=a(t 1
_)+px(ti_)-w that  (p(t|-)=A(t]-)p.  Using these  facts  condition 

(40)  can be written in the form 

T 

max  W
2=[ [U(c)-A(x)]e~

st
dt,  

{  c>o} Jt, 

<p=-A'(x)+<p[ö-F'(x)], (35)  

A(T)a(T)=O,  A(T)>O, a(T)>O, (36)  

(fK  T)=o. (37) 

A.(t,-)=e
st|  dW  2  [a(tr),x(t!  ),t  J  /sa(tr), (38)  

<p(t 1 -)-e
st

isW 2 [a(t 1-),  x( (39)  

H,(tl-)=H2(t l ). (40) 
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The LHS of (41)  is the increase in utility before tj, given that  the cutting moment  is 

marginally  postponed.  Note that the value growth  net  of  interest costs is  given  in utility 

units at tj. To interpret the RHS recall6 that 

-<9W
2 {XJ[c*(t)]-i-A[x*(t)]  }e~^tdt|/<9tl =H

2(ti)e
_^tl

,  where  c*(t)  and  x*(t)  denote 
the optimal  solutions for the period  te[t],T].  Along  this period  the new stand grows 

independently  on  the  optimal  consumption  time  path.  Thus A  [x*(t)]  e
~ l̂

dtJ/<9tj  = 
[A(x

ti
)+<p(ti)F(x

ti
)]e i.e. the  RHS  of  (41)  denotes the  decrease  in  in  situ  benefits  due  to  

a marginal  decrease in the length  of the period  after the  stand is  cut. Evidently, with any 

&>O,  -dj <-<?j A[x*(T)]e"^t
'.  Assuming  that  the  

length  of the forest owner's life cycle is shorter  than the rotation period  yields 

A(x^)+<p(t l )F(x^)<A[x*(T)]<A[x*(t l-)] .  Thus  by  (41)  in  situ  preferences  increase the  
rotation period.  Because the ti solving  F [x(tj _)] -px(t|-)+pw/p is longer  than the FPO 

rotation,  it  follows that the rotation period  defined by  (41)  must  be longer  than the FPO 

rotation. 

The cutting moment defined by  (41) depends  on  the shadow price  of nonforest 

assets and is  thus  forest  owner  -specific.  The coefficient of  A(tj)  is  negative  and the rotation 

period must  be shorter  the lower  the consumption  at tj.  For studying  the comparative  statics 

of the rotation period,  we restrict  the analytical investigation  to the simple case where the 

subjective  time preference equals  the rate  of discount implying  that c=o. The equations  

a=pa+m-c and a(T)=O imply 

6Seierstad and  Sydsaeter  (1987  p. 213, theorem 9).  

pA(t I ){F[x(tr)]-px(tr)+pw/p}+A[x(tr)]=A(x
ti

)+<p(t I )F(x
ti

). (41)  

f[a o +(m-c)  /p]  e^ l
+(c-m  )  /p,  when te  [o,tj )  

a(t)= 
_ oT ot (42) 

I p~\z +(c-m)/p, when te  [t l;T] .  
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where jUsfe^-e^1 ' Thus consumption  is higher,  the higher the  timber price,  

nonforest income,  and initial nonforest assets,  and the lower the planting  costs and shorter 

the life  cycle.  The dependence  on  the rate  of  interest is  more complicated.  Low initial 

nonforest assets and cutting  moment near  T may imply  that  one is  a  borrower for  most  of  

the life cycle  implying  that an increase in p  decreases consumption.  High  initial nonforest 

assets and an early  cutting  moment may imply  the reverse.  Note that  similar outcomes  are 

absent in homogeneous  biomass models (Ovaskainen  1992). 

Noting  that  the shadow price  for  nonforest assets decreases with consumption  and 

denoting  r^pA(p,w,m,ao,T,p){F[x(tr)]-px(t 1-)+pw/p}+A[x(tr)]-A(x
ti

)-(p(t I )F(x
t]

)  yields  

Next  using  a(t l )=a(t l -)+px(t 1 ~)-w yields by  (42): 

c-p  [px(t !  -)-■w+aoe
pt  1]  /  [ept  1  -ep^ 1 +m, (43)  

sc/ölp=px(t |-)//i>o, (44)  

sc/i9w=-p/jU<O, (45)  

dc/<?m=l>o, (46) 

sc/,9ao=pe
ptl

/M>o (47) 

<9c/<9T=-p 2e [aoe
pt

'+px(t|~)-w]/(e
P )<0 (48) 

sc/sp=(M-p[tie
ptl

-(t rT)e
p(tl "T)

]}  [px(tr)-w+a0
e
ptl

]//x2+p2aoe
pWM§o, (49)  

<9r/dp=dA/dpv+A{F[x(tr)]-px(tr)}|o, (50)  

i9r/i?w=sA/i?wV+Ap=o, (51)  

dl7dm=dA/dmV>o, (52) 

ai7da
o
=dA/da

OV>O, (53)  

(54)  

i9r/i9p=i9A/spV+A[-px(t 1 -)+w]  -s<p(ti)/sp=o, (55) 
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where T=o and A[x(ti~)]-A(x )<o imply  that V=p{F[x(t ] -)]-px(t 1 -)+pw/p}<o.  

Recall that at any  interior  maximum it is  necessary  that  dV/dl\<o.  The effects  of price and 

planting  costs depends  on  whether the income or  substitution effect  dominates. The effect  

of  the rate  of interest  or  the subjective  time preference  is  ambiguous  for reasons  explained  

above. Note that  all these results deviate from  the Hartman (1976)  model, where (given  that 

in  situ  value increases the rotation period)  an increase in price  or  interest rate  shortens  and 

an increase in  planting  costs lengthens  the rotation period.  In addition,  here the rotation 

period  depends  on  parameters that are absent from Hartman (1976). An increase in 

nonforest income or  initial nonforest assets lengthens  the growing  period  because the owner 

has  more resources  for  taking  into account the value  of  the forest in situ.  A longer  life cycle  

shortens  the rotation period  for two  reasons:  the level of  consumption  decreases and the in 

situ value of  the forest after cutting  obtains more weight.  In addition,  the rotation period  

depends  on  the properties  of the utility function, U(c). 

We may also study  the dependence  of rotation length  on  the owner's  age. In 

equation  (41)  the term is the marginal  value of  in situ benefits for the 

period after the stand is  cut  and it  shortens the rotation period.  This term is  lower,  the 

shorter the remaining  period  before the end  of  the life cycle,  implying  that young forest 

owners  are  more "inpatient"  than old owners.  Note that if s<p,  consumption  increases  and 

its  marginal  value  decreases during  the life cycle.  Thus for  younger owners it is  more costly  

to postpone  the harvest  for maintaining  the in situ  value of  the stand. This compounds  the 

outcome  that  older  forest  owners  let the  stand grow older before the cut  than young owners.  

However,  this result may be the reverse  if the subjective  time preference  exceeds  the rate  of 

interest. 

In  Figures  3a,b  it  is  assumed  that where o</3<l  ,

 U(c)=(c^" a

-l)/(l-a), 

o<a<l,  and F(x) is  the logistic  growth  function. Figure  3a shows  the rotation period as  a 

function of owner's  age and demonstrates two  cases  where the age of harvested stand  

increases  with owner's age. In addition,  the numerical example  suggests  that this  effect  may  
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be stronger  for  high-income  forest  owners.  The dotted line  shows  the reverse  outcome  when 

B>p.  Figure 3b shows  the rotation period  as  a  function of nonforest income for two  different 

in situ parameter levels.  By  comparison,  the FPO rotation period  with the given  parameter 

values is  shorter and equals  64.3  years.  Finally,  note  that dependencies  shown in Figure 3 

a,b are  absent  in the Hartman (1976)  formulation. 

Figure  3 a,  b.  Optimal  rotation  and  in  situ values.  

Note: 

Figure  3a,  solid  lines:  p=  1 70,  w=4ooo, r=0.048,  K=soo, A=0.05, a
o
=lsooo,  p=0.035,  5=0.001 

a=P=o.s, x
o
=lo,  dotted  line:  5=0.1,  p=0.03,  m=3oooo.  

Figure  3b: x o
=  133.31  or =6O  years,  m=3oooo,  other  parameters  as in  Fig.3a.  

6 Conclusions  

When  the original  FPO model is  used to predict the harvesting  behavior of  NIPF  owners  it is 

assumed that the Fisherian separation  theorem holds and that markets  for  forest  land exist  

and are  perfect.  These requirements  seldom hold, and they  are  relaxed in the Fisherian 

two-period forest  model.  However,  this  approach  neglects  the age classes  of  stands,  which 
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in the FPO approach  are  an essential factor  in forest  harvesting  decisions. This study  aims  to  

relax the restrictive assumptions  of the FPO model without neglecting  the forest rotation 

aspect. The study  combines the forest owner's life cycle consumption/savings  

decisionmaking,  harvesting  decisions for an unlimited number of unequal  even-aged  stands 

and  a  bequest  motive for forest  and nonforest assets. The FPO rotation follows as a  special  

case  under restrictions on preferences,  capital  markets,  the bequest  motive and future 

expectations.  Among other things,  the results reveal that forest models that  exclude the 

rotation aspect also  neglect part  of  the long-term  problems that may  be essential  in forestry  

decisions. Imperfect  capital  markets  may shorten the rotation period  and  cause incentives  to 

smooth forest income by  dividing  large  stands for cutting  in smaller units. The results  on  in 

situ preferences  and forest rotation show that including  the life cycle  decisionmaking  

completely  changes  the properties  of timber supply.  

Price and interest rate uncertainty have been studied extensively  in forest 

economics,  but their  effects  on rotation have  been analyzed  by  implicitly  relying  on the 

Fisherian separation theorem. This study  suggests  that the optimal stopping  rule results may 

change  considerably  if the unwarranted assumption  of complete  separability  between 

harvesting  and consumption  decisions is  relaxed. 

Appendix  1 

Between the cutting moments all variables are continuous and by using the necessary  

conditions we  can write:  -d(e"^tH)/dt=-e"^t(dH/dt-5H)=-e"^t

[U'(c)c+A,(pa-c)+Apä-Ac+  

(pF(x)+<pF'(x)x-5U(c)-sA(pa-c)-s<pF(x)]=-5U(c).  Integration  both sides of -e   

-<5U(c)  yields  <sj^ l U(c)e"
<st

dt=  H(0)-  e"
st

H(t,-). By  condition (27),  H(o)=H(tr).  Thus  we  
obtain 5l

t 'U(c)e"^tdt/(l-e" t̂|
)=H(o).  The  term  | t, U(c)e"^t

dt  is  the  present  value  utility  of  
0 0 

the first  rotation period.  Recall  that this  cycle  continues forever implying  that the present  
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value  of  these  cycles  is  given  by  J^'U(c)e"^tdt/(l-e"^ tl
).  Thus  we  obtain  SW]=H(O).  The  

same situation occurs  after the first  cut  and we obtain <sW2=H(tj)  as well. 
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